Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title complexes, hexa­aqua­cobalt(II) bis­([mu]-pyridine-2,6-dicarboxyl­ato)bis­[(pyridine-2,6-dicarboxyl­ato)bismuthate(III)] dihydrate, [Co(H2O)6][Bi2(C7H4NO4)4]·2H2O, (I), and hexa­aqua­nickel(II) bis­([mu]-pyridine-2,6-dicarboxyl­ato)bis[(pyridine-2,6-dicarboxyl­ato)bismuthate(III)] dihydrate, [Ni(H2O)6][Bi2(C7H4NO4)4]·2H2O, (II), are isomorphous and crystallize in the triclinic space group P\overline{1}. The transition metal ions are located on the inversion centre and adopt slightly distorted MO6 (M = Co or Ni) octa­hedral geometries. Two [Bi(pydc)2]- units (pydc is pyridine-2,6-dicarboxyl­ate) are linked via bridging carboxyl­ate groups into centrosymmetric [Bi2(pydc)4]2- dianions. The crystal packing reveals that the [M(H2O)6]2+ cations, [Bi2(pydc)4]2- anions and solvent water mol­ecules form multiple hydrogen bonds to generate a supra­molecular three-dimensional network. The formation of secondary Bi...O bonds between adjacent [Bi2(pydc)4]2- dimers provides an additional supra­molecular synthon that directs and facilitates the crystal packing of both (I) and (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110053497/sq3274sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110053497/sq3274Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110053497/sq3274IIsup3.hkl
Contains datablock II

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270110053497/sq3274sup4.pdf
Supplementary material

CCDC references: 819289; 819290

Comment top

Compounds of bismuth(III) with aminopolycarboxylate ligands have been of interest over the past few decades, mainly due to their high stability in aqueous solutions and their rich structural chemistry (Stavila et al., 2006). The bismuth(III) centre is highly acidic and can achieve coordination numbers as high as 10 (Briand & Burford, 2000; Stavila et al., 2006). Pyridine-2,6-dicarboxylic acid (H2pydc) is a versatile chelating ligand and its metal complexes have been intensively explored in the context of their biological activity (Hwang et al., 2003) and rich coordination chemistry (Serezhkin et al., 2009). Bismuth(III) is known to form stable chelate complexes with H2pydc (or its anions), and several crystal structures have been reported to date (Agbabozorg et al., 2008; Ranjbar et al., 2003, 2001; Sheshmani et al., 2005). In these structures, H2pydc acts as an O,N,O-donor ligand to the metal ion to form five-membered metallocycles. This high coordination capacity, coupled with the ability to link to metal centres in a variety of bridging modes, makes aminopolycarboxylate ligands attractive for the assembly of mixed-metal complexes. Previously, we have described several transition metal–bismuth complexes based on ethylenediaminetetraacetate and nitrilotriacetate ligands (Bachman et al., 2003; Stavila et al., 2000, 2002, 2003; Stavila, Gulea, Shova et al. 2004; Stavila, Gulea, Popa et al., 2004). Here, we report the crystal structures of the first transition metal–bismuth pyridine-2,6-dicarboxylates, namely hexaaquacobalt(II) bis(µ-pyridine-2,6-dicarboxylato)bis[(pyridine-2,6-dicarboxylato)bismuthate(III)] dihydrate, (I), and hexaaquanickel(II) bis(µ-pyridine-2,6-dicarboxylato)bis[(pyridine-2,6-dicarboxylato)bismuthate(III)] dihydrate, (II).

Compounds (I) and (II) were obtained under slightly acidic reaction conditions by dissolution of freshly prepared cobalt(II) or nickel(II) hydroxycarbonates in a saturated solution of Bi(Hpydc)(pydc). Both compounds crystallize in the triclinic system (space group P1) and they are essentially isomorphous. The transition metal rests on the inversion centre and is coordinated to six water molecules in a slightly distorted octahedral coordination geometry with typical Co—O and Ni—O distances (Fig. 1, Table 1) (Guo et al., 2008; Morzyk-Ociepa, 2007). The primary coordination environment of BiIII includes seven donor atoms, six from two tridentate pydc2- ligands and one bridging O atom from an adjacent symmetry-related complex. The pydc2- ligand is coordinated to the BiIII centre in a conventional O,N,O-tridentate fashion via the N atom and two O atoms, one from each of the two carboxylate groups. Atom Bi1 and its symmetry counterpart constitute the anionic part of the molecule, forming a [Bi2(pydc)4]2- dimer (Fig. 1).

The bridging carboxylate group C11—O11—O12 in (I) and (II) displays a monoatomic bidentate η0:η22-type coordination, which represents the most common bridging motif in structurally characterized BiIII complexes with dipicolinate ligands (Stavila et al., 2006). According to the nomenclature proposed by Serezhkin et al. (2009), the coordination type of the bridging aminocarboxylate ligand in (I) and (II) can be represented as T101, indicating that one pydc2- ion acts as a tridentate ligand towards one BiIII atom and as a monodentate ligand towards the other. This type of coordination of the pydc2- ligand is also found in complexes of TlI, PbII and some lanthanides (Serezhkin et al., 2009). The non-bridging pydc2- group has a coordination of type T001, which represents the most frequent coordination mode in dipicolinate complexes and is typically adopted by the bis(pydc2-) complexes of the first- and second-row transition metals. The crystal structures of other BiIII complexes with H2pydc acid exhibit similar coordination features. The dimeric structure of [Bi(Hpydc)(pydc)(dmso)]2 (Zevaco et al., 1992) (dmso is dimethylsulfoxide) displays octa-coordinated BiIII atoms surrounded by six donor atoms from the Hnpydc(2-n)- ions, a bridging O atom from an adjacent complex and one O atom from a dmso molecule. [{BiCl(H2O)(pydc)}2]n (Ranjbar et al., 2001) contains only one pydc2- group per BiIII atom, with an additional Cl- ligand to complete a pentagonal–bipyramidal environment. In [pydaH]2[Bi2(pydc)4(H2O)2]·4H2O (Ranjbar et al., 2003) (pyda is pyridine-2,6-diamine) and (phenH)2[Bi2(pydc)4(H2O)2]·5H2O (Sheshmani et al., 2005) (phen is 1,10-phenanthroline), the BiIII centres are coordinated by two pydc2- ions, a bridging carboxylate O atom and a water molecule. Interestingly enough, no BiIII–H2O bonds were found in [creatH]2[Bi2(pydc)4]·4H2O (Agbabozorg et al., 2008) (creatH = creatinine, 2-amino-1-methyl-5H-imidazol-4-one). We have recently synthesized and determined the crystal structures of two bismuth(III) dipicolinate complexes with thiourea and thiosemicarbazide (Stavila et al., 2009), [Bi6(pydc)8(Hpydc)2(tu)8] and [Bi2(pydc)3(tsc)(H2O)2]·H2O (tu is thiourea and tsc is thiosemicarbazide), which contain Bi—S bonds. In [Bi6(pydc)8(Hpydc)2(tu)8], there are three independent BiIII atoms connected by means of bridging carboxylate groups into hexanuclear Bi6 units, while [Bi2(pydc)3(tsc)(H2O)2]·H2O is a coordination polymer generated by bridging carboxylate groups.

The Bi···Bi distances in the [Bi(pydc)2]22- dimers here are 4.225 (4) and 4.220 (4) Å for (I) and (II), respectively, which is somewhat shorter than the sum of the van der Waals radii (4.8 Å; Standard reference?). The transition metal and BiIII atoms in (I) and (II) are separated by 6.394 (5) and 6.381 (4) Å, respectively. The interatomic distances and bond angles in (I) and (II) are statistically about the same (Table 1). The Bi—N distances found in the [Bi2(pydc)4]2- dimer correlate well with those in other structurally characterized BiIII complexes with pydc2- ligands (Stavila et al., 2006). The Bi—O distances are asymmetric, with the longest distance being to the bridging atom O11 [2.682 (3) and 2.687 (3) for (I) and (II), respectively], which is situated closer to the adjacent BiIII atom of the dimer at 2.492 (3) and 2.505 (2) Å, respectively.

The extended three-dimensional structure of (I) and (II) shows layers of anions alternating with layers of cations along the b axis. Each anion layer contains dimeric [Bi2(pydc)4]2- complexes joined into chains by secondary Bi···O24ii bonds [3.121 (4) and 3.084 (3) Å for (I) and (II), respectively; symmetry code: (ii) -x, -y - 1, -z]. The layers are held together by a network of nearly linear O—H···O hydrogen bonds with medium to long O···O separations (Fig. 2, Table 2). The H atoms of all water molecules in the structure are involved in hydrogen bonds with the O atoms of other water molecules or carboxylate O atoms. The hydrogen bonds, secondary Bi—O bonds and electrostatic interactions between the cations and anions are the major packing forces that stabilize the crystal structures of compounds (I) and (II).

Related literature top

For related literature, see: Agbabozorg et al. (2008); Bachman et al. (2003); Briand & Burford (2000); Guo et al. (2008); Hwang et al. (2003); Morzyk-Ociepa (2007); Ranjbar et al. (2001, 2003); Serezhkin et al. (2009); Sheshmani et al. (2005); Stavila et al. (2000, 2002, 2003, 2006, 2009); Stavila, Gulea, Popa, Shova, Merbach, Simonov & Lipkowski (2004); Stavila, Gulea, Shova, Simonov, Petrenko, Lipkowski, Riblet & Helm (2004); Zevaco et al. (1992).

Experimental top

Pyridine-2,6-dicarboxylic acid and all other reactants were obtained commercially. Bismuth(III) oxide (466 mg, 1.0 mmol) and pyridine-2,6-dicarboxylic acid (668 mg, 4.0 mmol) were stirred at reflux in water (Volume?) until the dissolution of most of the oxide. The filtered solution was reacted with freshly prepared cobalt(II) or nickel(II) basic carbonate, obtained upon reaction of aqueous solutions of the transition metal nitrates with excess sodium carbonate. The solutions of the CoII–BiIII and NiII–BiIII compounds were filtered and allowed to stand for crystallization at ambient temperature. Light-pink crystals of (I) and light-green crystals of (II) were obtained after 3–4 weeks.

Refinement top

C-bound H atoms were located in calculated positions and constrained to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). Water H atoms were found in a difference Fourier map and included in the refinement with the restraints O—H = 0.84 (1) Å and H···H >= 1.33 (1) Å, and with Uiso(H) = 1.2Ueq(O).

Computing details top

For both compounds, data collection: XSCANS (Bruker, 1997); cell refinement: XSCANS (Bruker, 1997); data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 40% probability level. [Symmetry code: (A) -x + 1, -y + 1, -z + 1.] The molecular structure of (II) is available in the Supplementary material.
[Figure 2] Fig. 2. The network formed by hydrogen-bonding interactions (dashed lines) in (I). The aromatic H atoms have been omitted for clarity. The network in (II) is similar?
(I) hexaaquacobalt(II) bis(µ-pyridine-2,6-dicarboxylato)bis[(pyridine-2,6- dicarboxylato)bismuthate(III)] dihydrate top
Crystal data top
[Co(H2O)6][Bi2(C7H4NO4)4]·2H2OZ = 1
Mr = 1281.43F(000) = 609
Triclinic, P1Dx = 2.385 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2966 (15) ÅCell parameters from 9400 reflections
b = 11.184 (2) Åθ = 2.8–28.7°
c = 12.004 (2) ŵ = 10.40 mm1
α = 112.99 (3)°T = 293 K
β = 90.67 (3)°Plate, light-pink
γ = 97.44 (3)°0.21 × 0.16 × 0.11 mm
V = 892.1 (3) Å3
Data collection top
Bruker CCD 1000 area-detector
diffractometer
4176 independent reflections
Radiation source: fine-focus sealed tube3914 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 28.5°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.219, Tmax = 0.394k = 1414
10685 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0304P)2 + 1.1642P]
where P = (Fo2 + 2Fc2)/3
4176 reflections(Δ/σ)max = 0.001
292 parametersΔρmax = 1.10 e Å3
12 restraintsΔρmin = 1.73 e Å3
Crystal data top
[Co(H2O)6][Bi2(C7H4NO4)4]·2H2Oγ = 97.44 (3)°
Mr = 1281.43V = 892.1 (3) Å3
Triclinic, P1Z = 1
a = 7.2966 (15) ÅMo Kα radiation
b = 11.184 (2) ŵ = 10.40 mm1
c = 12.004 (2) ÅT = 293 K
α = 112.99 (3)°0.21 × 0.16 × 0.11 mm
β = 90.67 (3)°
Data collection top
Bruker CCD 1000 area-detector
diffractometer
4176 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3914 reflections with I > 2σ(I)
Tmin = 0.219, Tmax = 0.394Rint = 0.035
10685 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02412 restraints
wR(F2) = 0.063H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 1.10 e Å3
4176 reflectionsΔρmin = 1.73 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.389333 (19)0.311936 (13)0.371001 (12)0.02241 (6)
N10.3445 (5)0.2102 (3)0.5221 (3)0.0242 (7)
N20.5785 (5)0.2340 (3)0.2057 (3)0.0234 (7)
O110.4431 (5)0.4703 (3)0.6070 (3)0.0318 (7)
O120.4744 (5)0.4851 (3)0.7978 (3)0.0353 (7)
O130.3068 (5)0.0871 (3)0.2822 (3)0.0331 (7)
O140.2018 (6)0.1019 (3)0.2943 (3)0.0454 (9)
O210.2421 (4)0.2833 (3)0.1716 (3)0.0288 (6)
O220.2624 (5)0.2020 (4)0.0287 (3)0.0467 (9)
O230.6765 (4)0.2977 (3)0.4349 (3)0.0325 (7)
O240.9639 (5)0.2571 (4)0.3941 (3)0.0455 (9)
C110.4371 (6)0.4224 (4)0.6881 (4)0.0269 (8)
C120.3773 (6)0.2763 (4)0.6420 (4)0.0253 (8)
C130.3537 (7)0.2131 (4)0.7204 (4)0.0319 (9)
H13A0.38110.25960.80330.038*
C140.2895 (8)0.0816 (5)0.6751 (4)0.0428 (12)
H14A0.26850.03840.72710.051*
C150.2561 (8)0.0134 (5)0.5511 (4)0.0387 (11)
H15A0.21410.07630.51830.046*
C160.2866 (6)0.0815 (4)0.4770 (4)0.0272 (8)
C170.2610 (6)0.0155 (4)0.3405 (4)0.0280 (8)
C210.3229 (6)0.2311 (4)0.0764 (4)0.0288 (9)
C220.5142 (6)0.2002 (4)0.0925 (4)0.0259 (8)
C230.6174 (6)0.1385 (4)0.0042 (4)0.0305 (9)
H23A0.57240.11740.08340.037*
C240.7881 (6)0.1089 (4)0.0187 (4)0.0331 (9)
H24A0.85810.06550.04510.040*
C250.8540 (6)0.1445 (4)0.1380 (4)0.0304 (9)
H25A0.96810.12500.15560.036*
C260.7457 (6)0.2100 (4)0.2303 (4)0.0263 (8)
C270.8038 (6)0.2583 (4)0.3617 (4)0.0304 (9)
Co10.00000.50000.00000.02622 (16)
O10.2898 (5)0.4621 (4)0.0162 (3)0.0439 (8)
H1A0.359 (6)0.463 (6)0.039 (3)0.053*
H1B0.356 (6)0.471 (6)0.069 (4)0.053*
O20.0030 (5)0.5428 (3)0.1541 (3)0.0376 (7)
H2A0.022 (7)0.478 (3)0.221 (3)0.045*
H2B0.071 (6)0.596 (4)0.159 (4)0.045*
O30.0090 (5)0.6937 (3)0.1035 (3)0.0387 (8)
H3A0.077 (6)0.730 (4)0.074 (5)0.046*
H3B0.066 (6)0.756 (3)0.153 (4)0.046*
O40.0665 (17)0.3260 (6)0.6517 (5)0.146 (4)
H4A0.077 (19)0.250 (5)0.652 (10)0.176*
H4B0.058 (19)0.315 (11)0.579 (3)0.176*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.03055 (9)0.02192 (8)0.01466 (8)0.00454 (5)0.00155 (5)0.00691 (6)
N10.0319 (17)0.0214 (16)0.0178 (16)0.0038 (13)0.0022 (13)0.0061 (13)
N20.0285 (16)0.0241 (16)0.0196 (16)0.0038 (12)0.0016 (13)0.0106 (13)
O110.0517 (19)0.0236 (14)0.0202 (14)0.0036 (13)0.0044 (13)0.0091 (12)
O120.0520 (19)0.0312 (16)0.0185 (15)0.0001 (14)0.0000 (13)0.0071 (13)
O130.0528 (19)0.0251 (15)0.0174 (14)0.0006 (13)0.0037 (13)0.0057 (12)
O140.073 (3)0.0279 (17)0.0243 (17)0.0103 (16)0.0036 (16)0.0042 (14)
O210.0298 (14)0.0358 (16)0.0219 (14)0.0076 (12)0.0035 (11)0.0117 (12)
O220.056 (2)0.066 (2)0.0207 (16)0.0290 (19)0.0018 (15)0.0140 (17)
O230.0341 (16)0.0446 (18)0.0195 (14)0.0073 (13)0.0027 (12)0.0129 (13)
O240.0348 (17)0.069 (3)0.0341 (19)0.0090 (16)0.0046 (14)0.0222 (18)
C110.031 (2)0.027 (2)0.022 (2)0.0053 (15)0.0054 (16)0.0086 (16)
C120.0298 (19)0.029 (2)0.0170 (18)0.0028 (15)0.0035 (15)0.0097 (16)
C130.049 (3)0.030 (2)0.0178 (19)0.0012 (18)0.0002 (17)0.0115 (17)
C140.074 (4)0.034 (2)0.023 (2)0.002 (2)0.003 (2)0.017 (2)
C150.066 (3)0.023 (2)0.024 (2)0.005 (2)0.002 (2)0.0093 (18)
C160.035 (2)0.0236 (19)0.0190 (19)0.0002 (15)0.0008 (16)0.0056 (16)
C170.037 (2)0.025 (2)0.0194 (19)0.0007 (16)0.0006 (16)0.0082 (16)
C210.037 (2)0.029 (2)0.024 (2)0.0082 (17)0.0002 (16)0.0131 (17)
C220.033 (2)0.0246 (19)0.023 (2)0.0047 (15)0.0003 (16)0.0119 (16)
C230.044 (2)0.029 (2)0.0180 (19)0.0067 (17)0.0054 (17)0.0081 (16)
C240.036 (2)0.029 (2)0.030 (2)0.0059 (17)0.0120 (18)0.0062 (18)
C250.026 (2)0.032 (2)0.032 (2)0.0052 (16)0.0058 (17)0.0110 (18)
C260.030 (2)0.0255 (19)0.025 (2)0.0051 (15)0.0033 (16)0.0121 (17)
C270.034 (2)0.032 (2)0.029 (2)0.0017 (17)0.0024 (17)0.0165 (18)
Co10.0294 (4)0.0281 (4)0.0203 (4)0.0072 (3)0.0014 (3)0.0079 (3)
O10.0298 (16)0.069 (3)0.0351 (19)0.0098 (16)0.0007 (14)0.0227 (19)
O20.055 (2)0.0348 (18)0.0242 (16)0.0111 (15)0.0012 (14)0.0119 (14)
O30.049 (2)0.0292 (16)0.0310 (18)0.0143 (14)0.0128 (14)0.0023 (14)
O40.343 (12)0.050 (3)0.031 (3)0.008 (5)0.044 (5)0.013 (2)
Geometric parameters (Å, º) top
Bi1—O232.269 (3)C15—C161.382 (6)
Bi1—O132.307 (3)C15—H15A0.9300
Bi1—N22.372 (3)C16—C171.508 (6)
Bi1—O11i2.493 (3)C21—C221.508 (6)
Bi1—N12.494 (3)C22—C231.386 (6)
Bi1—O212.498 (3)C23—C241.380 (7)
Bi1—O112.682 (3)C23—H23A0.9300
N1—C161.331 (5)C24—C251.389 (7)
N1—C121.338 (5)C24—H24A0.9300
N2—C221.323 (5)C25—C261.387 (6)
N2—C261.337 (5)C25—H25A0.9300
O11—C111.281 (5)C26—C271.490 (6)
O11—Bi1i2.493 (3)Co1—O3ii2.044 (3)
O12—C111.233 (5)Co1—O32.044 (3)
O13—C171.272 (5)Co1—O2ii2.084 (3)
O14—C171.223 (5)Co1—O22.084 (3)
O21—C211.256 (5)Co1—O1ii2.094 (3)
O22—C211.234 (5)Co1—O12.094 (3)
O23—C271.285 (5)O1—H1A0.836 (10)
O24—C271.230 (5)O1—H1B0.835 (10)
C11—C121.507 (6)O2—H2A0.836 (10)
C12—C131.381 (6)O2—H2B0.837 (10)
C13—C141.367 (7)O3—H3A0.839 (10)
C13—H13A0.9300O3—H3B0.841 (10)
C14—C151.383 (7)O4—H4A0.840 (10)
C14—H14A0.9300O4—H4B0.839 (10)
O23—Bi1—O1393.19 (12)C15—C16—C17122.7 (4)
O23—Bi1—N268.79 (11)O14—C17—O13125.0 (4)
O13—Bi1—N273.57 (12)O14—C17—C16118.3 (4)
O23—Bi1—O11i79.71 (12)O13—C17—C16116.7 (4)
O13—Bi1—O11i156.24 (11)O22—C21—O21127.0 (4)
N2—Bi1—O11i82.74 (11)O22—C21—C22116.5 (4)
O23—Bi1—N173.56 (11)O21—C21—C22116.5 (4)
O13—Bi1—N167.02 (11)N2—C22—C23121.1 (4)
N2—Bi1—N1122.67 (11)N2—C22—C21115.9 (4)
O11i—Bi1—N1130.55 (11)C23—C22—C21123.0 (4)
O23—Bi1—O21134.27 (10)C24—C23—C22119.1 (4)
O13—Bi1—O2178.84 (11)C24—C23—H23A120.5
N2—Bi1—O2165.75 (11)C22—C23—H23A120.5
O11i—Bi1—O2189.88 (11)C23—C24—C25119.3 (4)
N1—Bi1—O21137.88 (11)C23—C24—H24A120.4
O23—Bi1—O1172.66 (11)C25—C24—H24A120.4
O13—Bi1—O11129.08 (10)C26—C25—C24118.5 (4)
N2—Bi1—O11136.25 (11)C26—C25—H25A120.8
O11i—Bi1—O1170.63 (11)C24—C25—H25A120.8
N1—Bi1—O1162.07 (10)N2—C26—C25121.1 (4)
O21—Bi1—O11144.46 (10)N2—C26—C27115.1 (4)
C16—N1—C12119.8 (4)C25—C26—C27123.7 (4)
C16—N1—Bi1116.0 (3)O24—C27—O23124.1 (4)
C12—N1—Bi1124.2 (3)O24—C27—C26120.3 (4)
C22—N2—C26120.9 (4)O23—C27—C26115.6 (4)
C22—N2—Bi1121.7 (3)O3ii—Co1—O3180.0 (3)
C26—N2—Bi1116.9 (3)O3ii—Co1—O2ii88.90 (14)
C11—O11—Bi1i126.3 (3)O3—Co1—O2ii91.10 (14)
C11—O11—Bi1120.5 (3)O3ii—Co1—O291.10 (14)
Bi1i—O11—Bi1109.37 (11)O3—Co1—O288.90 (14)
C17—O13—Bi1124.3 (3)O2ii—Co1—O2180.00 (17)
C21—O21—Bi1119.5 (3)O3ii—Co1—O1ii90.42 (16)
C27—O23—Bi1122.6 (3)O3—Co1—O1ii89.58 (16)
O12—C11—O11125.7 (4)O2ii—Co1—O1ii89.79 (15)
O12—C11—C12118.9 (4)O2—Co1—O1ii90.21 (15)
O11—C11—C12115.4 (4)O3ii—Co1—O189.58 (16)
N1—C12—C13121.1 (4)O3—Co1—O190.42 (16)
N1—C12—C11117.4 (4)O2ii—Co1—O190.21 (15)
C13—C12—C11121.4 (4)O2—Co1—O189.79 (15)
C14—C13—C12119.4 (4)O1ii—Co1—O1180.0
C14—C13—H13A120.3Co1—O1—H1A126 (4)
C12—C13—H13A120.3Co1—O1—H1B124 (3)
C13—C14—C15119.3 (4)H1A—O1—H1B105.9 (17)
C13—C14—H14A120.3Co1—O2—H2A116 (4)
C15—C14—H14A120.3Co1—O2—H2B119 (4)
C16—C15—C14118.6 (4)H2A—O2—H2B105.6 (17)
C16—C15—H15A120.7Co1—O3—H3A115 (3)
C14—C15—H15A120.7Co1—O3—H3B135 (3)
N1—C16—C15121.7 (4)H3A—O3—H3B104.3 (16)
N1—C16—C17115.6 (4)H4A—O4—H4B105.0 (17)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O12iii0.84 (1)2.04 (2)2.848 (5)163 (6)
O1—H1B···O12iv0.84 (1)2.08 (1)2.913 (5)177 (6)
O2—H2A···O4v0.84 (1)1.78 (1)2.607 (6)171 (6)
O2—H2B···O21ii0.84 (1)2.00 (1)2.839 (5)178 (5)
O3—H3A···O22ii0.84 (1)1.81 (2)2.631 (5)167 (6)
O3—H3B···O14vi0.84 (1)1.96 (2)2.785 (5)167 (6)
O4—H4A···O14vii0.84 (1)2.11 (6)2.885 (7)153 (12)
O4—H4B···O24viii0.84 (1)2.07 (2)2.898 (7)171 (11)
Symmetry codes: (ii) x, y+1, z; (iii) x, y+1, z+1; (iv) x1, y, z1; (v) x, y, z1; (vi) x, y+1, z; (vii) x, y, z+1; (viii) x1, y, z.
(II) hexaaquacobalt(II) bis(µ-pyridine-2,6-dicarboxylato)bis[(pyridine-2,6- dicarboxylato)nickelate(III)] dihydrate top
Crystal data top
[Ni(H2O)6][Bi2(C7H4NO4)4]·2H2OZ = 1
Mr = 1281.21F(000) = 610
Triclinic, P1Dx = 2.388 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2615 (15) ÅCell parameters from 8595 reflections
b = 11.210 (2) Åθ = 2.8–28.3°
c = 12.014 (2) ŵ = 10.48 mm1
α = 112.96 (3)°T = 293 K
β = 90.79 (3)°Plate, light-green
γ = 97.33 (3)°0.17 × 0.14 × 0.12 mm
V = 891.0 (3) Å3
Data collection top
Bruker CCD 1000 area-detector
diffractometer
4214 independent reflections
Radiation source: fine-focus sealed tube3837 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.269, Tmax = 0.366k = 1414
10920 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.050H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0218P)2 + 0.3727P]
where P = (Fo2 + 2Fc2)/3
4214 reflections(Δ/σ)max = 0.001
292 parametersΔρmax = 1.06 e Å3
12 restraintsΔρmin = 0.85 e Å3
Crystal data top
[Ni(H2O)6][Bi2(C7H4NO4)4]·2H2Oγ = 97.33 (3)°
Mr = 1281.21V = 891.0 (3) Å3
Triclinic, P1Z = 1
a = 7.2615 (15) ÅMo Kα radiation
b = 11.210 (2) ŵ = 10.48 mm1
c = 12.014 (2) ÅT = 293 K
α = 112.96 (3)°0.17 × 0.14 × 0.12 mm
β = 90.79 (3)°
Data collection top
Bruker CCD 1000 area-detector
diffractometer
4214 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3837 reflections with I > 2σ(I)
Tmin = 0.269, Tmax = 0.366Rint = 0.030
10920 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02112 restraints
wR(F2) = 0.050H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 1.06 e Å3
4214 reflectionsΔρmin = 0.85 e Å3
292 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Bi10.388113 (17)0.312794 (11)0.371459 (11)0.02065 (5)
N10.3443 (4)0.2100 (3)0.5218 (3)0.0220 (6)
N20.5790 (4)0.2347 (3)0.2063 (3)0.0203 (6)
O110.4418 (4)0.4700 (2)0.6081 (2)0.0299 (6)
O120.4719 (4)0.4843 (3)0.7984 (2)0.0341 (6)
O130.3067 (4)0.0883 (2)0.2805 (2)0.0316 (6)
O140.2033 (5)0.1015 (3)0.2917 (3)0.0442 (8)
O210.2411 (3)0.2857 (2)0.1712 (2)0.0269 (5)
O220.2625 (4)0.2032 (3)0.0288 (3)0.0465 (8)
O230.6780 (4)0.2988 (3)0.4358 (2)0.0311 (6)
O240.9667 (4)0.2579 (3)0.3959 (3)0.0431 (7)
C110.4356 (5)0.4221 (3)0.6886 (3)0.0232 (7)
C120.3764 (5)0.2756 (3)0.6416 (3)0.0231 (7)
C130.3529 (6)0.2119 (4)0.7198 (3)0.0319 (8)
H13A0.37970.25770.80280.038*
C140.2898 (7)0.0810 (4)0.6733 (4)0.0428 (11)
H14A0.26990.03730.72480.051*
C150.2553 (6)0.0131 (4)0.5498 (4)0.0380 (10)
H15A0.21250.07630.51710.046*
C160.2860 (5)0.0812 (3)0.4756 (3)0.0248 (7)
C170.2612 (5)0.0158 (4)0.3397 (3)0.0278 (8)
C210.3233 (5)0.2324 (4)0.0757 (3)0.0257 (7)
C220.5159 (5)0.2006 (3)0.0925 (3)0.0221 (7)
C230.6191 (6)0.1392 (4)0.0034 (3)0.0293 (8)
H23A0.57470.11860.08270.035*
C240.7902 (5)0.1090 (4)0.0206 (3)0.0312 (8)
H24A0.86060.06510.04270.037*
C250.8557 (5)0.1447 (4)0.1398 (4)0.0285 (8)
H25A0.96990.12470.15770.034*
C260.7483 (5)0.2104 (3)0.2310 (3)0.0220 (7)
C270.8054 (5)0.2587 (4)0.3627 (3)0.0267 (8)
Ni10.00000.50000.00000.02368 (13)
O10.2866 (4)0.4586 (3)0.0175 (3)0.0400 (7)
H1A0.345 (5)0.467 (5)0.043 (2)0.048*
H1B0.358 (5)0.470 (5)0.066 (3)0.048*
O20.0047 (4)0.5436 (3)0.1505 (2)0.0341 (6)
H2A0.030 (5)0.476 (2)0.213 (3)0.041*
H2B0.072 (5)0.594 (3)0.149 (4)0.041*
O30.0126 (4)0.6901 (3)0.1053 (3)0.0363 (7)
H3A0.083 (4)0.731 (3)0.082 (4)0.044*
H3B0.079 (4)0.745 (3)0.142 (4)0.044*
O40.0812 (13)0.3289 (4)0.6558 (4)0.144 (3)
H4A0.080 (15)0.251 (3)0.646 (8)0.173*
H4B0.067 (14)0.332 (8)0.588 (4)0.173*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Bi10.02727 (7)0.02004 (7)0.01416 (7)0.00388 (5)0.00127 (5)0.00609 (5)
N10.0271 (15)0.0231 (14)0.0161 (14)0.0029 (12)0.0014 (11)0.0084 (12)
N20.0248 (14)0.0184 (13)0.0178 (14)0.0024 (11)0.0016 (11)0.0074 (11)
O110.0475 (16)0.0214 (12)0.0191 (13)0.0008 (11)0.0042 (11)0.0075 (10)
O120.0497 (17)0.0287 (14)0.0189 (13)0.0003 (12)0.0004 (12)0.0057 (11)
O130.0497 (17)0.0237 (13)0.0187 (13)0.0008 (12)0.0047 (11)0.0067 (11)
O140.072 (2)0.0229 (14)0.0285 (15)0.0125 (14)0.0055 (14)0.0062 (12)
O210.0273 (13)0.0330 (14)0.0226 (13)0.0071 (10)0.0022 (10)0.0123 (11)
O220.0536 (18)0.066 (2)0.0228 (15)0.0286 (16)0.0023 (13)0.0152 (15)
O230.0325 (14)0.0416 (15)0.0189 (13)0.0071 (12)0.0004 (11)0.0112 (12)
O240.0299 (15)0.064 (2)0.0345 (17)0.0088 (14)0.0063 (12)0.0184 (15)
C110.0268 (17)0.0269 (18)0.0171 (17)0.0048 (14)0.0037 (13)0.0097 (14)
C120.0286 (17)0.0256 (17)0.0157 (16)0.0020 (14)0.0024 (13)0.0092 (14)
C130.048 (2)0.030 (2)0.0167 (17)0.0006 (17)0.0026 (16)0.0098 (15)
C140.071 (3)0.034 (2)0.028 (2)0.003 (2)0.002 (2)0.0196 (19)
C150.060 (3)0.0222 (19)0.030 (2)0.0047 (18)0.0011 (19)0.0115 (17)
C160.0313 (18)0.0220 (17)0.0200 (17)0.0005 (14)0.0006 (14)0.0081 (14)
C170.0336 (19)0.0252 (18)0.0220 (18)0.0013 (15)0.0029 (15)0.0074 (15)
C210.0321 (18)0.0259 (18)0.0221 (18)0.0061 (14)0.0014 (15)0.0123 (15)
C220.0305 (18)0.0191 (16)0.0163 (16)0.0023 (13)0.0026 (13)0.0069 (13)
C230.042 (2)0.0289 (19)0.0149 (17)0.0047 (16)0.0045 (15)0.0068 (15)
C240.036 (2)0.0277 (19)0.0255 (19)0.0064 (16)0.0119 (16)0.0049 (16)
C250.0277 (18)0.0259 (18)0.032 (2)0.0050 (15)0.0035 (15)0.0111 (16)
C260.0235 (16)0.0193 (16)0.0231 (18)0.0006 (13)0.0018 (13)0.0088 (14)
C270.0316 (19)0.0274 (18)0.0228 (18)0.0035 (15)0.0005 (15)0.0120 (15)
Ni10.0257 (3)0.0256 (3)0.0189 (3)0.0061 (2)0.0012 (2)0.0073 (3)
O10.0290 (14)0.064 (2)0.0296 (16)0.0088 (14)0.0014 (12)0.0212 (15)
O20.0460 (17)0.0341 (15)0.0225 (14)0.0121 (13)0.0003 (12)0.0098 (12)
O30.0440 (16)0.0268 (14)0.0314 (16)0.0103 (12)0.0123 (13)0.0032 (12)
O40.333 (9)0.051 (3)0.034 (2)0.008 (4)0.058 (4)0.013 (2)
Geometric parameters (Å, º) top
Bi1—O232.277 (3)C15—C161.385 (5)
Bi1—O132.310 (3)C15—H15A0.9300
Bi1—N22.378 (3)C16—C171.503 (5)
Bi1—N12.497 (3)C21—C221.517 (5)
Bi1—O11i2.504 (3)C22—C231.379 (5)
Bi1—O212.510 (3)C23—C241.384 (6)
Bi1—O112.688 (3)C23—H23A0.9300
N1—C161.337 (4)C24—C251.386 (5)
N1—C121.337 (4)C24—H24A0.9300
N2—C221.325 (4)C25—C261.375 (5)
N2—C261.346 (4)C25—H25A0.9300
O11—C111.275 (4)C26—C271.492 (5)
O11—Bi1i2.504 (3)Ni1—O3ii2.024 (3)
O12—C111.234 (4)Ni1—O32.024 (3)
O13—C171.289 (4)Ni1—O2ii2.049 (3)
O14—C171.225 (4)Ni1—O22.049 (3)
O21—C211.266 (4)Ni1—O12.063 (3)
O22—C211.227 (4)Ni1—O1ii2.063 (3)
O23—C271.285 (4)O1—H1A0.832 (10)
O24—C271.235 (4)O1—H1B0.835 (10)
C11—C121.514 (5)O2—H2A0.839 (10)
C12—C131.386 (5)O2—H2B0.838 (10)
C13—C141.363 (6)O3—H3A0.839 (10)
C13—H13A0.9300O3—H3B0.835 (10)
C14—C151.380 (6)O4—H4A0.835 (10)
C14—H14A0.9300O4—H4B0.837 (10)
O23—Bi1—O1393.28 (10)C15—C16—C17122.8 (3)
O23—Bi1—N268.68 (9)O14—C17—O13123.9 (4)
O13—Bi1—N272.91 (10)O14—C17—C16119.2 (3)
O23—Bi1—N173.46 (10)O13—C17—C16116.9 (3)
O13—Bi1—N167.39 (9)O22—C21—O21126.7 (3)
N2—Bi1—N1122.22 (9)O22—C21—C22116.8 (3)
O23—Bi1—O11i79.49 (10)O21—C21—C22116.5 (3)
O13—Bi1—O11i155.11 (9)N2—C22—C23121.7 (3)
N2—Bi1—O11i82.30 (9)N2—C22—C21115.5 (3)
N1—Bi1—O11i131.06 (9)C23—C22—C21122.8 (3)
O23—Bi1—O21134.06 (9)C22—C23—C24118.6 (3)
O13—Bi1—O2178.75 (9)C22—C23—H23A120.7
N2—Bi1—O2165.72 (9)C24—C23—H23A120.7
N1—Bi1—O21138.26 (9)C23—C24—C25119.5 (3)
O11i—Bi1—O2189.20 (9)C23—C24—H24A120.3
O23—Bi1—O1172.58 (9)C25—C24—H24A120.3
O13—Bi1—O11129.42 (9)C26—C25—C24118.6 (3)
N2—Bi1—O11136.28 (9)C26—C25—H25A120.7
N1—Bi1—O1162.04 (8)C24—C25—H25A120.7
O11i—Bi1—O1171.33 (9)N2—C26—C25121.3 (3)
O21—Bi1—O11144.48 (8)N2—C26—C27114.6 (3)
C16—N1—C12120.1 (3)C25—C26—C27124.1 (3)
C16—N1—Bi1115.8 (2)O24—C27—O23123.8 (3)
C12—N1—Bi1124.1 (2)O24—C27—C26120.1 (3)
C22—N2—C26120.2 (3)O23—C27—C26116.1 (3)
C22—N2—Bi1122.2 (2)O3ii—Ni1—O3180.0 (2)
C26—N2—Bi1117.1 (2)O3ii—Ni1—O2ii89.91 (12)
C11—O11—Bi1i126.7 (2)O3—Ni1—O2ii90.09 (12)
C11—O11—Bi1120.7 (2)O3ii—Ni1—O290.09 (12)
Bi1i—O11—Bi1108.67 (9)O3—Ni1—O289.91 (12)
C17—O13—Bi1123.6 (2)O2ii—Ni1—O2180.00 (14)
C21—O21—Bi1119.2 (2)O3ii—Ni1—O189.10 (13)
C27—O23—Bi1122.6 (2)O3—Ni1—O190.90 (13)
O12—C11—O11125.9 (3)O2ii—Ni1—O188.32 (12)
O12—C11—C12118.8 (3)O2—Ni1—O191.68 (12)
O11—C11—C12115.3 (3)O3ii—Ni1—O1ii90.90 (13)
N1—C12—C13121.1 (3)O3—Ni1—O1ii89.10 (13)
N1—C12—C11117.6 (3)O2ii—Ni1—O1ii91.68 (12)
C13—C12—C11121.3 (3)O2—Ni1—O1ii88.32 (12)
C14—C13—C12118.9 (4)O1—Ni1—O1ii180.0
C14—C13—H13A120.5Ni1—O1—H1A120 (3)
C12—C13—H13A120.5Ni1—O1—H1B127 (3)
C13—C14—C15120.1 (4)H1A—O1—H1B106.1 (16)
C13—C14—H14A119.9Ni1—O2—H2A110 (3)
C15—C14—H14A119.9Ni1—O2—H2B112 (3)
C14—C15—C16118.4 (4)H2A—O2—H2B104.6 (16)
C14—C15—H15A120.8Ni1—O3—H3A119 (3)
C16—C15—H15A120.8Ni1—O3—H3B125 (3)
N1—C16—C15121.2 (3)H3A—O3—H3B105.1 (16)
N1—C16—C17115.9 (3)H4A—O4—H4B105.8 (17)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O12iii0.83 (1)2.03 (1)2.856 (4)172 (5)
O1—H1B···O12iv0.84 (1)2.10 (1)2.927 (4)174 (4)
O2—H2A···O4v0.84 (1)1.77 (1)2.608 (5)175 (4)
O2—H2B···O21ii0.84 (1)2.02 (1)2.852 (4)170 (4)
O3—H3A···O22ii0.84 (1)1.80 (1)2.634 (4)170 (4)
O3—H3B···O14vi0.84 (1)2.04 (3)2.796 (4)151 (4)
O4—H4A···O14vii0.84 (1)2.19 (6)2.895 (6)142 (8)
O4—H4B···O24viii0.84 (1)2.15 (4)2.944 (6)157 (8)
Symmetry codes: (ii) x, y+1, z; (iii) x, y+1, z+1; (iv) x1, y, z1; (v) x, y, z1; (vi) x, y+1, z; (vii) x, y, z+1; (viii) x1, y, z.

Experimental details

(I)(II)
Crystal data
Chemical formula[Co(H2O)6][Bi2(C7H4NO4)4]·2H2O[Ni(H2O)6][Bi2(C7H4NO4)4]·2H2O
Mr1281.431281.21
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)293293
a, b, c (Å)7.2966 (15), 11.184 (2), 12.004 (2)7.2615 (15), 11.210 (2), 12.014 (2)
α, β, γ (°)112.99 (3), 90.67 (3), 97.44 (3)112.96 (3), 90.79 (3), 97.33 (3)
V3)892.1 (3)891.0 (3)
Z11
Radiation typeMo KαMo Kα
µ (mm1)10.4010.48
Crystal size (mm)0.21 × 0.16 × 0.110.17 × 0.14 × 0.12
Data collection
DiffractometerBruker CCD 1000 area-detector
diffractometer
Bruker CCD 1000 area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.219, 0.3940.269, 0.366
No. of measured, independent and
observed [I > 2σ(I)] reflections
10685, 4176, 3914 10920, 4214, 3837
Rint0.0350.030
(sin θ/λ)max1)0.6720.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.063, 1.07 0.021, 0.050, 1.06
No. of reflections41764214
No. of parameters292292
No. of restraints1212
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.10, 1.731.06, 0.85

Computer programs: XSCANS (Bruker, 1997), SHELXTL (Sheldrick, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O12i0.836 (10)2.04 (2)2.848 (5)163 (6)
O1—H1B···O12ii0.835 (10)2.079 (12)2.913 (5)177 (6)
O2—H2A···O4iii0.836 (10)1.778 (14)2.607 (6)171 (6)
O2—H2B···O21iv0.837 (10)2.002 (11)2.839 (5)178 (5)
O3—H3A···O22iv0.839 (10)1.807 (17)2.631 (5)167 (6)
O3—H3B···O14v0.841 (10)1.958 (17)2.785 (5)167 (6)
O4—H4A···O14vi0.840 (10)2.11 (6)2.885 (7)153 (12)
O4—H4B···O24vii0.839 (10)2.07 (2)2.898 (7)171 (11)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z1; (iii) x, y, z1; (iv) x, y+1, z; (v) x, y+1, z; (vi) x, y, z+1; (vii) x1, y, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O12i0.832 (10)2.030 (13)2.856 (4)172 (5)
O1—H1B···O12ii0.835 (10)2.095 (11)2.927 (4)174 (4)
O2—H2A···O4iii0.839 (10)1.771 (11)2.608 (5)175 (4)
O2—H2B···O21iv0.838 (10)2.023 (13)2.852 (4)170 (4)
O3—H3A···O22iv0.839 (10)1.803 (11)2.634 (4)170 (4)
O3—H3B···O14v0.835 (10)2.04 (3)2.796 (4)151 (4)
O4—H4A···O14vi0.835 (10)2.19 (6)2.895 (6)142 (8)
O4—H4B···O24vii0.837 (10)2.15 (4)2.944 (6)157 (8)
Symmetry codes: (i) x, y+1, z+1; (ii) x1, y, z1; (iii) x, y, z1; (iv) x, y+1, z; (v) x, y+1, z; (vi) x, y, z+1; (vii) x1, y, z.
Selected geometric parameters for (I) and (II) (Å, °) top
Bond/angle(I)(II)
M1—O12.093 (3)2.063 (3)
M1—O22.083 (3)2.047 (3)
M1—O32.045 (3)2.023 (3)
Bi1—N12.495 (3)2.497 (3)
Bi1—N22.373 (3)2.376 (3)
Bi1—O112.682 (3)2.687 (3)
Bi1—O132.306 (3)2.308 (2)
Bi1—O212.497 (3)2.510 (2)
Bi1—O232.269 (3)2.278 (2)
Bi1—O11i2.492 (3)2.505 (2)
Bi—O24ii3.121 (4)3.084 (3)
N1–Bi1–O1162.1 (1)62.03 (9)
N1–Bi1–O1367.0 (1)67.37 (9)
N1–Bi1–O2373.6 (1)73.46 (9)
N2–Bi1–O2165.7 (1)65.71 (8)
N2–Bi1–O2368.8 (1)68.70 (9)
O11–Bi1–O2372.7 (1)79.50 (9)
O13–Bi1–O2178.9 (1)78.78 (9)
O13–Bi1–O2393.2 (1)93.2 (1)
Note: M = Co or Ni. Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x, -y - 1, -z.
Hydrogen-bond geometry (Å, °) for (I) and (II) top
D—H···AD—HH···AD···AD—H···A
(I)(II)(I)(II)(I)(II)(I)(II)
O1—H1A···O12i0.84 (7)0.84 (4)2.03 (3)2.02 (2)163 (8)177 (7)2.845 (7)2.850 (6)
O1—H1B···O12ii0.84 (6)0.84 (5)2.08 (3)2.10 (2)169 (9)174 (8)2.911 (6)2.936 (5)
O2—H2A···O40.84 (5)0.84 (4)1.80 (2)1.79 (2)165 (7)167 (7)2.615 (9)2.616 (7)
O2—H2B···O21iii0.84 (7)0.83 (5)2.01 (2)2.03 (2)170 (6)167 (5)2.840 (6)2.851 (5)
O3—H3A···O22iii0.84 (6)0.84 (5)1.82 (3)1.79 (2)164 (7)174 (6)2.638 (6)2.627 (5)
O3—H3B···O14iv0.84 (6)0.84 (5)1.98 (3)2.05 (1)161 (8)158 (7)2.788 (8)2.800 (6)
O4—H4A···O140.84 (12)0.84 (8)2.03 (1)2.04 (1)176 (9)160 (8)2.878 (9)2.892 (7)
O4—H4B···O24ii0.84 (3)0.84 (8)2.07 (3)2.14 (2)171 (9)159 (8)2.905 (9)2.947 (7)
Symmetry codes: (i) x, y - 1, z - 1; (ii) -x + 1, -y, -z + 1; (iii) x, y - 1, z; (iv) -x, -y - 1, -z. Table added in Chester from old Fig. 3. Data not checked. In bond 8, H3B changed to H4B. Please check carefully.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds