Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound [systematic name: 2-cinnamoyl-1,2-benzisothiazol-3(2H)-one 1,1-dioxide], C16H11NO4S, contains both saccharin and cinnamo­yl groups. The mol­ecule is approximately planar in the solid state, and adjacent mol­ecules are connected by C-H...O and C-H...[pi](phen­yl) inter­actions. In the C-H...[pi] inter­action, the C...CgA distance is 3.916 (4) Å (CgA is the non-fused benzene ring centroid) and the C-H...[pi] angle is 156 (2)°. A feature of the mol­ecular geometry is the narrow C-S-N angle of 92.51 (9)° in the five-membered ring. This angle relieves strain from the ring and makes it possible for the whole saccharin group to become quite planar.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105005160/sx1166sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105005160/sx1166Isup2.hkl
Contains datablock I

CCDC reference: 269047

Comment top

Derivatives of saccharin are known for their biological activity (Strupczewski et al., 1995). The saccharyl system has also been used as a cheap and effective leaving group in important chemical transformations, such as the derivatization of phenols prior to their conversion into arenes by transfer hydrogenolysis (Brigas & Johnstone, 1990). Cinnamic acid derivatives show antibacterial, antifungal (Takeichi, 1962) and antioxidant activities (Natella et al., 1999). Cinnamic acids with substitutions on the phenyl ring showing antibacterial and antimicrobial activities have also been reported (Ramanan & Rao, 1987). Taking into account these important features of the saccharin and cinnamoyl groups, we have undertaken the X-ray diffraction study of the title compound, (I), in order to understand the molecular features which stabilize its observed conformation.

A view of (I) with the atom-labelling scheme is shown in Fig. 1. The saccharin group (C10/C11–C16/N1/S1/O4) is planar to within 0.0526 (2) Å, and the two sulfone O atoms (O2 and O3) lie approximately 1.23 Å above and below this plane. The crystal structure of (I) can be described as being built from essentially planar fragments, viz. a three-atom bridge (C7/C8/C9) linking the aromatic ring (C1–C6) with the saccharin group. The dihedral angle between the saccharin group and the aromatic ring (C1–C6) is 13.3 (2)°. Two intramolecular C—H···O hydrogen-bond-like contacts (Fig. 1 and Table 2) may contribute to the stability of this conformation. The small C12—S1—N1 angle of 92.51 (9)° in the five-membered ring, similar to the value of 92.7 (1)° found in saccharin itself (Bart, 1968), results from a compromise with ring strain, and makes it possible for the whole saccharin group to become quite planar.

There are two intermolecular C—H···O contacts in the structure of (I) (Table 2). The supramolecular aggregation is determined by two almost equal C—H···O hydrogen bonds. In these two interactions, aromatic atom C16 in the molecule at (x, y, z) acts as a hydrogen-bond donor to carbonyl atom O1 in the molecule at (x + 1/2, y − 1/2, z) and aromatic atom C15 in the molecule at (x, y, z) acts as a hydrogen-bond donor to sulfoxide atom O2 in the molecule at (x + 1/2, y − 1/2, z). Because of these interactions, molecules of (I) are arranged so that C—H···O hydrogen bonds form an S(5)S(6)[R22(9)]S(5)S(6) motif (Bernstein et al., 1995) (Fig 2).

In the extended structure of (I), there is a weak C—H···π intermolecular interaction involving C14—H14 with the centroid [CgA] of ring A (C1–C6) of the molecule at (x,-y,1/2 + z); see Table 2 for details. This varied set of hydrogen-bonding and π···ring interactions contributes to the stabilization of the crystal structure (Fig. 3).

Experimental top

A mixture of sodium saccharine (0.1 mol) and cinnamoyl chloride (0.1 mol) in tetrahydrofuran (100 ml) was stirred under reflux for 5 h. The precipitate of NaCl was filtered off. After filtration and evaporation of the solvent, the residual solid was recrystallized from tetrahydrofuran as colourless crystals of (I) (m.p. 497–501 K, 65% yield).

Refinement top

All H atoms were located in a difference Fourier map and their positional and isotropic displacement parameters were refined. The C—H bond lengths are in the range 0.91 (3)–1.00 (3) Å and the Uiso(H) values lie in the range 0.049 (6)–0.085 (9) Å2.

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2000); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the molecule of (I), showing the atom-labelling scheme and with displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the centrosymmetric dimer of (I).
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of (I).
2-cinnamoyl-1,2-benzisothiazol-3(2H)-one 1,1-dioxide top
Crystal data top
C16H11NO4SF(000) = 1296
Mr = 313.32Dx = 1.425 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 3237 reflections
a = 13.714 (3) Åθ = 2.5–30.0°
b = 10.456 (4) ŵ = 0.24 mm1
c = 20.781 (3) ÅT = 293 K
β = 101.365 (5)°Prism, colourless
V = 2921.4 (14) Å30.75 × 0.65 × 0.50 mm
Z = 8
Data collection top
Rigaku AFC-7S
diffractometer
2325 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.063
Graphite monochromatorθmax = 30.0°, θmin = 2.5°
ω/2θ scansh = 1919
Absorption correction: for a sphere
(Dwiggins, 1975)
k = 1414
Tmin = 0.818, Tmax = 0.866l = 2929
3054 measured reflections3 standard reflections every 150 reflections
2939 independent reflections intensity decay: 0.2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045All H-atom parameters refined
wR(F2) = 0.138 w = 1/[σ2(Fo2) + (0.088P)2 + 1.695P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2939 reflectionsΔρmax = 0.42 e Å3
244 parametersΔρmin = 0.41 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0034 (7)
Crystal data top
C16H11NO4SV = 2921.4 (14) Å3
Mr = 313.32Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.714 (3) ŵ = 0.24 mm1
b = 10.456 (4) ÅT = 293 K
c = 20.781 (3) Å0.75 × 0.65 × 0.50 mm
β = 101.365 (5)°
Data collection top
Rigaku AFC-7S
diffractometer
2325 reflections with I > 2σ(I)
Absorption correction: for a sphere
(Dwiggins, 1975)
Rint = 0.063
Tmin = 0.818, Tmax = 0.8663 standard reflections every 150 reflections
3054 measured reflections intensity decay: 0.2%
2939 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.138All H-atom parameters refined
S = 1.02Δρmax = 0.42 e Å3
2939 reflectionsΔρmin = 0.41 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.26617 (19)0.3923 (2)0.30413 (12)0.0546 (6)
C20.2226 (2)0.4370 (3)0.24296 (13)0.0658 (7)
C30.2689 (2)0.5320 (3)0.21345 (13)0.0682 (7)
C40.3572 (2)0.5819 (3)0.24543 (14)0.0693 (7)
C50.4015 (2)0.5378 (3)0.30733 (13)0.0603 (6)
C60.35743 (16)0.4406 (2)0.33671 (10)0.0466 (5)
C70.40657 (17)0.3943 (2)0.40144 (11)0.0507 (5)
C80.38053 (17)0.2928 (2)0.43204 (11)0.0484 (5)
C90.43674 (15)0.2573 (2)0.49674 (10)0.0475 (5)
C100.31568 (14)0.0741 (2)0.50998 (10)0.0431 (5)
C110.32167 (14)0.0350 (2)0.55608 (10)0.0445 (5)
C120.40780 (15)0.0377 (2)0.60323 (10)0.0449 (5)
C130.4284 (2)0.1325 (3)0.65031 (13)0.0609 (6)
C140.3570 (3)0.2261 (3)0.64872 (16)0.0751 (8)
C150.2690 (2)0.2235 (3)0.60270 (16)0.0721 (8)
C160.25029 (19)0.1287 (3)0.55589 (13)0.0577 (6)
N10.40356 (12)0.14856 (17)0.52802 (8)0.0431 (4)
O10.51134 (13)0.30976 (18)0.52541 (9)0.0681 (5)
O20.57451 (11)0.05719 (17)0.58034 (8)0.0556 (4)
O30.48326 (13)0.17949 (16)0.65004 (7)0.0591 (4)
O40.24855 (11)0.09728 (17)0.46506 (8)0.0560 (4)
S10.48233 (3)0.09468 (5)0.59656 (2)0.0420 (2)
H10.2345 (18)0.328 (3)0.3242 (12)0.056 (7)*
H20.161 (2)0.402 (3)0.2207 (14)0.079 (9)*
H30.231 (2)0.561 (3)0.1697 (16)0.082 (9)*
H40.391 (2)0.643 (3)0.2260 (15)0.085 (9)*
H50.464 (2)0.578 (3)0.3293 (13)0.065 (8)*
H70.466 (2)0.436 (3)0.4227 (13)0.065 (7)*
H80.324 (2)0.249 (3)0.4144 (13)0.070 (8)*
H130.491 (2)0.135 (3)0.6826 (14)0.072 (8)*
H140.368 (2)0.292 (3)0.6779 (14)0.080 (9)*
H150.223 (2)0.289 (3)0.6015 (13)0.073 (8)*
H160.1909 (19)0.123 (2)0.5242 (12)0.049 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0600 (13)0.0547 (13)0.0469 (13)0.0076 (11)0.0049 (10)0.0005 (11)
C20.0740 (17)0.0631 (16)0.0536 (15)0.0006 (13)0.0038 (13)0.0013 (12)
C30.0870 (19)0.0669 (16)0.0496 (14)0.0176 (15)0.0103 (13)0.0097 (12)
C40.0805 (19)0.0644 (16)0.0679 (17)0.0078 (14)0.0266 (15)0.0212 (14)
C50.0589 (14)0.0587 (15)0.0642 (15)0.0034 (11)0.0143 (11)0.0101 (12)
C60.0515 (11)0.0457 (11)0.0435 (11)0.0003 (9)0.0113 (9)0.0013 (9)
C70.0481 (11)0.0551 (13)0.0471 (12)0.0072 (10)0.0053 (9)0.0017 (10)
C80.0483 (11)0.0541 (13)0.0411 (11)0.0070 (10)0.0045 (9)0.0029 (9)
C90.0436 (10)0.0521 (12)0.0456 (12)0.0066 (9)0.0064 (9)0.0014 (10)
C100.0341 (9)0.0535 (12)0.0429 (11)0.0055 (8)0.0102 (8)0.0094 (9)
C110.0395 (9)0.0515 (12)0.0454 (11)0.0074 (9)0.0155 (8)0.0094 (9)
C120.0438 (10)0.0503 (12)0.0429 (11)0.0079 (9)0.0142 (8)0.0046 (9)
C130.0635 (15)0.0624 (15)0.0568 (15)0.0069 (11)0.0116 (12)0.0089 (12)
C140.087 (2)0.0637 (17)0.079 (2)0.0139 (14)0.0254 (16)0.0179 (15)
C150.0765 (18)0.0637 (17)0.0817 (19)0.0268 (14)0.0290 (15)0.0020 (14)
C160.0480 (12)0.0640 (15)0.0638 (15)0.0176 (10)0.0173 (11)0.0128 (12)
N10.0369 (8)0.0496 (10)0.0406 (9)0.0075 (7)0.0025 (6)0.0012 (7)
O10.0573 (10)0.0748 (12)0.0632 (10)0.0269 (9)0.0097 (8)0.0155 (9)
O20.0372 (7)0.0701 (10)0.0593 (9)0.0014 (7)0.0092 (6)0.0043 (8)
O30.0679 (10)0.0627 (10)0.0446 (9)0.0119 (8)0.0056 (7)0.0133 (7)
O40.0361 (7)0.0768 (11)0.0512 (9)0.0074 (7)0.0006 (6)0.0020 (8)
S10.0370 (3)0.0496 (3)0.0380 (3)0.00695 (19)0.00377 (19)0.0023 (2)
Geometric parameters (Å, º) top
C1—C21.376 (4)C10—O41.200 (2)
C1—C61.395 (3)C10—N11.422 (2)
C1—H10.94 (3)C10—C111.482 (3)
C2—C31.385 (4)C11—C121.378 (3)
C2—H20.95 (3)C11—C161.384 (3)
C3—C41.366 (4)C12—C131.383 (3)
C3—H31.00 (3)C12—S11.742 (2)
C4—C51.388 (4)C13—C141.381 (4)
C4—H40.92 (3)C13—H130.98 (3)
C5—C61.384 (3)C14—C151.385 (5)
C5—H50.98 (3)C14—H140.91 (3)
C6—C71.463 (3)C15—C161.377 (4)
C7—C81.322 (3)C15—H150.92 (3)
C7—H70.95 (3)C16—H160.94 (2)
C8—C91.460 (3)N1—S11.705 (2)
C8—H80.91 (3)O2—S11.426 (2)
C9—O11.209 (3)O3—S11.420 (2)
C9—N11.428 (3)
C2—C1—C6120.6 (2)N1—C10—C11108.4 (2)
C2—C1—H1119.9 (15)C12—C11—C16119.6 (2)
C6—C1—H1119.5 (15)C12—C11—C10113.93 (17)
C1—C2—C3120.0 (3)C16—C11—C10126.4 (2)
C1—C2—H2120.1 (18)C11—C12—C13123.0 (2)
C3—C2—H2119.9 (18)C11—C12—S1111.2 (2)
C4—C3—C2119.9 (3)C13—C12—S1125.8 (2)
C4—C3—H3125.3 (19)C14—C13—C12116.5 (3)
C2—C3—H3114.8 (19)C14—C13—H13121.4 (18)
C3—C4—C5120.5 (3)C12—C13—H13122.1 (18)
C3—C4—H4121 (2)C13—C14—C15121.4 (3)
C5—C4—H4118 (2)C13—C14—H14120 (2)
C6—C5—C4120.2 (3)C15—C14—H14119 (2)
C6—C5—H5121.6 (16)C16—C15—C14121.2 (3)
C4—C5—H5118.2 (16)C16—C15—H15118.7 (18)
C5—C6—C1118.7 (2)C14—C15—H15120.0 (18)
C5—C6—C7119.1 (2)C15—C16—C11118.3 (2)
C1—C6—C7122.2 (2)C15—C16—H16123.4 (15)
C8—C7—C6126.1 (2)C11—C16—H16118.3 (15)
C8—C7—H7115.8 (16)C10—N1—C9130.2 (2)
C6—C7—H7117.9 (16)C10—N1—S1113.8 (1)
C7—C8—C9120.2 (2)C9—N1—S1115.9 (1)
C7—C8—H8120.0 (18)O3—S1—O2119.0 (1)
C9—C8—H8119.5 (18)O3—S1—N1110.7 (1)
O1—C9—N1116.8 (2)O2—S1—N1109.79 (9)
O1—C9—C8125.5 (2)O3—S1—C12110.4 (1)
N1—C9—C8117.6 (2)O2—S1—C12111.2 (1)
O4—C10—N1125.1 (2)N1—S1—C1292.51 (9)
O4—C10—C11126.5 (2)
C6—C1—C2—C30.7 (4)C13—C14—C15—C161.3 (5)
C1—C2—C3—C40.6 (4)C14—C15—C16—C110.4 (4)
C2—C3—C4—C50.2 (4)C12—C11—C16—C151.1 (4)
C3—C4—C5—C61.4 (4)C10—C11—C16—C15179.8 (2)
C4—C5—C6—C12.7 (4)O4—C10—N1—C95.2 (4)
C4—C5—C6—C7178.8 (2)C11—C10—N1—C9175.1 (2)
C2—C1—C6—C52.3 (4)O4—C10—N1—S1177.03 (17)
C2—C1—C6—C7179.2 (2)C11—C10—N1—S12.7 (2)
C5—C6—C7—C8171.2 (2)O1—C9—N1—C10174.1 (2)
C1—C6—C7—C810.4 (4)C8—C9—N1—C108.3 (3)
C6—C7—C8—C9179.9 (2)O1—C9—N1—S18.2 (3)
C7—C8—C9—O14.1 (4)C8—C9—N1—S1169.44 (16)
C7—C8—C9—N1178.5 (2)C10—N1—S1—O3109.24 (16)
O4—C10—C11—C12179.9 (2)C9—N1—S1—O372.67 (18)
N1—C10—C11—C120.2 (2)C10—N1—S1—O2117.33 (15)
O4—C10—C11—C160.8 (4)C9—N1—S1—O260.75 (18)
N1—C10—C11—C16178.9 (2)C10—N1—S1—C123.72 (16)
C16—C11—C12—C131.7 (3)C9—N1—S1—C12174.37 (16)
C10—C11—C12—C13179.1 (2)C11—C12—S1—O3109.52 (16)
C16—C11—C12—S1176.33 (17)C13—C12—S1—O368.5 (2)
C10—C11—C12—S12.8 (2)C11—C12—S1—O2116.08 (16)
C11—C12—C13—C140.8 (4)C13—C12—S1—O265.9 (2)
S1—C12—C13—C14177.0 (2)C11—C12—S1—N13.72 (16)
C12—C13—C14—C150.8 (4)C13—C12—S1—N1178.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O10.95 (3)2.49 (3)2.832 (3)101.4 (18)
C8—H8···O40.91 (3)2.26 (3)2.901 (3)127 (2)
C15—H15···O2i0.92 (3)2.57 (3)3.478 (3)169 (2)
C16—H16···O1i0.94 (2)2.56 (3)3.277 (3)132.6 (18)
C14—H14···CgAii0.91 (3)3.07 (3)3.916 (4)156 (2)
Symmetry codes: (i) x1/2, y1/2, z; (ii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H11NO4S
Mr313.32
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)13.714 (3), 10.456 (4), 20.781 (3)
β (°) 101.365 (5)
V3)2921.4 (14)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.75 × 0.65 × 0.50
Data collection
DiffractometerRigaku AFC-7S
diffractometer
Absorption correctionFor a sphere
(Dwiggins, 1975)
Tmin, Tmax0.818, 0.866
No. of measured, independent and
observed [I > 2σ(I)] reflections
3054, 2939, 2325
Rint0.063
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.138, 1.02
No. of reflections2939
No. of parameters244
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.42, 0.41

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1994), MSC/AFC Diffractometer Control Software, TEXSAN for Windows (Molecular Structure Corporation, 1997), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2000), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
C9—O11.209 (3)C12—S11.742 (2)
C9—N11.428 (3)N1—S11.705 (2)
C10—O41.200 (2)O2—S11.426 (2)
C10—N11.422 (2)O3—S11.420 (2)
C8—C7—C6126.1 (2)C10—N1—C9130.2 (2)
C7—C8—C9120.2 (2)C10—N1—S1113.8 (1)
O1—C9—N1116.8 (2)C9—N1—S1115.9 (1)
O1—C9—C8125.5 (2)O3—S1—O2119.0 (1)
N1—C9—C8117.6 (2)O3—S1—N1110.7 (1)
O4—C10—N1125.1 (2)O2—S1—N1109.79 (9)
O4—C10—C11126.5 (2)O3—S1—C12110.4 (1)
N1—C10—C11108.4 (2)O2—S1—C12111.2 (1)
C11—C12—S1111.2 (2)N1—S1—C1292.51 (9)
C13—C12—S1125.8 (2)
C5—C6—C7—C8171.2 (2)O4—C10—N1—C95.2 (4)
C6—C7—C8—C9179.9 (2)C8—C9—N1—C108.3 (3)
C7—C8—C9—N1178.5 (2)O1—C9—N1—S18.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O10.95 (3)2.49 (3)2.832 (3)101.4 (18)
C8—H8···O40.91 (3)2.26 (3)2.901 (3)127 (2)
C15—H15···O2i0.92 (3)2.57 (3)3.478 (3)169 (2)
C16—H16···O1i0.94 (2)2.56 (3)3.277 (3)132.6 (18)
C14—H14···CgAii0.91 (3)3.07 (3)3.916 (4)156 (2)
Symmetry codes: (i) x1/2, y1/2, z; (ii) x, y, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds