Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structure determinations of two crystalline components of the hexane extract of the fruit of the indigenous Australian tree Melicope ellyrana have shown them to be polymorphs of the same compound, namely the flavonoid 4',5-di­hydroxy-3,3',8-tri­methoxy-7-(3-methyl­but-2-enyl­oxy)­flavone [systematic name: 5-hydroxy-2-(4-hydroxy-3-methoxy­phenyl)-3,8-di­methoxy-7-(3-methyl­but-2-enyl­oxy)-4H-1-benzo­pyran-4-one], C23H24O8. The two polymorphs, one monoclinic (polymorph A) and the other triclinic (polymorph B), show significant conformational differences, particularly in the enyl­oxy side chain, while only one (polymorph A) shows intermolecular hydrogen bonding.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270101013695/ta1324sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101013695/ta1324Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270101013695/ta1324IIsup3.hkl
Contains datablock II

CCDC references: 175103; 175104

Comment top

Investigation of the hexane extract of the fruit of the indigenous Australian tree Melicope ellyrana (formerly Euodia ellyrana F. Meull) (Hartley, 1981) resulted in the isolation of three flavonoids, namely 4',5-dihydroxy-3,3',8-trimethoxy-7-(3-methylbut-2-enyloxy)flavone, (I), pachypodol (4',5-dihydroxy-3,3',7-trimethoxyflavone), (II), and tenatin (4',5-dihydroxy-3,3',7,8-tetramethoxyflavone), (III). Although compound (I) has previously been isolated from Boronia coerulescens (Ashan et al., 1994), and other prenylated flavones similar to (I) have been reported, i.e. from M. triphylla (Higa et al., 1987) and M. micrococca (Nasim, 1999), this represents the first report and cystallographic characterization of (I) from M. ellyrana.

Two morphologically different crystalline forms of (I) obtained from n-hexane (monoclinic polymorph A) and ethyl acetate (triclinic polymorph B) extracts allowed, in the first instance (because of the minute quantities of the available sample involved), determination of the identity of both polymorphs as the title compound and, in the second instance, confirmation of the existence of two significantly different molecular conformations (Figs. 1 and 2). Triclinic form B has a more compact molecular form than is found for monoclinic form A due mainly to the more convoluted enyloxy side chain (comparative molecular volumes of 506 and 526 Å3, respectively). This is reflected particularly in the C7—O7—C71—C72 and O7—C71—C72—C73 torsion angles of 81.9 (4) and 107.4 (5)°, respectively, in form B, and -174.6 (3) and 143.5 (4)° in polymorph A. In addition, the benzene ring substituent at C2, although essentially coplanar with the parent ring, is rotated about the C2—C12 bond vector such that the meta-substituted methoxy groups in the two polymorphs are ca 180° apart. Intramolecular CH···O(methoxy) and C—H···O(ether) interactions are significant in maintaining the coplanarity of the two ring systems [C22–H22···O3 2.888 (5) Å and C62–H62···O1 2.627 (4) Å for form A; C22–H22···O1 2.664 (5) Å and C62–H62···O3 2.858 (5) Å for form B]. Relatively minor conformational differences are found in the methoxy substituents at C3, C8 and C52, while in each, there are intramolecular hydrogen-bonding interactions involving the hydroxyl group at C5 and the adjacent ketone O atom at C4 [O5—H5···O4: 2.600 (4) Å in form A and 2.586 (4) Å in form B], and the hydroxyl group at C42 and the adjacent methoxy O atom at C52 [O42—H42···O52: 2.692 (4) Å in form A and 2.657 (4) Å in form B].

A major difference between polymorphs A and B lies in the packing; in A, a single intermolecular hydrogen-bond interaction is found between the H atom of the hydroxyl group at C42 and a ketone O atom of a glide-related neighbour [O42—H42···O4i 2.784 (4) Å; symmetry code: (i) 1/2 + x, 1/2 - y, 1/2 + z]. This completes a three-centred hydrogen-bond association about H42, with a relatively long H42···O4i separation of 1.87 Å.

Related literature top

For related literature, see: Hartley (1981); Higa et al. (1987); Nasim (1999).

Experimental top

Fresh fruit from Melicope ellyrana (1.5 kg) was extracted with n-hexane (4.5 l) for 72 h at room temperature and the extract concentrated by rotary evaporation. The extract (20 g) was subjected to GFC (please give full form of abbreviation) separation using methanol (monitored at λ = 254 nm), the eluent yielding 23 separate fractions. Two of these fractions gave crystals of the title compound in morphologically different and visually identifiable forms; one monoclinic (polymorph A) and the other triclinic (polymorph B).

Refinement top

With the exception of those H atoms involved in hydrogen-bonding interactions, H atoms were included at calculated positions and were constrained in the refinement (C—H = 0.94–0.96 Å).

[Author, there is a C72—H72 distance of 1.10 Å for form A in the CIF. Is this correct or should it be 0.95 Å ?]

Computing details top

For both compounds, data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1999a); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN for Windows (Molecular Structure Corporation, 1999b); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON for Windows (Spek, 1999); software used to prepare material for publication: TEXSAN for Windows.

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for the monoclinic polymorph A. Atoms are shown as 40% probability ellipsoids.
[Figure 2] Fig. 2. The molecular configuration and atom-numbering scheme for the triclinic polymorph B. Atoms are shown as 40% probability ellipsoids.
(I) 4',5-dihydroxy-3,3',8-trimethoxy-7-(3-methylbut-2-enyloxy)flavone top
Crystal data top
C23H24O8F(000) = 904
Mr = 428.42Dx = 1.352 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71069 Å
a = 14.238 (4) ÅCell parameters from 25 reflections
b = 11.053 (5) Åθ = 20.1–27.2°
c = 14.426 (5) ŵ = 0.10 mm1
β = 111.979 (18)°T = 293 K
V = 2105.3 (13) Å3Prism, yellow
Z = 40.40 × 0.30 × 0.30 mm
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.026
Radiation source: Rigaku rotating anodeθmax = 25.0°, θmin = 2.5°
Graphite monochromatorh = 016
ω–2θ scansk = 013
3865 measured reflectionsl = 1715
3709 independent reflections3 standard reflections every 150 reflections
1532 reflections with I > 2σ(I) intensity decay: 0.3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0873P)2 + 0.3178P]
where P = (Fo2 + 2Fc2)/3
3709 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C23H24O8V = 2105.3 (13) Å3
Mr = 428.42Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.238 (4) ŵ = 0.10 mm1
b = 11.053 (5) ÅT = 293 K
c = 14.426 (5) Å0.40 × 0.30 × 0.30 mm
β = 111.979 (18)°
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.026
3865 measured reflections3 standard reflections every 150 reflections
3709 independent reflections intensity decay: 0.3%
1532 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 0.95Δρmax = 0.22 e Å3
3709 reflectionsΔρmin = 0.27 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.89228 (17)0.3923 (2)0.44099 (16)0.0475 (6)
O30.65547 (19)0.4142 (2)0.4787 (2)0.0654 (8)
O40.63618 (19)0.5967 (2)0.34305 (19)0.0594 (7)
O50.7059 (2)0.7113 (3)0.2249 (2)0.0714 (8)
O71.02792 (19)0.5804 (2)0.22994 (18)0.0616 (7)
O81.04877 (19)0.4269 (2)0.38221 (19)0.0624 (8)
O420.9373 (2)0.0175 (3)0.7492 (2)0.0760 (9)
O521.0576 (2)0.0509 (3)0.6524 (2)0.0752 (9)
C20.8175 (3)0.3697 (3)0.4759 (3)0.0477 (9)
C30.7317 (3)0.4379 (3)0.4447 (3)0.0495 (9)
C4A0.7954 (3)0.5524 (3)0.3357 (3)0.0489 (9)
C40.7154 (3)0.5336 (3)0.3729 (3)0.0484 (9)
C50.7887 (3)0.6385 (4)0.2618 (3)0.0536 (10)
C60.8642 (3)0.6486 (4)0.2244 (3)0.0554 (10)
C70.9503 (3)0.5759 (3)0.2630 (3)0.0519 (10)
C80.9599 (3)0.4918 (3)0.3375 (3)0.0468 (9)
C8A0.8814 (3)0.4793 (3)0.3710 (2)0.0444 (9)
C120.8455 (3)0.2667 (3)0.5461 (3)0.0469 (9)
C220.7850 (3)0.2239 (4)0.5956 (3)0.0625 (11)
C310.6522 (4)0.4982 (5)0.5538 (4)0.1048 (19)
C320.8165 (3)0.1295 (4)0.6624 (3)0.0679 (12)
C420.9089 (3)0.0741 (4)0.6817 (3)0.0569 (10)
C520.9685 (3)0.1134 (4)0.6302 (3)0.0520 (10)
C620.9375 (3)0.2080 (3)0.5650 (3)0.0509 (9)
C711.0187 (3)0.6635 (4)0.1501 (3)0.0693 (12)
C721.1069 (3)0.6438 (4)0.1204 (3)0.0686 (12)
C731.1036 (3)0.6505 (4)0.0282 (3)0.0666 (12)
C811.0535 (4)0.3132 (5)0.3396 (4)0.0952 (16)
C5211.1204 (3)0.0803 (4)0.5997 (3)0.0686 (12)
C7311.1957 (4)0.6311 (5)0.0036 (4)0.0990 (17)
C7321.0096 (4)0.6792 (5)0.0598 (3)0.0966 (17)
H50.65940.68620.26170.050*
H60.85790.70520.17260.065*
H220.72100.26000.58320.074*
H320.77460.10240.69600.081*
H421.00310.05440.76240.095*
H620.98000.23430.53130.061*
H721.18100.62800.18030.067*
H3110.70990.48580.61400.126*
H3120.65310.57880.53150.126*
H3130.59240.48530.56700.126*
H5211.18820.05740.63840.083*
H5221.09780.03860.53780.083*
H5231.11760.16510.58800.083*
H7110.95720.64730.09410.082*
H7121.01770.74410.17110.082*
H7311.25290.61820.06350.120*
H7321.18600.56280.03880.120*
H7331.20700.70090.02950.120*
H7340.95590.69680.03790.116*
H7351.02150.74700.09420.116*
H7360.99130.61140.10370.116*
H8110.98870.27480.31940.114*
H8121.07010.32440.28190.114*
H8131.10270.26400.38630.114*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0472 (14)0.0515 (15)0.0442 (14)0.0005 (12)0.0176 (12)0.0019 (12)
O30.0568 (17)0.0674 (19)0.079 (2)0.0027 (14)0.0330 (16)0.0053 (16)
O40.0522 (16)0.0613 (18)0.0632 (17)0.0122 (14)0.0198 (13)0.0006 (14)
O50.0658 (18)0.073 (2)0.076 (2)0.0184 (16)0.0272 (15)0.0218 (16)
O70.0651 (17)0.0697 (19)0.0549 (16)0.0028 (14)0.0283 (14)0.0099 (14)
O80.0576 (17)0.0646 (19)0.0631 (17)0.0017 (14)0.0203 (14)0.0002 (15)
O420.0738 (19)0.080 (2)0.086 (2)0.0101 (16)0.0432 (17)0.0337 (18)
O520.0747 (19)0.086 (2)0.082 (2)0.0232 (17)0.0489 (17)0.0338 (17)
C20.050 (2)0.049 (2)0.044 (2)0.0103 (19)0.0175 (18)0.0087 (18)
C30.047 (2)0.052 (2)0.052 (2)0.0048 (19)0.0209 (19)0.0040 (19)
C4A0.052 (2)0.047 (2)0.044 (2)0.0002 (19)0.0127 (18)0.0074 (18)
C40.048 (2)0.048 (2)0.042 (2)0.0025 (19)0.0094 (18)0.0100 (18)
C50.055 (2)0.051 (2)0.049 (2)0.005 (2)0.012 (2)0.002 (2)
C60.060 (3)0.056 (3)0.046 (2)0.003 (2)0.016 (2)0.006 (2)
C70.056 (2)0.055 (2)0.044 (2)0.006 (2)0.0170 (19)0.0034 (19)
C80.047 (2)0.045 (2)0.043 (2)0.0048 (18)0.0107 (18)0.0021 (18)
C8A0.048 (2)0.045 (2)0.037 (2)0.0020 (17)0.0128 (18)0.0027 (17)
C120.050 (2)0.047 (2)0.046 (2)0.0045 (18)0.0196 (18)0.0044 (18)
C220.051 (2)0.067 (3)0.072 (3)0.002 (2)0.026 (2)0.012 (2)
C310.144 (5)0.091 (4)0.119 (4)0.020 (3)0.095 (4)0.001 (3)
C320.059 (3)0.076 (3)0.079 (3)0.001 (2)0.037 (2)0.017 (3)
C420.056 (3)0.061 (3)0.054 (2)0.005 (2)0.022 (2)0.015 (2)
C520.055 (2)0.054 (2)0.050 (2)0.0052 (19)0.024 (2)0.006 (2)
C620.057 (2)0.051 (2)0.051 (2)0.0008 (19)0.0272 (19)0.0051 (19)
C710.082 (3)0.069 (3)0.064 (3)0.002 (2)0.036 (2)0.010 (2)
C720.068 (3)0.075 (3)0.071 (3)0.001 (2)0.035 (2)0.016 (2)
C730.084 (3)0.052 (3)0.078 (3)0.005 (2)0.047 (3)0.003 (2)
C810.099 (4)0.082 (4)0.090 (4)0.030 (3)0.018 (3)0.009 (3)
C5210.069 (3)0.079 (3)0.069 (3)0.021 (2)0.038 (2)0.018 (2)
C7310.109 (4)0.092 (4)0.126 (4)0.008 (3)0.077 (4)0.018 (3)
C7320.103 (4)0.131 (5)0.065 (3)0.013 (3)0.041 (3)0.001 (3)
Geometric parameters (Å, º) top
O1—C8A1.360 (4)C22—H220.95
O1—C21.361 (4)C31—H3110.96
O3—C31.373 (4)C31—H3120.95
O3—C311.441 (5)C31—H3130.95
O4—C41.257 (4)C32—C421.381 (5)
O5—C51.361 (4)C32—H320.95
O5—H51.03C42—C521.389 (5)
O7—C71.359 (4)C52—C621.365 (5)
O7—C711.441 (5)C62—H620.95
O8—C81.387 (4)C71—C721.486 (6)
O8—C811.411 (5)C71—H7110.96
O42—C421.358 (4)C71—H7120.94
O42—H420.97C72—C731.315 (5)
O52—C521.373 (4)C72—H721.10
O52—C5211.412 (4)C73—C7321.493 (6)
C2—C31.360 (5)C73—C7311.496 (6)
C2—C121.476 (5)C81—H8110.96
C3—C41.438 (5)C81—H8120.96
C4A—C8A1.394 (5)C81—H8130.94
C4A—C51.406 (5)C521—H5220.95
C4A—C41.444 (5)C521—H5230.95
C5—C61.374 (5)C521—H5210.95
C6—C71.396 (5)C731—H7310.95
C6—H60.95C731—H7320.95
C7—C81.389 (5)C731—H7330.95
C8—C8A1.381 (5)C732—H7340.95
C12—C221.391 (5)C732—H7350.95
C12—C621.394 (5)C732—H7360.95
C22—C321.376 (6)
C8A—O1—C2121.1 (3)C22—C32—H32120
C3—O3—C31113.5 (3)C42—C32—H32119
C5—O5—H5106O42—C42—C32118.7 (3)
C7—O7—C71117.5 (3)O42—C42—C52122.6 (4)
C8—O8—C81116.3 (3)C32—C42—C52118.7 (4)
C42—O42—H42117C62—C52—O52125.3 (3)
C52—O52—C521118.4 (3)C62—C52—C42120.2 (3)
C3—C2—O1120.4 (3)O52—C52—C42114.5 (3)
C3—C2—C12129.3 (3)C52—C62—C12122.0 (3)
O1—C2—C12110.4 (3)C52—C62—H62119
C2—C3—O3120.5 (3)C12—C62—H62119
C2—C3—C4122.0 (3)O7—C71—C72107.6 (3)
O3—C3—C4117.5 (3)O7—C71—H711110
C8A—C4A—C5118.1 (3)C72—C71—H711109
C8A—C4A—C4119.2 (3)O7—C71—H712111
C5—C4A—C4122.7 (3)C72—C71—H712110
O4—C4—C3122.5 (3)H711—C71—H712109
O4—C4—C4A121.6 (3)C73—C72—C71124.7 (4)
C3—C4—C4A115.9 (3)C73—C72—H72118
O5—C5—C6119.3 (3)C71—C72—H72118
O5—C5—C4A119.9 (3)C72—C73—C732123.5 (4)
C6—C5—C4A120.8 (4)C72—C73—C731121.9 (4)
C5—C6—C7119.7 (4)C732—C73—C731114.5 (4)
C5—C6—H6120O8—C81—H811109
C7—C6—H6120O8—C81—H812109
O7—C7—C8116.0 (3)H811—C81—H812109
O7—C7—C6123.2 (3)O8—C81—H813110
C8—C7—C6120.7 (3)H811—C81—H813110
C8A—C8—O8120.2 (3)H812—C81—H813110
C8A—C8—C7118.7 (3)O52—C521—H522110
O8—C8—C7121.0 (3)O52—C521—H523109
O1—C8A—C8116.6 (3)H522—C521—H523110
O1—C8A—C4A121.5 (3)O52—C521—H521109
C8—C8A—C4A121.9 (3)H522—C521—H521110
C22—C12—C62117.2 (3)H523—C521—H521109
C22—C12—C2123.7 (3)C73—C731—H731110
C62—C12—C2119.1 (3)C73—C731—H732110
C32—C22—C12121.0 (4)H731—C731—H732110
C32—C22—H22119C73—C731—H733109
C12—C22—H22120H731—C731—H733109
O3—C31—H311109H732—C731—H733109
O3—C31—H312110C73—C732—H734110
H311—C31—H312109C73—C732—H735110
O3—C31—H313110H734—C732—H735110
H311—C31—H313109C73—C732—H736110
H312—C31—H313110H734—C732—H736109
C22—C32—C42120.9 (4)H735—C732—H736109
C8A—O1—C2—C33.0 (5)C2—O1—C8A—C4A3.0 (5)
C8A—O1—C2—C12176.5 (3)O8—C8—C8A—O16.8 (5)
O1—C2—C3—O3179.1 (3)C7—C8—C8A—O1177.3 (3)
C12—C2—C3—O30.4 (6)O8—C8—C8A—C4A172.9 (3)
O1—C2—C3—C41.4 (5)C7—C8—C8A—C4A3.1 (5)
C12—C2—C3—C4178.0 (3)C5—C4A—C8A—O1178.6 (3)
C31—O3—C3—C2103.4 (4)C4—C4A—C8A—O11.2 (5)
C31—O3—C3—C478.8 (4)C5—C4A—C8A—C81.8 (5)
C2—C3—C4—O4179.6 (3)C4—C4A—C8A—C8179.2 (3)
O3—C3—C4—O41.8 (5)C3—C2—C12—C221.9 (6)
C2—C3—C4—C4A0.2 (5)O1—C2—C12—C22178.6 (3)
O3—C3—C4—C4A177.5 (3)C3—C2—C12—C62178.3 (4)
C8A—C4A—C4—O4179.7 (3)O1—C2—C12—C621.2 (4)
C5—C4A—C4—O42.4 (5)C62—C12—C22—C321.7 (6)
C8A—C4A—C4—C30.3 (5)C2—C12—C22—C32178.1 (4)
C5—C4A—C4—C3176.9 (3)C12—C22—C32—C420.4 (7)
C8A—C4A—C5—O5179.7 (3)C22—C32—C42—O42179.1 (4)
C4—C4A—C5—O52.4 (5)C22—C32—C42—C521.7 (6)
C8A—C4A—C5—C61.1 (5)C521—O52—C52—C624.2 (6)
C4—C4A—C5—C6176.2 (3)C521—O52—C52—C42176.7 (4)
O5—C5—C6—C7178.9 (3)O42—C42—C52—C62178.3 (4)
C4A—C5—C6—C72.5 (6)C32—C42—C52—C622.6 (6)
C71—O7—C7—C8177.8 (3)O42—C42—C52—O520.8 (6)
C71—O7—C7—C61.1 (5)C32—C42—C52—O52178.3 (4)
C5—C6—C7—O7179.9 (3)O52—C52—C62—C12179.7 (4)
C5—C6—C7—C81.1 (6)C42—C52—C62—C121.2 (6)
C81—O8—C8—C8A91.3 (4)C22—C12—C62—C520.9 (6)
C81—O8—C8—C792.8 (4)C2—C12—C62—C52179.0 (4)
O7—C7—C8—C8A177.2 (3)C7—O7—C71—C72174.6 (3)
C6—C7—C8—C8A1.7 (5)O7—C71—C72—C73143.5 (4)
O7—C7—C8—O86.8 (5)C71—C72—C73—C7320.0 (7)
C6—C7—C8—O8174.3 (3)C71—C72—C73—C731179.3 (4)
C2—O1—C8A—C8177.4 (3)
(II) 4',5-dihydroxy-3,3',8-trimethoxy-7-(3-methylbut-2-enyloxy)flavone top
Crystal data top
C23H24O8Z = 2
Mr = 428.44F(000) = 452
Triclinic, P1Dx = 1.405 Mg m3
a = 12.291 (5) ÅMo Kα radiation, λ = 0.71069 Å
b = 13.075 (5) ÅCell parameters from 17 reflections
c = 7.099 (3) Åθ = 20.1–25.6°
α = 93.85 (5)°µ = 0.11 mm1
β = 104.33 (4)°T = 293 K
γ = 111.52 (3)°Prism, yellow
V = 1012.3 (7) Å30.45 × 0.10 × 0.10 mm
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.097
Radiation source: Rigaku rotating anodeθmax = 25.0°, θmin = 3.0°
Graphite monochromatorh = 014
ω–2θ scansk = 1514
3754 measured reflectionsl = 88
3571 independent reflections3 standard reflections every 150 reflections
1609 reflections with I > 2σ(I) intensity decay: 3.5%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.199H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
3571 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C23H24O8γ = 111.52 (3)°
Mr = 428.44V = 1012.3 (7) Å3
Triclinic, P1Z = 2
a = 12.291 (5) ÅMo Kα radiation
b = 13.075 (5) ŵ = 0.11 mm1
c = 7.099 (3) ÅT = 293 K
α = 93.85 (5)°0.45 × 0.10 × 0.10 mm
β = 104.33 (4)°
Data collection top
Rigaku AFC-7R
diffractometer
Rint = 0.097
3754 measured reflections3 standard reflections every 150 reflections
3571 independent reflections intensity decay: 3.5%
1609 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.199H-atom parameters constrained
S = 1.00Δρmax = 0.32 e Å3
3571 reflectionsΔρmin = 0.28 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4223 (2)0.03091 (19)0.7148 (4)0.0405 (7)
O30.7498 (2)0.1101 (2)0.9082 (4)0.0460 (7)
O40.7320 (2)0.3132 (2)0.9353 (4)0.0531 (8)
O50.6002 (2)0.4297 (2)0.9128 (5)0.0577 (8)
O70.1660 (2)0.2245 (2)0.6717 (4)0.0467 (7)
O80.1964 (2)0.0345 (2)0.5843 (4)0.0483 (7)
O420.4692 (3)0.4288 (2)0.6347 (5)0.0616 (9)
O520.6955 (3)0.2726 (2)0.7537 (5)0.0559 (8)
C20.5336 (3)0.0236 (3)0.7676 (5)0.0371 (9)
C30.6379 (3)0.1166 (3)0.8400 (5)0.0346 (9)
C40.6353 (4)0.2267 (3)0.8677 (5)0.0382 (9)
C4A0.5172 (3)0.2307 (3)0.8167 (5)0.0361 (9)
C50.4999 (4)0.3315 (3)0.8430 (6)0.0410 (10)
C60.3852 (4)0.3316 (3)0.7983 (6)0.0424 (10)
C70.2830 (3)0.2322 (3)0.7211 (5)0.0384 (9)
C80.2965 (3)0.1307 (3)0.6872 (5)0.0369 (9)
C8A0.4119 (3)0.1318 (3)0.7402 (5)0.0350 (9)
C120.5197 (3)0.0950 (3)0.7339 (5)0.0353 (9)
C220.4030 (3)0.1796 (3)0.6737 (6)0.0424 (10)
C310.8331 (4)0.1554 (4)0.7951 (7)0.0624 (13)
C320.3868 (4)0.2908 (3)0.6400 (6)0.0499 (11)
C420.4867 (4)0.3177 (3)0.6693 (6)0.0424 (10)
C520.6040 (4)0.2347 (3)0.7301 (6)0.0420 (10)
C620.6202 (3)0.1242 (3)0.7626 (5)0.0396 (9)
C710.1444 (4)0.3265 (3)0.6974 (6)0.0497 (11)
C720.1579 (4)0.3862 (3)0.5292 (7)0.0504 (11)
C730.0691 (4)0.3937 (3)0.3880 (6)0.0501 (11)
C810.1175 (4)0.0233 (4)0.6933 (7)0.0676 (13)
C5210.8180 (4)0.1927 (4)0.8194 (6)0.0570 (12)
C7310.0636 (5)0.3422 (4)0.3712 (8)0.0762 (15)
C7320.0984 (5)0.4556 (4)0.2252 (9)0.0855 (17)
H50.67980.41800.96690.074*
H60.37530.39970.82010.051*
H220.33450.15970.65430.074*
H320.30660.34820.59700.060*
H420.56120.42260.67150.074*
H620.70010.06600.80390.074*
H720.23890.42320.52190.060*
H3110.80650.10690.67210.075*
H3120.83520.22680.77210.075*
H3130.91270.16250.86600.075*
H5210.83200.15070.94380.069*
H5220.83190.14410.72640.069*
H5230.87220.23000.83220.069*
H7110.06380.30760.70690.060*
H7120.20180.37400.81550.060*
H7310.07740.37110.48540.092*
H7320.10890.35890.25740.092*
H7330.08940.26340.36050.092*
H7340.15210.53110.27950.102*
H7350.13650.42170.15510.102*
H7360.02500.45350.13740.102*
H8110.05680.09100.61290.081*
H8120.07910.02200.73340.081*
H8130.16370.03970.80680.081*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0455 (16)0.0295 (14)0.0486 (17)0.0178 (12)0.0134 (13)0.0045 (11)
O30.0405 (17)0.0400 (15)0.0576 (18)0.0171 (13)0.0129 (14)0.0083 (13)
O40.0471 (18)0.0360 (16)0.070 (2)0.0123 (14)0.0148 (15)0.0026 (14)
O50.0502 (18)0.0312 (15)0.085 (2)0.0139 (14)0.0147 (16)0.0004 (14)
O70.0493 (18)0.0366 (15)0.0578 (18)0.0232 (13)0.0123 (14)0.0078 (13)
O80.0484 (17)0.0378 (15)0.0549 (19)0.0151 (14)0.0135 (14)0.0008 (13)
O420.0596 (19)0.0307 (15)0.100 (2)0.0220 (14)0.0271 (17)0.0084 (15)
O520.0527 (19)0.0421 (16)0.085 (2)0.0285 (15)0.0265 (16)0.0091 (15)
C20.045 (2)0.037 (2)0.035 (2)0.022 (2)0.0130 (18)0.0085 (17)
C30.037 (2)0.035 (2)0.032 (2)0.0155 (19)0.0095 (17)0.0051 (17)
C40.050 (2)0.033 (2)0.033 (2)0.016 (2)0.0149 (18)0.0083 (17)
C4A0.041 (2)0.031 (2)0.040 (2)0.0145 (18)0.0165 (18)0.0092 (17)
C50.046 (3)0.032 (2)0.041 (2)0.0120 (19)0.0116 (19)0.0056 (17)
C60.054 (3)0.029 (2)0.046 (2)0.021 (2)0.015 (2)0.0046 (18)
C70.043 (2)0.038 (2)0.038 (2)0.0206 (19)0.0100 (18)0.0097 (17)
C80.046 (2)0.027 (2)0.036 (2)0.0131 (18)0.0114 (18)0.0042 (16)
C8A0.049 (2)0.029 (2)0.034 (2)0.0203 (19)0.0164 (18)0.0061 (16)
C120.044 (2)0.033 (2)0.034 (2)0.0171 (18)0.0170 (18)0.0115 (16)
C220.044 (2)0.038 (2)0.049 (3)0.021 (2)0.0109 (19)0.0088 (18)
C310.051 (3)0.059 (3)0.084 (4)0.022 (2)0.032 (3)0.010 (3)
C320.047 (3)0.036 (2)0.066 (3)0.015 (2)0.017 (2)0.009 (2)
C420.053 (3)0.029 (2)0.051 (3)0.020 (2)0.017 (2)0.0087 (18)
C520.048 (2)0.042 (2)0.047 (2)0.025 (2)0.020 (2)0.0127 (19)
C620.040 (2)0.038 (2)0.043 (2)0.0159 (18)0.0160 (18)0.0092 (18)
C710.056 (3)0.045 (2)0.064 (3)0.034 (2)0.023 (2)0.011 (2)
C720.048 (3)0.042 (2)0.068 (3)0.021 (2)0.023 (2)0.012 (2)
C730.056 (3)0.038 (2)0.058 (3)0.024 (2)0.012 (2)0.005 (2)
C810.066 (3)0.049 (3)0.074 (3)0.009 (2)0.019 (3)0.011 (2)
C5210.058 (3)0.066 (3)0.060 (3)0.038 (3)0.020 (2)0.007 (2)
C7310.067 (3)0.079 (4)0.076 (4)0.036 (3)0.001 (3)0.007 (3)
C7320.114 (5)0.068 (4)0.085 (4)0.044 (3)0.032 (3)0.030 (3)
Geometric parameters (Å, º) top
O1—C21.367 (4)C22—H220.95
O1—C8A1.376 (4)C31—H3110.95
O3—C31.377 (4)C31—H3120.95
O3—C311.439 (5)C31—H3130.95
O4—C41.257 (4)C32—C421.369 (5)
O5—C51.366 (4)C32—H320.95
O5—H51.03C42—C521.388 (5)
O7—C71.358 (4)C52—C621.378 (5)
O7—C711.460 (4)C62—H620.95
O8—C81.388 (4)C71—C721.480 (6)
O8—C811.422 (5)C71—H7110.95
O42—C421.383 (4)C71—H7120.95
O42—H421.07C72—C731.325 (5)
O52—C521.366 (5)C72—H720.95
O52—C5211.417 (5)C73—C7311.489 (7)
C2—C31.354 (5)C73—C7321.496 (6)
C2—C121.492 (5)C81—H8110.95
C3—C41.452 (5)C81—H8120.95
C4—C4A1.429 (5)C81—H8130.95
C4A—C8A1.404 (5)C521—H5210.95
C4A—C51.418 (5)C521—H5220.95
C5—C61.367 (5)C521—H5230.95
C6—C71.390 (5)C731—H7310.95
C6—H60.95C731—H7320.95
C7—C81.408 (5)C731—H7330.95
C8—C8A1.369 (5)C732—H7340.95
C12—C221.390 (5)C732—H7350.95
C12—C621.396 (5)C732—H7360.95
C22—C321.389 (5)
C2—O1—C8A121.5 (3)C42—C32—H32120
C3—O3—C31114.7 (3)C22—C32—H32120
C5—O5—H5113C32—C42—O42119.2 (4)
C7—O7—C71118.7 (3)C32—C42—C52120.5 (3)
C8—O8—C81116.5 (3)O42—C42—C52120.3 (3)
C42—O42—H42102O52—C52—C62125.6 (4)
C52—O52—C521118.0 (3)O52—C52—C42114.7 (3)
C3—C2—O1120.7 (3)C62—C52—C42119.8 (4)
C3—C2—C12128.3 (3)C52—C62—C12120.7 (4)
O1—C2—C12111.0 (3)C52—C62—H62121
C2—C3—O3121.3 (3)C12—C62—H62118
C2—C3—C4121.4 (3)O7—C71—C72111.3 (3)
O3—C3—C4117.0 (3)O7—C71—H711109
O4—C4—C4A122.1 (3)C72—C71—H711109
O4—C4—C3121.6 (4)O7—C71—H712109
C4A—C4—C3116.3 (3)C72—C71—H712109
C8A—C4A—C5117.2 (3)H711—C71—H712109
C8A—C4A—C4120.0 (3)C73—C72—C71127.0 (4)
C5—C4A—C4122.8 (3)C73—C72—H72117
O5—C5—C6120.0 (3)C71—C72—H72117
O5—C5—C4A118.9 (3)C72—C73—C731125.3 (4)
C6—C5—C4A121.1 (3)C72—C73—C732120.2 (4)
C5—C6—C7120.1 (3)C731—C73—C732114.5 (4)
C5—C6—H6120O8—C81—H811110
C7—C6—H6120O8—C81—H812110
O7—C7—C6124.1 (3)H811—C81—H812109
O7—C7—C8115.4 (3)O8—C81—H813110
C6—C7—C8120.5 (4)H811—C81—H813109
C8A—C8—O8120.8 (3)H812—C81—H813109
C8A—C8—C7118.4 (3)O52—C521—H521109
O8—C8—C7120.4 (3)O52—C521—H522110
C8—C8A—O1117.4 (3)H521—C521—H522110
C8—C8A—C4A122.5 (3)O52—C521—H523109
O1—C8A—C4A120.1 (3)H521—C521—H523110
C22—C12—C62118.6 (3)H522—C521—H523110
C22—C12—C2119.3 (3)C73—C731—H731110
C62—C12—C2122.1 (3)C73—C731—H732110
C32—C22—C12120.7 (4)H731—C731—H732109
C32—C22—H22121C73—C731—H733110
C12—C22—H22119H731—C731—H733109
O3—C31—H311110H732—C731—H733109
O3—C31—H312110C73—C732—H734110
H311—C31—H312109C73—C732—H735110
O3—C31—H313110H734—C732—H735110
H311—C31—H313109C73—C732—H736109
H312—C31—H313110H734—C732—H736109
C42—C32—C22119.8 (4)H735—C732—H736110

Experimental details

(I)(II)
Crystal data
Chemical formulaC23H24O8C23H24O8
Mr428.42428.44
Crystal system, space groupMonoclinic, P21/nTriclinic, P1
Temperature (K)293293
a, b, c (Å)14.238 (4), 11.053 (5), 14.426 (5)12.291 (5), 13.075 (5), 7.099 (3)
α, β, γ (°)90, 111.979 (18), 9093.85 (5), 104.33 (4), 111.52 (3)
V3)2105.3 (13)1012.3 (7)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.100.11
Crystal size (mm)0.40 × 0.30 × 0.300.45 × 0.10 × 0.10
Data collection
DiffractometerRigaku AFC-7R
diffractometer
Rigaku AFC-7R
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3865, 3709, 1532 3754, 3571, 1609
Rint0.0260.097
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.180, 0.95 0.055, 0.199, 1.00
No. of reflections37093571
No. of parameters280280
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.270.32, 0.28

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1999a), MSC/AFC Diffractometer Control Software, TEXSAN for Windows (Molecular Structure Corporation, 1999b), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON for Windows (Spek, 1999), TEXSAN for Windows.

 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds