Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The absolute structure has been determined for MnSi with data collected using synchrotron radiation with E = 78.3 keV (0.158 Å). At this energy, the resonant scattering contribution from MnSi is very small (fMn = −0.0397, f′′Mn = 0.0385, fSi = −0.0197, f′′Si = 0.0027), but the large number of observed Bijvoet differences together with a wide Q range make absolute structure determination possible. A comparison with the data collected at E = 18 keV (0.68 Å) (fMn = 0.2858, f′′Mn = 0.6739, fSi = 0.0653, f′′Si = 0.0646) for the same crystal shows the correctness of the absolute structure measured at the higher energy. A similar data collection has also been done at E = 65.3 keV (0.19 Å) for a single crystal of Fe0.7Co0.3Si with known absolute structure. In all cases, the absolute structure was correctly determined by analysing the statistical distribution of the chirality measure. Statistical descriptors of the refinements, the Flack parameter and the distribution of Parsons quotients are discussed for all presented experiments.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600576716006282/to5136sup1.cif
Contains datablocks global, MnSi_18keV, MnSi_78keV, FeCoSi_65keV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600576716006282/to5136MnSi_18keVsup2.hkl
Contains datablock MnSi_18keV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600576716006282/to5136MnSi_78keVsup3.hkl
Contains datablock MnSi_78keV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600576716006282/to5136FeCoSi_65keVsup4.hkl
Contains datablock FeCoSi_65keV

CCDC references: 1474065; 1474066; 1474067

Computing details top

For all compounds, program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2014).

(MnSi_18keV) top
Crystal data top
MnSiDx = 5.808 Mg m3
Mr = 83.03Synchrotron radiation, λ = 0.68894 Å
Cubic, P213Cell parameters from 715 reflections
a = 4.5622 (3) Åθ = 4.3–32.3°
V = 94.96 (2) Å3µ = 12.76 mm1
Z = 4T = 293 K
F(000) = 156Block, metallic dark grey
Data collection top
Pilatus@SNBL
diffractometer
127 reflections with I > 2σ(I)
Radiation source: ESRF bending magnetRint = 0.026
Silicon monochromatorθmax = 32.3°, θmin = 6.1°
φ scanh = 66
797 measured reflectionsk = 77
127 independent reflectionsl = 66
Refinement top
Refinement on F2 w = 1/[σ2(Fo2) + (0.053P)2]
where P = (Fo2 + 2Fc2)/3
Least-squares matrix: full(Δ/σ)max < 0.001
R[F2 > 2σ(F2)] = 0.036Δρmax = 0.96 e Å3
wR(F2) = 0.074Δρmin = 1.29 e Å3
S = 1.34Extinction correction: SHELXL-2014/7 (Sheldrick 2014, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
127 reflectionsExtinction coefficient: 0.63 (11)
8 parametersAbsolute structure: Flack x determined using 46 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
0 restraintsAbsolute structure parameter: 0.06 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn010.13683 (11)0.13683 (11)0.13683 (11)0.0169 (5)
Si020.8453 (2)0.8453 (2)0.8453 (2)0.0182 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn010.0169 (5)0.0169 (5)0.0169 (5)0.00003 (11)0.00003 (11)0.00003 (11)
Si020.0182 (5)0.0182 (5)0.0182 (5)0.0007 (2)0.0007 (2)0.0007 (2)
Geometric parameters (Å, º) top
Mn01—Si02i2.304 (2)Si02—Mn01xiii2.304 (2)
Mn01—Si02ii2.3977 (13)Si02—Mn01xiv2.3977 (13)
Mn01—Si02iii2.3977 (13)Si02—Mn01xv2.3977 (13)
Mn01—Si02iv2.3977 (13)Si02—Mn01xvi2.3977 (13)
Mn01—Si02v2.5482 (9)Si02—Mn01xvii2.5482 (9)
Mn01—Si02vi2.5482 (9)Si02—Mn01xviii2.5482 (9)
Mn01—Si02vii2.5482 (9)Si02—Mn01xix2.5482 (9)
Mn01—Mn01viii2.7980 (2)Si02—Si02xx2.8200 (4)
Mn01—Mn01ix2.7980 (2)Si02—Si02xxi2.8200 (4)
Mn01—Mn01x2.7980 (2)Si02—Si02xxii2.8200 (4)
Mn01—Mn01xi2.7980 (2)Si02—Si02xxiii2.8200 (4)
Mn01—Mn01xii2.7980 (2)Si02—Si02xxiv2.8200 (4)
Si02i—Mn01—Si02ii73.68 (2)Mn01xiii—Si02—Mn01xiv137.64 (3)
Si02i—Mn01—Si02iii73.68 (2)Mn01xiii—Si02—Mn01xv137.64 (3)
Si02ii—Mn01—Si02iii112.431 (17)Mn01xiv—Si02—Mn01xv71.39 (5)
Si02i—Mn01—Si02iv73.68 (2)Mn01xiii—Si02—Mn01xvi137.64 (3)
Si02ii—Mn01—Si02iv112.431 (17)Mn01xiv—Si02—Mn01xvi71.39 (5)
Si02iii—Mn01—Si02iv112.431 (17)Mn01xv—Si02—Mn01xvi71.39 (5)
Si02i—Mn01—Si02v140.288 (13)Mn01xiii—Si02—Mn01xvii70.22 (4)
Si02ii—Mn01—Si02v69.45 (2)Mn01xiv—Si02—Mn01xvii114.19 (4)
Si02iii—Mn01—Si02v107.34 (6)Mn01xv—Si02—Mn01xvii134.54 (5)
Si02iv—Mn01—Si02v134.54 (5)Mn01xvi—Si02—Mn01xvii68.826 (14)
Si02i—Mn01—Si02vi140.288 (13)Mn01xiii—Si02—Mn01xviii70.22 (4)
Si02ii—Mn01—Si02vi134.54 (5)Mn01xiv—Si02—Mn01xviii134.54 (5)
Si02iii—Mn01—Si02vi69.45 (2)Mn01xv—Si02—Mn01xviii68.826 (14)
Si02iv—Mn01—Si02vi107.34 (6)Mn01xvi—Si02—Mn01xviii114.19 (4)
Si02v—Mn01—Si02vi67.19 (2)Mn01xvii—Si02—Mn01xviii109.17 (4)
Si02i—Mn01—Si02vii140.288 (13)Mn01xiii—Si02—Mn01xix70.22 (4)
Si02ii—Mn01—Si02vii107.34 (6)Mn01xiv—Si02—Mn01xix68.826 (14)
Si02iii—Mn01—Si02vii134.54 (5)Mn01xv—Si02—Mn01xix114.19 (4)
Si02iv—Mn01—Si02vii69.45 (2)Mn01xvi—Si02—Mn01xix134.54 (5)
Si02v—Mn01—Si02vii67.19 (2)Mn01xvii—Si02—Mn01xix109.17 (4)
Si02vi—Mn01—Si02vii67.19 (2)Mn01xviii—Si02—Mn01xix109.17 (4)
Si02i—Mn01—Mn01viii115.22 (3)Mn01xiii—Si02—Si02xx54.69 (5)
Si02ii—Mn01—Mn01viii91.74 (2)Mn01xiv—Si02—Si02xx91.202 (14)
Si02iii—Mn01—Mn01viii54.31 (2)Mn01xv—Si02—Si02xx162.01 (4)
Si02iv—Mn01—Mn01viii155.83 (4)Mn01xvi—Si02—Si02xx108.02 (5)
Si02v—Mn01—Mn01viii53.04 (4)Mn01xvii—Si02—Si02xx56.405 (10)
Si02vi—Mn01—Mn01viii50.79 (5)Mn01xviii—Si02—Si02xx124.87 (9)
Si02vii—Mn01—Mn01viii104.47 (4)Mn01xix—Si02—Si02xx52.76 (4)
Si02i—Mn01—Mn01ix115.22 (3)Mn01xiii—Si02—Si02xxi54.69 (5)
Si02ii—Mn01—Mn01ix54.31 (2)Mn01xiv—Si02—Si02xxi162.01 (4)
Si02iii—Mn01—Mn01ix155.83 (4)Mn01xv—Si02—Si02xxi108.02 (5)
Si02iv—Mn01—Mn01ix91.74 (2)Mn01xvi—Si02—Si02xxi91.202 (14)
Si02v—Mn01—Mn01ix50.79 (5)Mn01xvii—Si02—Si02xxi52.76 (4)
Si02vi—Mn01—Mn01ix104.47 (4)Mn01xviii—Si02—Si02xxi56.405 (10)
Si02vii—Mn01—Mn01ix53.04 (4)Mn01xix—Si02—Si02xxi124.87 (9)
Mn01viii—Mn01—Mn01ix103.16 (3)Si02xx—Si02—Si02xxi89.93 (8)
Si02i—Mn01—Mn01x115.22 (3)Mn01xiii—Si02—Si02xxii54.69 (5)
Si02ii—Mn01—Mn01x155.83 (4)Mn01xiv—Si02—Si02xxii108.02 (5)
Si02iii—Mn01—Mn01x91.74 (2)Mn01xv—Si02—Si02xxii91.202 (14)
Si02iv—Mn01—Mn01x54.31 (2)Mn01xvi—Si02—Si02xxii162.01 (4)
Si02v—Mn01—Mn01x104.47 (4)Mn01xvii—Si02—Si02xxii124.87 (9)
Si02vi—Mn01—Mn01x53.04 (4)Mn01xviii—Si02—Si02xxii52.76 (4)
Si02vii—Mn01—Mn01x50.79 (5)Mn01xix—Si02—Si02xxii56.405 (10)
Mn01viii—Mn01—Mn01x103.16 (3)Si02xx—Si02—Si02xxii89.93 (8)
Mn01ix—Mn01—Mn01x103.16 (3)Si02xxi—Si02—Si02xxii89.93 (8)
Si02i—Mn01—Mn01xi58.99 (3)Mn01xiii—Si02—Si02xxiii110.85 (6)
Si02ii—Mn01—Mn01xi54.31 (2)Mn01xiv—Si02—Si02xxiii51.63 (5)
Si02iii—Mn01—Mn01xi132.62 (4)Mn01xv—Si02—Si02xxiii57.79 (3)
Si02iv—Mn01—Mn01xi58.13 (3)Mn01xvi—Si02—Si02xxiii111.37 (9)
Si02v—Mn01—Mn01xi107.58 (4)Mn01xvii—Si02—Si02xxiii161.21 (3)
Si02vi—Mn01—Mn01xi155.59 (4)Mn01xviii—Si02—Si02xxiii88.16 (3)
Si02vii—Mn01—Mn01xi88.646 (19)Mn01xix—Si02—Si02xxiii56.405 (10)
Mn01viii—Mn01—Mn01xi146.033 (7)Si02xx—Si02—Si02xxiii107.98 (2)
Mn01ix—Mn01—Mn01xi60.0Si02xxi—Si02—Si02xxiii143.97 (4)
Mn01x—Mn01—Mn01xi109.230 (4)Si02xxii—Si02—Si02xxiii60.0
Si02i—Mn01—Mn01xii58.99 (3)Mn01xiii—Si02—Si02xxiv110.85 (6)
Si02ii—Mn01—Mn01xii58.13 (3)Mn01xiv—Si02—Si02xxiv57.79 (3)
Si02iii—Mn01—Mn01xii54.31 (2)Mn01xv—Si02—Si02xxiv111.37 (9)
Si02iv—Mn01—Mn01xii132.62 (4)Mn01xvi—Si02—Si02xxiv51.63 (5)
Si02v—Mn01—Mn01xii88.646 (19)Mn01xvii—Si02—Si02xxiv56.405 (10)
Si02vi—Mn01—Mn01xii107.58 (4)Mn01xviii—Si02—Si02xxiv161.21 (3)
Si02vii—Mn01—Mn01xii155.59 (4)Mn01xix—Si02—Si02xxiv88.16 (3)
Mn01viii—Mn01—Mn01xii60.0Si02xx—Si02—Si02xxiv60.0
Mn01ix—Mn01—Mn01xii109.230 (4)Si02xxi—Si02—Si02xxiv107.98 (2)
Mn01x—Mn01—Mn01xii146.033 (7)Si02xxii—Si02—Si02xxiv143.97 (4)
Mn01xi—Mn01—Mn01xii95.84 (3)Si02xxiii—Si02—Si02xxiv108.05 (6)
Symmetry codes: (i) x1, y1, z1; (ii) x+1, y1/2, z+1/2; (iii) x+1/2, y+1, z1/2; (iv) x1/2, y+1/2, z+1; (v) x1/2, y+3/2, z+1; (vi) x+1, y1/2, z+3/2; (vii) x+3/2, y+1, z1/2; (viii) x, y+1/2, z+1/2; (ix) x+1/2, y+1/2, z; (x) x+1/2, y, z+1/2; (xi) x+1/2, y, z1/2; (xii) x1/2, y+1/2, z; (xiii) x+1, y+1, z+1; (xiv) x+1, y+1/2, z+1/2; (xv) x+1/2, y+1/2, z+1; (xvi) x+1/2, y+1, z+1/2; (xvii) x+1/2, y+3/2, z+1; (xviii) x+1, y+1/2, z+3/2; (xix) x+3/2, y+1, z+1/2; (xx) x+2, y+1/2, z+3/2; (xxi) x+3/2, y+2, z+1/2; (xxii) x+1/2, y+3/2, z+2; (xxiii) x+2, y1/2, z+3/2; (xxiv) x+3/2, y+2, z1/2.
(MnSi_78keV) top
Crystal data top
MnSiDx = 5.793 Mg m3
Mr = 83.03Cell parameters from 14604 reflections
Cubic, P213θ = 2.0–19.9°
a = 4.5662 (1) ŵ = 0.26 mm1
V = 95.21 (1) Å3T = 293 K
Z = 4Block, metallic dark grey
F(000) = 156
Data collection top
Huber χ at ID11@ESRF
diffractometer
θmax = 15.2°, θmin = 1.7°
φ scanh = 1514
12145 measured reflectionsk = 1515
12145 independent reflectionsl = 1515
11972 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0218P)2 + 0.0116P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.015(Δ/σ)max < 0.001
wR(F2) = 0.037Δρmax = 0.59 e Å3
S = 1.08Δρmin = 1.39 e Å3
12145 reflectionsAbsolute structure: Flack x determined using 529 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
7 parametersAbsolute structure parameter: 0.02 (12)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn010.13688 (2)0.13688 (2)0.13688 (2)0.004460 (10)
Si020.15445 (4)0.15445 (4)0.15445 (4)0.00570 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn010.004460 (10)0.004460 (10)0.004460 (10)0.000040 (10)0.000040 (10)0.000040 (10)
Si020.00570 (3)0.00570 (3)0.00570 (3)0.00061 (3)0.00061 (3)0.00061 (3)
Geometric parameters (Å, º) top
Mn01—Si022.3040 (3)Si02—Mn01x2.4015 (2)
Mn01—Si02i2.4014 (2)Si02—Mn01xi2.4015 (2)
Mn01—Si02ii2.4014 (2)Si02—Mn01xii2.4015 (2)
Mn01—Si02iii2.4014 (2)Si02—Mn01ix2.5494 (1)
Mn01—Si02iv2.5495 (1)Si02—Mn01vii2.5494 (1)
Mn01—Si02v2.5495 (1)Si02—Mn01viii2.5494 (1)
Mn01—Si02vi2.5495 (1)Si02—Si02i2.8220 (1)
Mn01—Mn01vii2.8004 (1)Si02—Si02ii2.8220 (1)
Mn01—Mn01viii2.8004 (1)Si02—Si02iii2.8220 (1)
Mn01—Mn01ix2.8004 (1)Si02—Si02x2.8220 (1)
Mn01—Mn01v2.8004 (1)Si02—Si02xi2.8220 (1)
Mn01—Mn01vi2.8004 (1)
Si02—Mn01—Si02i73.666 (2)Mn01—Si02—Mn01x137.680 (5)
Si02—Mn01—Si02ii73.666 (2)Mn01—Si02—Mn01xi137.680 (5)
Si02i—Mn01—Si02ii112.418 (2)Mn01x—Si02—Mn01xi71.333 (7)
Si02—Mn01—Si02iii73.666 (2)Mn01—Si02—Mn01xii137.680 (5)
Si02i—Mn01—Si02iii112.418 (2)Mn01x—Si02—Mn01xii71.333 (7)
Si02ii—Mn01—Si02iii112.418 (2)Mn01xi—Si02—Mn01xii71.333 (7)
Si02—Mn01—Si02iv140.278 (2)Mn01—Si02—Mn01ix70.270 (6)
Si02i—Mn01—Si02iv134.507 (7)Mn01x—Si02—Mn01ix114.152 (5)
Si02ii—Mn01—Si02iv69.425 (3)Mn01xi—Si02—Mn01ix68.819 (2)
Si02iii—Mn01—Si02iv107.420 (10)Mn01xii—Si02—Mn01ix134.507 (7)
Si02—Mn01—Si02v140.278 (2)Mn01—Si02—Mn01vii70.270 (6)
Si02i—Mn01—Si02v107.420 (10)Mn01x—Si02—Mn01vii68.819 (2)
Si02ii—Mn01—Si02v134.507 (7)Mn01xi—Si02—Mn01vii134.507 (7)
Si02iii—Mn01—Si02v69.425 (3)Mn01xii—Si02—Mn01vii114.152 (5)
Si02iv—Mn01—Si02v67.207 (3)Mn01ix—Si02—Mn01vii109.211 (6)
Si02—Mn01—Si02vi140.278 (2)Mn01—Si02—Mn01viii70.270 (6)
Si02i—Mn01—Si02vi69.425 (3)Mn01x—Si02—Mn01viii134.507 (7)
Si02ii—Mn01—Si02vi107.420 (10)Mn01xi—Si02—Mn01viii114.152 (5)
Si02iii—Mn01—Si02vi134.507 (7)Mn01xii—Si02—Mn01viii68.819 (2)
Si02iv—Mn01—Si02vi67.207 (3)Mn01ix—Si02—Mn01viii109.211 (6)
Si02v—Mn01—Si02vi67.207 (3)Mn01vii—Si02—Mn01viii109.211 (6)
Si02—Mn01—Mn01vii58.974 (3)Mn01—Si02—Si02i54.750 (9)
Si02i—Mn01—Mn01vii58.090 (5)Mn01x—Si02—Si02i107.985 (7)
Si02ii—Mn01—Mn01vii54.334 (4)Mn01xi—Si02—Si02i161.951 (7)
Si02iii—Mn01—Mn01vii132.594 (5)Mn01xii—Si02—Si02i91.184 (2)
Si02iv—Mn01—Mn01vii107.552 (6)Mn01ix—Si02—Si02i124.980 (15)
Si02v—Mn01—Mn01vii155.640 (6)Mn01vii—Si02—Si02i56.3960 (10)
Si02vi—Mn01—Mn01vii88.669 (3)Mn01viii—Si02—Si02i52.817 (7)
Si02—Mn01—Mn01viii58.974 (3)Mn01—Si02—Si02ii54.750 (9)
Si02i—Mn01—Mn01viii54.334 (4)Mn01x—Si02—Si02ii91.184 (2)
Si02ii—Mn01—Mn01viii132.594 (5)Mn01xi—Si02—Si02ii107.985 (7)
Si02iii—Mn01—Mn01viii58.090 (5)Mn01xii—Si02—Si02ii161.951 (7)
Si02iv—Mn01—Mn01viii155.640 (6)Mn01ix—Si02—Si02ii56.3960 (10)
Si02v—Mn01—Mn01viii88.669 (3)Mn01vii—Si02—Si02ii52.817 (7)
Si02vi—Mn01—Mn01viii107.552 (6)Mn01viii—Si02—Si02ii124.980 (15)
Mn01vii—Mn01—Mn01viii95.826 (4)Si02i—Si02—Si02ii90.020 (12)
Si02—Mn01—Mn01ix58.974 (3)Mn01—Si02—Si02iii54.750 (9)
Si02i—Mn01—Mn01ix132.594 (5)Mn01x—Si02—Si02iii161.951 (7)
Si02ii—Mn01—Mn01ix58.090 (5)Mn01xi—Si02—Si02iii91.184 (2)
Si02iii—Mn01—Mn01ix54.334 (4)Mn01xii—Si02—Si02iii107.985 (7)
Si02iv—Mn01—Mn01ix88.669 (3)Mn01ix—Si02—Si02iii52.817 (7)
Si02v—Mn01—Mn01ix107.552 (6)Mn01vii—Si02—Si02iii124.980 (15)
Si02vi—Mn01—Mn01ix155.640 (6)Mn01viii—Si02—Si02iii56.3960 (10)
Mn01vii—Mn01—Mn01ix95.826 (4)Si02i—Si02—Si02iii90.020 (12)
Mn01viii—Mn01—Mn01ix95.826 (4)Si02ii—Si02—Si02iii90.020 (12)
Si02—Mn01—Mn01v115.212 (3)Mn01—Si02—Si02x110.920 (9)
Si02i—Mn01—Mn01v155.872 (5)Mn01x—Si02—Si02x51.584 (8)
Si02ii—Mn01—Mn01v91.709 (4)Mn01xi—Si02—Si02x111.274 (14)
Si02iii—Mn01—Mn01v54.333 (4)Mn01xii—Si02—Si02x57.758 (4)
Si02iv—Mn01—Mn01v53.091 (6)Mn01ix—Si02—Si02x161.178 (4)
Si02v—Mn01—Mn01v50.756 (7)Mn01vii—Si02—Si02x56.3960 (10)
Si02vi—Mn01—Mn01v104.492 (4)Mn01viii—Si02—Si02x88.197 (4)
Mn01vii—Mn01—Mn01v146.0300 (10)Si02i—Si02—Si02x60.0
Mn01viii—Mn01—Mn01v109.2Si02ii—Si02—Si02x108.006 (3)
Mn01ix—Mn01—Mn01v60.0Si02iii—Si02—Si02x144.009 (6)
Si02—Mn01—Mn01vi115.212 (3)Mn01—Si02—Si02xi110.920 (9)
Si02i—Mn01—Mn01vi54.333 (4)Mn01x—Si02—Si02xi57.758 (4)
Si02ii—Mn01—Mn01vi155.872 (5)Mn01xi—Si02—Si02xi51.584 (8)
Si02iii—Mn01—Mn01vi91.709 (4)Mn01xii—Si02—Si02xi111.274 (14)
Si02iv—Mn01—Mn01vi104.492 (4)Mn01ix—Si02—Si02xi56.3960 (10)
Si02v—Mn01—Mn01vi53.091 (6)Mn01vii—Si02—Si02xi88.197 (4)
Si02vi—Mn01—Mn01vi50.756 (7)Mn01viii—Si02—Si02xi161.177 (4)
Mn01vii—Mn01—Mn01vi109.2Si02i—Si02—Si02xi144.009 (6)
Mn01viii—Mn01—Mn01vi60.0Si02ii—Si02—Si02xi60.0
Mn01ix—Mn01—Mn01vi146.0300 (10)Si02iii—Si02—Si02xi108.006 (4)
Mn01v—Mn01—Mn01vi103.169 (3)Si02x—Si02—Si02xi107.985 (9)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1/2, z1/2; (iii) x1/2, y, z+1/2; (iv) x+1/2, y+1/2, z; (v) x, y+1/2, z+1/2; (vi) x+1/2, y, z+1/2; (vii) x+1/2, y, z1/2; (viii) x, y1/2, z+1/2; (ix) x1/2, y+1/2, z; (x) x, y1/2, z1/2; (xi) x1/2, y, z1/2; (xii) x1/2, y1/2, z.
(FeCoSi_65keV) top
Crystal data top
Co0.30Fe0.70SiDx = 6.298 Mg m3
Mr = 84.86Cell parameters from 5730 reflections
Cubic, P213θ = 1.7–19.6°
a = 4.4732 (5) ŵ = 0.48 mm1
V = 89.51 (3) Å3T = 120 K
Z = 4Block, metallic dark grey
F(000) = 161
Data collection top
Huber χ at ID11@ESRF
diffractometer
θmax = 19.7°, θmin = 1.7°
φ scanh = 1414
8860 measured reflectionsk = 1415
8860 independent reflectionsl = 1212
8781 reflections with I > 2σ(I)
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0331P)2 + 0.1327P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.024(Δ/σ)max < 0.001
wR(F2) = 0.062Δρmax = 0.99 e Å3
S = 1.06Δρmin = 2.26 e Å3
8860 reflectionsAbsolute structure: Flack x determined using 509 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
7 parametersAbsolute structure parameter: 0.08 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Fe010.13757 (2)0.13757 (2)0.13757 (2)0.00264 (2)0.6999
Co010.13757 (2)0.13757 (2)0.13757 (2)0.00264 (2)0.3
Si010.84218 (7)0.84218 (7)0.84218 (7)0.00333 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Fe010.00264 (2)0.00264 (2)0.00264 (2)0.00004 (2)0.00004 (2)0.00004 (2)
Co010.00264 (2)0.00264 (2)0.00264 (2)0.00004 (2)0.00004 (2)0.00004 (2)
Si010.00333 (5)0.00333 (5)0.00333 (5)0.00021 (5)0.00021 (5)0.00021 (5)
Geometric parameters (Å, º) top
Fe01—Si01i2.2886 (6)Si01—Co01xi2.2886 (6)
Fe01—Si01ii2.3348 (5)Si01—Fe01xi2.2886 (6)
Fe01—Si01iii2.3348 (5)Si01—Co01xii2.3348 (5)
Fe01—Si01iv2.3348 (5)Si01—Fe01xii2.3348 (5)
Fe01—Si01v2.5023 (4)Si01—Co01xiii2.3348 (5)
Fe01—Si01vi2.5023 (4)Si01—Co01xiv2.3348 (5)
Fe01—Si01vii2.5023 (4)Si01—Fe01xiii2.3348 (5)
Fe01—Fe01viii2.7439 (3)Si01—Fe01xiv2.3348 (5)
Fe01—Co01viii2.7439 (3)Si01—Co01xv2.5023 (4)
Fe01—Fe01ix2.7439 (3)Si01—Fe01xv2.5023 (4)
Fe01—Co01ix2.7439 (3)Si01—Co01xvi2.5023 (4)
Fe01—Co01x2.7439 (3)Si01—Co01xvii2.5023 (4)
Si01i—Fe01—Si01ii73.624 (5)Co01xi—Si01—Fe01xi0.0
Si01i—Fe01—Si01iii73.624 (5)Co01xi—Si01—Co01xii137.274 (9)
Si01ii—Fe01—Si01iii112.381 (4)Fe01xi—Si01—Co01xii137.274 (9)
Si01i—Fe01—Si01iv73.624 (5)Co01xi—Si01—Fe01xii137.3
Si01ii—Fe01—Si01iv112.381 (4)Fe01xi—Si01—Fe01xii137.274 (9)
Si01iii—Fe01—Si01iv112.381 (4)Co01xii—Si01—Fe01xii0.0
Si01i—Fe01—Si01v140.265 (3)Co01xi—Si01—Co01xiii137.274 (9)
Si01ii—Fe01—Si01v69.788 (6)Fe01xi—Si01—Co01xiii137.274 (9)
Si01iii—Fe01—Si01v106.615 (18)Co01xii—Si01—Co01xiii71.973 (13)
Si01iv—Fe01—Si01v135.236 (12)Fe01xii—Si01—Co01xiii71.973 (13)
Si01i—Fe01—Si01vi140.265 (3)Co01xi—Si01—Co01xiv137.274 (9)
Si01ii—Fe01—Si01vi135.236 (12)Fe01xi—Si01—Co01xiv137.274 (9)
Si01iii—Fe01—Si01vi69.788 (6)Co01xii—Si01—Co01xiv71.973 (13)
Si01iv—Fe01—Si01vi106.615 (18)Fe01xii—Si01—Co01xiv71.973 (13)
Si01v—Fe01—Si01vi67.228 (5)Co01xiii—Si01—Co01xiv71.973 (13)
Si01i—Fe01—Si01vii140.265 (3)Co01xi—Si01—Fe01xiii137.3
Si01ii—Fe01—Si01vii106.615 (18)Fe01xi—Si01—Fe01xiii137.274 (9)
Si01iii—Fe01—Si01vii135.236 (12)Co01xii—Si01—Fe01xiii72.0
Si01iv—Fe01—Si01vii69.788 (6)Fe01xii—Si01—Fe01xiii71.973 (13)
Si01v—Fe01—Si01vii67.228 (5)Co01xiii—Si01—Fe01xiii0.0
Si01vi—Fe01—Si01vii67.228 (5)Co01xiv—Si01—Fe01xiii72.0
Si01i—Fe01—Fe01viii58.806 (6)Co01xi—Si01—Fe01xiv137.3
Si01ii—Fe01—Fe01viii132.366 (10)Fe01xi—Si01—Fe01xiv137.274 (9)
Si01iii—Fe01—Fe01viii58.374 (9)Co01xii—Si01—Fe01xiv72.0
Si01iv—Fe01—Fe01viii54.014 (7)Fe01xii—Si01—Fe01xiv71.973 (13)
Si01v—Fe01—Fe01viii155.349 (10)Co01xiii—Si01—Fe01xiv72.0
Si01vi—Fe01—Fe01viii88.480 (5)Co01xiv—Si01—Fe01xiv0.0
Si01vii—Fe01—Fe01viii108.214 (11)Fe01xiii—Si01—Fe01xiv71.973 (13)
Si01i—Fe01—Co01viii58.806 (6)Co01xi—Si01—Co01xv69.717 (11)
Si01ii—Fe01—Co01viii132.366 (10)Fe01xi—Si01—Co01xv69.717 (11)
Si01iii—Fe01—Co01viii58.374 (9)Co01xii—Si01—Co01xv69.018 (3)
Si01iv—Fe01—Co01viii54.014 (7)Fe01xii—Si01—Co01xv69.018 (3)
Si01v—Fe01—Co01viii155.349 (10)Co01xiii—Si01—Co01xv135.237 (12)
Si01vi—Fe01—Co01viii88.480 (5)Co01xiv—Si01—Co01xv114.331 (9)
Si01vii—Fe01—Co01viii108.214 (11)Fe01xiii—Si01—Co01xv135.237 (12)
Fe01viii—Fe01—Co01viii0.000 (5)Fe01xiv—Si01—Co01xv114.331 (9)
Si01i—Fe01—Fe01ix58.806 (6)Co01xi—Si01—Fe01xv69.7
Si01ii—Fe01—Fe01ix54.014 (7)Fe01xi—Si01—Fe01xv69.717 (11)
Si01iii—Fe01—Fe01ix132.366 (10)Co01xii—Si01—Fe01xv69.0
Si01iv—Fe01—Fe01ix58.374 (9)Fe01xii—Si01—Fe01xv69.018 (3)
Si01v—Fe01—Fe01ix108.214 (11)Co01xiii—Si01—Fe01xv135.2
Si01vi—Fe01—Fe01ix155.349 (10)Co01xiv—Si01—Fe01xv114.3
Si01vii—Fe01—Fe01ix88.480 (5)Fe01xiii—Si01—Fe01xv135.237 (12)
Fe01viii—Fe01—Fe01ix95.601 (8)Fe01xiv—Si01—Fe01xv114.331 (9)
Co01viii—Fe01—Fe01ix95.6Co01xv—Si01—Fe01xv0.0
Si01i—Fe01—Co01ix58.806 (6)Co01xi—Si01—Co01xvi69.717 (11)
Si01ii—Fe01—Co01ix54.014 (7)Fe01xi—Si01—Co01xvi69.717 (11)
Si01iii—Fe01—Co01ix132.366 (10)Co01xii—Si01—Co01xvi135.237 (12)
Si01iv—Fe01—Co01ix58.374 (9)Fe01xii—Si01—Co01xvi135.237 (12)
Si01v—Fe01—Co01ix108.214 (11)Co01xiii—Si01—Co01xvi114.331 (9)
Si01vi—Fe01—Co01ix155.349 (10)Co01xiv—Si01—Co01xvi69.018 (3)
Si01vii—Fe01—Co01ix88.480 (5)Fe01xiii—Si01—Co01xvi114.331 (9)
Fe01viii—Fe01—Co01ix95.601 (8)Fe01xiv—Si01—Co01xvi69.018 (3)
Co01viii—Fe01—Co01ix95.601 (8)Co01xv—Si01—Co01xvi108.648 (11)
Fe01ix—Fe01—Co01ix0.000 (5)Fe01xv—Si01—Co01xvi108.648 (11)
Si01i—Fe01—Co01x58.806 (6)Co01xi—Si01—Co01xvii69.717 (11)
Si01ii—Fe01—Co01x58.374 (9)Fe01xi—Si01—Co01xvii69.717 (11)
Si01iii—Fe01—Co01x54.014 (7)Co01xii—Si01—Co01xvii114.331 (9)
Si01iv—Fe01—Co01x132.366 (10)Fe01xii—Si01—Co01xvii114.331 (9)
Si01v—Fe01—Co01x88.480 (5)Co01xiii—Si01—Co01xvii69.018 (3)
Si01vi—Fe01—Co01x108.214 (11)Co01xiv—Si01—Co01xvii135.237 (12)
Si01vii—Fe01—Co01x155.349 (10)Fe01xiii—Si01—Co01xvii69.018 (3)
Fe01viii—Fe01—Co01x95.601 (7)Fe01xiv—Si01—Co01xvii135.237 (12)
Co01viii—Fe01—Co01x95.601 (7)Co01xv—Si01—Co01xvii108.648 (11)
Fe01ix—Fe01—Co01x95.601 (8)Fe01xv—Si01—Co01xvii108.648 (11)
Co01ix—Fe01—Co01x95.601 (8)Co01xvi—Si01—Co01xvii108.648 (11)
Symmetry codes: (i) x1, y1, z1; (ii) x1/2, y+1/2, z+1; (iii) x+1, y1/2, z+1/2; (iv) x+1/2, y+1, z1/2; (v) x+3/2, y+1, z1/2; (vi) x1/2, y+3/2, z+1; (vii) x+1, y1/2, z+3/2; (viii) x1/2, y+1/2, z; (ix) x, y1/2, z+1/2; (x) x+1/2, y, z1/2; (xi) x+1, y+1, z+1; (xii) x+1/2, y+1/2, z+1; (xiii) x+1, y+1/2, z+1/2; (xiv) x+1/2, y+1, z+1/2; (xv) x+1, y+1/2, z+3/2; (xvi) x+1/2, y+3/2, z+1; (xvii) x+3/2, y+1, z+1/2.
 

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds