Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The crystal structures of 7,7-dicyclo­but­yl-5-hydroxy­meth­yl-6-oxabicyclo­[3.2.1]octa­ne-1-carboxylic acid, C17H26O4, (I), and 1-(hydroxy­meth­yl)-7-oxaspiro­[bicyclo­[3.2.1]octa­ne-6,1'-cyclo­penta­ne]-5-carboxylic acid, C13H20O4, (II), determined at 170 K, show that the conformation of the hydroxy­meth­yl group (anti or gauche) affects the dimensionality (one- or two-dimensional) of the supramolecular structures via O-H...O hydrogen bonds. In (I), the carbox­yl and hydroxy­meth­yl groups inter­act with themselves, forming a one-dimensional step-ladder, while in (II), a two-dimensional structure is made up of carboxylic acid centrosymmetric R22(8) dimers connected by hydrox­yl-to-ether contacts.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105010267/tr1124sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105010267/tr1124Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105010267/tr1124IIsup3.hkl
Contains datablock II

CCDC references: 273075; 273076

Comment top

We have reported that compounds possessing axially oriented hydroxyl/carboxylic acid functions might create, by incorporation of water molecules, three-dimensional tubular structures in the crystalline state. Compounds (I) and (II) were considered to be promising candidates, since their respective homologues, (III) and (IV), have been shown to adopt hydrated tubular structures in the solid state (Carrasco et al., 2001). The crystal structures of compounds (I) and (II), reported in this paper, reveal a lack of hydration water molecules, although they were crystallized in a water-saturated atmosphere. To date, compound (IV) is the only one of this series which crystallizes in the anhydrous and hydrated forms in the absence or presence of water atmosphere, respectively.

The molecular structures of compounds (I) and (II) are displayed in Figs. 1 and 2, respectively. In (I), the cyclobutane rings are puckered (Table 1), with dihedral angles of 26.1 (2) (C13/C10/C11 and C11/C12/C13 planes) and 31.7 (1)° (C15/C14/C17 and C15/C16/C17 planes). The oxolane ring, in both compounds, presents a distorted 4T5 half-chair toward an E5 envelope conformation, according to the puckering parameters (Cremer & Pople, 1975) and the notation of Giacovazzo et al. (1992) for the C1/O1/C9/C5/C6 sequence [ϕ2 = −50.1 (2) and −51.7 (1)°]. The cyclohexane presents a distorted 1C4 towards 1E conformation [C6/C1/C2/C3/C4/C5; ϕ = 0.4 (3) and 1.8 (3)°, and θ = 27.0 (3) and 23.8 (1)°].

The molecules of (II) exhibit positional disorder in the cyclopentane ring and in the carboxylic acid group (Fig. 2). The cyclopentane ring adopts two conformations, namely 5T4 and 5E for molecules A [ϕ2 = 133.3 (6)°], and between 5T1 and E1 for molecules B [ϕ2 = 173.9 (11)°], for the C9/C10/C11A/C11B/C12/C13 sequence. In the carboxylic acid group, the C—O distances and O—C—C angle are significantly different from those in (I) (Tables 1 and 3), although in good agreement with the values previously reported for the disordered group (Carrasco et al., 2001).

The O—H···O hydrogen-bonding motifs may be described as double-strand ladders in (I) and sheets in (II) (Figs. 3 and 4), which are closely related to the anti and gauche conformations of the hydroxyl group with respect to the oxolane bridge (Tables 1 and 3). As observed previously (Carrasco et al., 2001), the anti conformation gives one-dimensional assemblies, while a gauche conformation gives either one- or two-dimensional assemblies.

The supramolecular structure in (I) also differs from that in (II), in the absence of the centrosymmetric R22(8) motif (Tables 2 and 4). In (I), the carboxylic acid group acts as both a donor to the hydroxyl group, forming strands, and as an acceptor, joining two strands into a step-ladder structure (Nguyen et al., 2001) of alternating R22(16) and R44(12) motifs. Each strand (Fig. 3) contains only one enantiomer, related only by translation, whereas the step-ladder is formed by one strand of one handedness and one strand of opposite handedness, giving rise to an achiral ladder. A similar supramolecular structure is present in the anhydrous form of compound (IV) and in the homologues (V) and (VI) (Carrasco et al., 2001), which have two fewer C atoms. No other weak interactions, except van der Waals interactions, are observed between ladders (Fig. 5).

In compound (II), the H-atom disorder does not affect the supramolecular structure, since the carboxylic acid group interacts strongly with itself, forming the acid-to-acid hydrogen-bonding R22(8) motif (Leiserowitz, 1976; Etter, 1990; Bernstein et al., 1995). This dimeric association, linked by hydroxyl-to-ether hydrogen bonds, results in sheets (Fig. 4) that are further joined via C—H···O interactions into a three-dimensional network (Table 4 and dashed lines in Fig. 6). The formation of the R22(8) motif is prevented in the related analogues with two-dimensional structures (Carrasco et al., 2001).

Comparison with the previously reported hydroxy–acid analogues confirms that the relative positions of the hydroxyl and carboxylic acid groups, together with the molecular size, can lead to a range of hydrogen-bonded supramolecular structures with various dimensionalities. The reliability of the axially oriented hydroxyl/carboxylic acid functions in giving anhydrous layers reduces the design of the last remaining dimension to the incorporation of water molecules.

Experimental top

Compounds (I) and (II) were synthesized by condensing the dilithium salt of 3-methylenecyclohexanecarboxylic acid with, respectively, dicyclobutylmethanone (Erickson et al., 1966) or cyclopentanone, following the synthetic sequence reported for the other members of this family of compounds (Carrasco et al., 2001). Analysis for compound (I): m.p. 448–449 K; 1H NMR (300 MHz, MeOD, δ, p.p.m.): 3.67 (d, J = 11.5 Hz, 1H), 3.62 (d, J = 11.5 Hz, 1H), 3.23 (m, 1H), 2.61 (m, 1H), 2.47 (d, J = 11.8 Hz, 1H), 2.27 (m, 3H), 2.12 (m, 2H), 1.99 (m, 3H), 1.74 (m, 8H), 1.58 (m, 2H), 1.40 (d, J = 11.8 Hz, 1H); 13C NMR (75.4 MHz, MeOD, δ, p.p.m.): 17.7, 18.1, 19.5, 26.2, 26.7, 27.4, 31.9, 32.8, 40.4, 41.1, 44.6, 47.6, 56.9, 67.3, 82.4, 86.4, 176.2; IR (KBr, νmax, cm−1): 3398, 2950, 2363, 1701, 1651, 1540, 1458, 1251, 1167, 1123, 995. Analysis for compound (II): m.p. 426–427 K; 1H NMR (300 MHz, MeOD, δ, p.p.m.): 3.48 (d, J = 11.7 Hz, 1H), 3.42 (d, J = 11.7 Hz, 1H), 2.50 (d, J = 11.4 Hz, 1H), 2.20 (m, 2H), 1.95 (m, 2H), 1.73 (m, 5H), 1.59 (d, J = 11.4 Hz, 1H), 1.50 (m, 4H), 1.40 (dd, J1 = 12.4, J2 = 5.8 Hz, 1H); 13C NMR (75.4 MHz, MeOD, δ, p.p.m.): 19.7, 24.1, 24.5, 31.7, 31.8, 32.0, 39.2, 40.6, 55.6, 66.4, 82.3, 94.1, 176.0; IR (KBr, νmax, cm−1): 3749, 3380, 2956, 2870, 2361, 2337, 1703, 1456, 1339, 1257, 1157, 1046, 1002. Single crystals of (I) and (II), suitable for X-ray analysis, were grown at room temperature from a damp carbon tetrachloride–2,2,4-trimethylpentane mixture (Ratio?).

Refinement top

All H atoms were located in difference Fourier maps and subsequently allowed to refine as riding models on their respective C and O atoms, with C—H = 0.99 (CH2) or 1.00 Å (CH) and O—H = 0.84 Å, and with Uiso(H) = 1.2Ueq(C, O). The molecules of (II) (Fig. 2) exhibit positional disorder in the carboxylic acid H atom [pp(H4) = 0.59 (3), pp(H3) = 0.41 (3)] and in the cyclopentane ring [pp(C11A) = 0.58 (2), pp(C11B) = 0.42 (2)]. The bond distances around the disordered atoms C11A/B (Fig. 2) in the cyclopentane ring were restrained using the DFIX command based on the average Csp3—Csp3 value (Allen et al., 1987). Attempted free refinement led to unrealistic geometrical parameters.

Computing details top

For both compounds, data collection: KappaCCD Server Software (Nonius, 2000); cell refinement: HKL DENZO and SCALEPACK (Otwinowski & Minor 1997); data reduction: HKL DENZO and SCALEPACK; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Xtal3.6 (Hall et al., 1999) and PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97, WinGX (Farrugia, 1999) and PLATON.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular structure of (II), with 30% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radii. The disorder model in the cyclopentane ring and in the carboxylic group is represented by dashed lines.
[Figure 3] Fig. 3. The one-dimensional hydrogen-bonded step-ladders in (I), formed by hydroxyl-to-hydroxyl bonds (dotted lines). H atoms not involved in the hydrogen bonds have been omitted for clarity. [Symmetry codes: (i) x − 1, 1 + y, z; (ii) 1 − x, −y, −z.]
[Figure 4] Fig. 4. The two-dimensional hydrogen-bonded layer in (II), formed by molecules joined via a combination of acid-to-acid and hydroxyl-to-ether hydrogen bonds (dotted lines). H atoms not involved in the hydrogen bonds and the minor component of the disordered carboxylic acid group have been omitted for clarity. [Symmetry codes: (i) 1 − x, 1 − y, −z; (ii) −x, 1/2 + y, 1/2 − z; (iii) x, 1 + y, z; (iv) 1 − x, 2 − y, −z; (v) 1 + x, 3/2 − y, −1/2 + z.]
[Figure 5] Fig. 5. A packing diagram for (I), illustrating the disposition of two ladders running along the a axis. H atoms not involved in the hydrogen bonds have been omitted for clarity.
[Figure 6] Fig. 6. A packing diagram for (II), illustrating the disposition of the sheets. C—H···O interactions (dashed lines) link the sheets into a three-dimensional network. H atoms not involved in the hydrogen bonds and the minor component of the disordered carboxylic group have been omitted for clarity.
(I) 7,7-Dicyclobutyl-5-hydroxymethyl-6-oxabicyclo[3.2.1]octane-1-carboxylic acid top
Crystal data top
C17H26O4Z = 2
Mr = 294.38F(000) = 320
Triclinic, P1Dx = 1.270 Mg m3
Hall symbol: -P 1Melting point = 448–449 K
a = 8.757 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.807 (3) ÅCell parameters from 3531 reflections
c = 11.769 (6) Åθ = 1.8–27.5°
α = 84.073 (11)°µ = 0.09 mm1
β = 75.766 (13)°T = 170 K
γ = 61.044 (9)°Prism, colourless
V = 769.7 (5) Å30.45 × 0.10 × 0.10 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
3087 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Horizontally mounted graphite crystal monochromatorθmax = 27.5°, θmin = 1.8°
Detector resolution: 9 pixels mm-1h = 011
ϕ and ω scansk = 911
3531 measured reflectionsl = 1415
3531 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.058H-atom parameters constrained
wR(F2) = 0.176 w = 1/[σ2(Fo2) + (0.1125P)2 + 0.2845P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
3531 reflectionsΔρmax = 0.45 e Å3
191 parametersΔρmin = 0.46 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.155 (15)
Crystal data top
C17H26O4γ = 61.044 (9)°
Mr = 294.38V = 769.7 (5) Å3
Triclinic, P1Z = 2
a = 8.757 (3) ÅMo Kα radiation
b = 8.807 (3) ŵ = 0.09 mm1
c = 11.769 (6) ÅT = 170 K
α = 84.073 (11)°0.45 × 0.10 × 0.10 mm
β = 75.766 (13)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3087 reflections with I > 2σ(I)
3531 measured reflectionsRint = 0.000
3531 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 1.03Δρmax = 0.45 e Å3
3531 reflectionsΔρmin = 0.46 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.59693 (14)0.05265 (14)0.30781 (10)0.0200 (3)
O20.92296 (16)0.30382 (17)0.10000 (11)0.0309 (3)
H20.87700.34210.06360.037*
O30.29920 (19)0.29624 (18)0.02871 (13)0.0386 (4)
O40.23644 (16)0.51195 (16)0.14536 (11)0.0273 (3)
H40.14910.56550.11330.033*
C10.7211 (2)0.0218 (2)0.19675 (14)0.0212 (4)
C20.8680 (2)0.0310 (2)0.17486 (16)0.0275 (4)
H2A0.94780.01290.09670.033*
H2B0.94090.02210.23440.033*
C30.7878 (2)0.2285 (3)0.18076 (17)0.0297 (4)
H3A0.88020.26050.13760.036*
H3B0.75690.26500.26370.036*
C40.6200 (2)0.3296 (2)0.13016 (16)0.0257 (4)
H4A0.65760.33770.04420.031*
H4B0.55160.44910.16350.031*
C50.4952 (2)0.2454 (2)0.15573 (14)0.0201 (4)
C60.6079 (2)0.0610 (2)0.10563 (14)0.0216 (4)
H6A0.68240.05660.02640.026*
H6B0.53310.00630.10300.026*
C70.3343 (2)0.3519 (2)0.10279 (14)0.0227 (4)
C80.7969 (2)0.2171 (2)0.20617 (15)0.0253 (4)
H8A0.85710.25790.27260.030*
H8B0.69800.24650.22200.030*
C90.4385 (2)0.2104 (2)0.28944 (14)0.0180 (3)
C100.4054 (2)0.3516 (2)0.37322 (14)0.0199 (4)
H100.49280.39550.33940.024*
C110.2179 (2)0.5105 (2)0.41273 (15)0.0247 (4)
H11A0.20330.61770.36970.030*
H11B0.11730.48790.41410.030*
C120.2589 (2)0.5020 (2)0.53405 (15)0.0275 (4)
H12A0.15970.51240.60060.033*
H12B0.30320.58290.54430.033*
C130.4086 (2)0.3133 (2)0.50419 (15)0.0239 (4)
H13A0.37180.22460.53630.029*
H13B0.52290.28730.52320.029*
C140.2765 (2)0.1767 (2)0.31482 (14)0.0191 (4)
H140.17250.28440.29570.023*
C150.2119 (2)0.1175 (2)0.43764 (15)0.0226 (4)
H15A0.30980.04030.47720.027*
H15B0.11470.21380.49050.027*
C160.1464 (2)0.0212 (2)0.37677 (17)0.0287 (4)
H16A0.01930.08990.37200.034*
H16B0.17280.09560.40810.034*
C170.2798 (2)0.0194 (2)0.26333 (16)0.0265 (4)
H17A0.23100.04590.19210.032*
H17B0.39780.08660.25160.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0165 (6)0.0222 (6)0.0162 (6)0.0054 (5)0.0031 (4)0.0002 (4)
O20.0232 (6)0.0342 (7)0.0251 (7)0.0029 (6)0.0071 (5)0.0107 (5)
O30.0370 (8)0.0336 (8)0.0387 (8)0.0035 (6)0.0230 (7)0.0080 (6)
O40.0246 (6)0.0240 (6)0.0284 (7)0.0056 (5)0.0107 (5)0.0005 (5)
C10.0163 (7)0.0259 (8)0.0159 (7)0.0060 (7)0.0020 (6)0.0022 (6)
C20.0184 (8)0.0370 (10)0.0238 (9)0.0107 (7)0.0041 (7)0.0004 (7)
C30.0235 (9)0.0391 (10)0.0304 (10)0.0190 (8)0.0034 (7)0.0010 (8)
C40.0253 (9)0.0303 (9)0.0228 (8)0.0167 (7)0.0018 (7)0.0048 (7)
C50.0197 (8)0.0238 (8)0.0158 (7)0.0100 (7)0.0035 (6)0.0010 (6)
C60.0183 (7)0.0251 (8)0.0161 (8)0.0065 (7)0.0033 (6)0.0004 (6)
C70.0228 (8)0.0253 (8)0.0174 (8)0.0101 (7)0.0039 (6)0.0019 (6)
C80.0211 (8)0.0254 (9)0.0212 (8)0.0039 (7)0.0057 (7)0.0022 (7)
C90.0143 (7)0.0198 (8)0.0176 (7)0.0063 (6)0.0040 (6)0.0011 (6)
C100.0193 (8)0.0216 (8)0.0195 (8)0.0104 (7)0.0032 (6)0.0010 (6)
C110.0254 (9)0.0221 (8)0.0251 (9)0.0097 (7)0.0047 (7)0.0041 (7)
C120.0297 (9)0.0291 (9)0.0237 (9)0.0141 (8)0.0029 (7)0.0067 (7)
C130.0260 (8)0.0271 (9)0.0202 (8)0.0133 (7)0.0058 (7)0.0014 (6)
C140.0165 (7)0.0206 (8)0.0199 (8)0.0088 (6)0.0030 (6)0.0010 (6)
C150.0222 (8)0.0255 (8)0.0213 (8)0.0137 (7)0.0020 (6)0.0004 (6)
C160.0280 (9)0.0319 (9)0.0313 (10)0.0195 (8)0.0028 (7)0.0018 (7)
C170.0262 (9)0.0302 (9)0.0280 (9)0.0175 (7)0.0024 (7)0.0063 (7)
Geometric parameters (Å, º) top
O1—C11.452 (2)C8—H8B0.9900
O1—C91.4559 (18)C9—C101.538 (2)
O2—C81.437 (2)C9—C141.540 (2)
O2—H20.8400C10—C131.548 (2)
O3—C71.209 (2)C10—C111.551 (2)
O4—C71.318 (2)C10—H101.0000
O4—H40.8400C11—C121.542 (3)
C1—C81.517 (2)C11—H11A0.9900
C1—C61.525 (2)C11—H11B0.9900
C1—C21.527 (2)C12—C131.545 (2)
C2—C31.530 (3)C12—H12A0.9900
C2—H2A0.9900C12—H12B0.9900
C2—H2B0.9900C13—H13A0.9900
C3—C41.537 (2)C13—H13B0.9900
C3—H3A0.9900C14—C171.553 (2)
C3—H3B0.9900C14—C151.552 (2)
C4—C51.552 (2)C14—H141.0000
C4—H4A0.9900C15—C161.536 (2)
C4—H4B0.9900C15—H15A0.9900
C5—C71.512 (2)C15—H15B0.9900
C5—C61.523 (2)C16—C171.539 (3)
C5—C91.576 (2)C16—H16A0.9900
C6—H6A0.9900C16—H16B0.9900
C6—H6B0.9900C17—H17A0.9900
C8—H8A0.9900C17—H17B0.9900
C1—O1—C9110.78 (12)O1—C9—C5102.20 (12)
C8—O2—H2109.5C10—C9—C5114.21 (13)
C7—O4—H4109.5C14—C9—C5111.94 (12)
O1—C1—C8106.61 (13)C9—C10—C13120.77 (14)
O1—C1—C6104.38 (12)C9—C10—C11121.96 (13)
C8—C1—C6114.91 (14)C13—C10—C1188.25 (12)
O1—C1—C2109.48 (13)C9—C10—H10108.0
C8—C1—C2111.58 (14)C13—C10—H10108.0
C6—C1—C2109.49 (14)C11—C10—H10108.0
C1—C2—C3110.99 (14)C12—C11—C1088.57 (13)
C1—C2—H2A109.4C12—C11—H11A113.9
C3—C2—H2A109.4C10—C11—H11A113.9
C1—C2—H2B109.4C12—C11—H11B113.9
C3—C2—H2B109.4C10—C11—H11B113.9
H2A—C2—H2B108.0H11A—C11—H11B111.1
C2—C3—C4114.51 (15)C11—C12—C1388.66 (13)
C2—C3—H3A108.6C11—C12—H12A113.9
C4—C3—H3A108.6C13—C12—H12A113.9
C2—C3—H3B108.6C11—C12—H12B113.9
C4—C3—H3B108.6C13—C12—H12B113.9
H3A—C3—H3B107.6H12A—C12—H12B111.1
C3—C4—C5113.42 (14)C12—C13—C1088.55 (12)
C3—C4—H4A108.9C12—C13—H13A113.9
C5—C4—H4A108.9C10—C13—H13A113.9
C3—C4—H4B108.9C12—C13—H13B113.9
C5—C4—H4B108.9C10—C13—H13B113.9
H4A—C4—H4B107.7H13A—C13—H13B111.1
C7—C5—C6112.72 (14)C9—C14—C17123.64 (13)
C7—C5—C4110.09 (14)C9—C14—C15120.77 (13)
C6—C5—C4106.73 (13)C17—C14—C1587.09 (13)
C7—C5—C9111.74 (13)C9—C14—H14107.8
C6—C5—C9101.15 (12)C17—C14—H14107.8
C4—C5—C9114.07 (13)C15—C14—H14107.8
C5—C6—C199.49 (13)C16—C15—C1487.98 (13)
C5—C6—H6A111.9C16—C15—H15A114.0
C1—C6—H6A111.9C14—C15—H15A114.0
C5—C6—H6B111.9C16—C15—H15B114.0
C1—C6—H6B111.9C14—C15—H15B114.0
H6A—C6—H6B109.6H15A—C15—H15B111.2
O3—C7—O4123.40 (15)C15—C16—C1788.18 (13)
O3—C7—C5123.5 (2)C15—C16—H16A114.0
O4—C7—C5113.1 (1)C17—C16—H16A114.0
O2—C8—C1111.04 (15)C15—C16—H16B114.0
O2—C8—H8A109.4C17—C16—H16B114.0
C1—C8—H8A109.4H16A—C16—H16B111.2
O2—C8—H8B109.4C16—C17—C1487.86 (13)
C1—C8—H8B109.4C16—C17—H17A114.0
H8A—C8—H8B108.0C14—C17—H17A114.0
O1—C9—C10107.66 (12)C16—C17—H17B114.0
O1—C9—C14109.81 (12)C14—C17—H17B114.0
C10—C9—C14110.57 (13)H17A—C17—H17B111.2
C9—O1—C1—C8140.50 (13)C4—C5—C9—O178.74 (15)
C9—O1—C1—C618.48 (16)C7—C5—C9—C1088.47 (16)
C9—O1—C1—C298.66 (14)C6—C5—C9—C10151.37 (13)
O1—C1—C2—C355.16 (18)C4—C5—C9—C1037.20 (18)
C8—C1—C2—C3172.94 (14)C7—C5—C9—C1438.14 (18)
C6—C1—C2—C358.71 (18)C6—C5—C9—C1482.02 (15)
C1—C2—C3—C436.8 (2)C4—C5—C9—C14163.82 (13)
C2—C3—C4—C537.1 (2)C14—C9—C10—C1372.33 (17)
C3—C4—C5—C7179.77 (15)C5—C9—C10—C13160.35 (14)
C3—C4—C5—C657.12 (18)O1—C9—C10—C11156.9 (1)
C3—C4—C5—C953.70 (19)O1—C9—C10—C1347.6 (2)
C7—C5—C6—C1165.16 (13)C14—C9—C10—C1136.9 (2)
C4—C5—C6—C173.85 (15)C5—C9—C10—C1190.41 (18)
C9—C5—C6—C145.70 (15)C9—C10—C11—C12144.09 (15)
O1—C1—C6—C540.14 (15)C13—C10—C11—C1218.3 (1)
C8—C1—C6—C5156.54 (14)C10—C11—C12—C1318.4 (1)
C2—C1—C6—C576.98 (15)C11—C12—C13—C1018.4 (1)
C6—C5—C7—O30.0 (2)C11—C10—C13—C1218.3 (1)
C4—C5—C7—O3119.07 (19)C9—C10—C13—C12145.03 (15)
C9—C5—C7—O3113.10 (19)C10—C9—C14—C17167.78 (15)
C6—C5—C7—O4179.78 (14)C5—C9—C14—C1763.66 (19)
C4—C5—C7—O460.73 (18)C10—C9—C14—C1558.81 (18)
C9—C5—C7—O467.10 (18)C5—C9—C14—C15172.63 (13)
O1—C1—C8—O2179.8 (1)C9—C14—C15—C16150.16 (15)
C6—C1—C8—O265.11 (18)O1—C9—C14—C1559.9 (2)
C2—C1—C8—O260.28 (18)O1—C9—C14—C1749.1 (2)
C1—O1—C9—C10131.20 (13)C17—C14—C15—C1622.2 (1)
C1—O1—C9—C14108.37 (14)C14—C15—C16—C1722.4 (1)
C1—O1—C9—C510.59 (15)C15—C16—C17—C1422.4 (1)
C7—C5—C9—O1155.58 (13)C15—C14—C17—C1622.2 (1)
C6—C5—C9—O135.42 (14)C9—C14—C17—C16147.70 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.841.962.718 (2)149
O4—H4···O2ii0.841.782.585 (2)159
Symmetry codes: (i) x+1, y, z; (ii) x1, y+1, z.
(II) 1-(hydroxymethyl)-7-oxaspiro[bicyclo[3.2.1]octane-6,1'-cyclopentane]-5- carboxylic acid top
Crystal data top
C13H20O4F(000) = 520
Mr = 240.29Dx = 1.325 Mg m3
Monoclinic, P21/cMelting point = 426–427 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.850 (3) ÅCell parameters from 2589 reflections
b = 7.050 (2) Åθ = 1.9–27.0°
c = 15.790 (5) ŵ = 0.10 mm1
β = 94.207 (10)°T = 170 K
V = 1204.6 (6) Å3Sphere, colourless
Z = 40.50 × 0.50 × 0.45 × 0.48 (radius) mm
Data collection top
Nonius KappaCCD
diffractometer
2377 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Horizontally mounted graphite crystal monochromatorθmax = 27.0°, θmin = 1.9°
Detector resolution: 9 pixels mm-1h = 013
ϕ and ω scansk = 08
2589 measured reflectionsl = 2020
2589 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.154 w = 1/[σ2(Fo2) + (0.111P)2 + 0.2862P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2589 reflectionsΔρmax = 0.40 e Å3
169 parametersΔρmin = 0.31 e Å3
4 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.20 (2)
Crystal data top
C13H20O4V = 1204.6 (6) Å3
Mr = 240.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.850 (3) ŵ = 0.10 mm1
b = 7.050 (2) ÅT = 170 K
c = 15.790 (5) Å0.50 × 0.50 × 0.45 × 0.48 (radius) mm
β = 94.207 (10)°
Data collection top
Nonius KappaCCD
diffractometer
2377 reflections with I > 2σ(I)
2589 measured reflectionsRint = 0.000
2589 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0494 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.05Δρmax = 0.40 e Å3
2589 reflectionsΔρmin = 0.31 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.13635 (8)0.30263 (13)0.21188 (5)0.0167 (3)
O20.03979 (10)0.60592 (14)0.15469 (7)0.0257 (3)
H20.07460.65340.19550.031*
O40.34127 (10)0.53952 (16)0.00803 (7)0.0319 (3)
H40.40680.57500.01240.038*0.59 (3)
O30.46810 (10)0.31811 (17)0.06462 (8)0.0354 (3)
H30.51680.37220.03340.042*0.41 (3)
C10.05326 (11)0.29888 (17)0.13460 (8)0.0153 (3)
C20.02615 (12)0.09101 (18)0.11289 (8)0.0202 (3)
H2A0.02160.08290.05710.024*
H2B0.02450.03500.15620.024*
C30.14693 (13)0.02116 (19)0.10985 (9)0.0221 (3)
H3A0.12940.14040.07810.027*
H3B0.17700.05570.16850.027*
C40.25003 (12)0.08583 (19)0.06831 (9)0.0210 (3)
H4A0.23630.07490.00580.025*
H4B0.33040.02570.08560.025*
C50.25576 (11)0.29843 (18)0.09305 (8)0.0164 (3)
C60.12997 (11)0.38679 (17)0.06746 (8)0.0159 (3)
H6A0.13230.52690.07170.019*
H6B0.09910.34920.00930.019*
C70.36254 (12)0.39101 (19)0.05278 (8)0.0191 (3)
C80.06329 (12)0.40772 (18)0.15102 (8)0.0190 (3)
H8A0.12800.38090.10510.023*
H8B0.09410.36520.20540.023*
C90.26348 (11)0.33108 (18)0.19093 (8)0.0166 (3)
C100.34971 (13)0.2026 (2)0.24727 (9)0.0240 (4)
H10A0.41900.15690.21520.029*0.58 (2)
H10B0.30390.09150.26690.029*0.58 (2)
H10C0.31350.07460.25240.029*0.42 (2)
H10D0.43140.19060.22360.029*0.42 (2)
C11A0.3987 (8)0.3238 (7)0.3234 (4)0.0363 (14)0.58 (2)
H11A0.38570.25830.37740.044*0.58 (2)
H11B0.48810.34910.32080.044*0.58 (2)
C11B0.3616 (11)0.3029 (7)0.3336 (3)0.039 (2)0.42 (2)
H11C0.30620.24370.37310.046*0.42 (2)
H11D0.44770.29520.35900.046*0.42 (2)
C120.32478 (14)0.5097 (2)0.31658 (10)0.0301 (4)
H12A0.24630.49890.34440.036*0.58 (2)
H12B0.37340.61720.34180.036*0.58 (2)
H12C0.24900.54100.34500.036*0.42 (2)
H12D0.39180.59580.33850.036*0.42 (2)
C130.30171 (13)0.5316 (2)0.22038 (9)0.0233 (3)
H13A0.37760.57290.19440.028*
H13B0.23490.62420.20590.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0141 (5)0.0224 (5)0.0139 (5)0.0020 (3)0.0023 (3)0.0016 (3)
O20.0316 (6)0.0197 (5)0.0276 (6)0.0021 (4)0.0138 (4)0.0031 (4)
O40.0238 (6)0.0341 (6)0.0387 (7)0.0003 (4)0.0094 (5)0.0193 (5)
O30.0179 (5)0.0423 (7)0.0474 (7)0.0055 (4)0.0126 (5)0.0194 (5)
C10.0154 (6)0.0179 (6)0.0128 (6)0.0009 (4)0.0013 (4)0.0003 (4)
C20.0210 (7)0.0185 (7)0.0214 (7)0.0031 (5)0.0037 (5)0.0020 (5)
C30.0250 (7)0.0159 (6)0.0261 (7)0.0001 (5)0.0059 (5)0.0006 (5)
C40.0225 (7)0.0191 (7)0.0220 (7)0.0038 (5)0.0069 (5)0.0002 (5)
C50.0148 (6)0.0188 (6)0.0160 (6)0.0014 (4)0.0037 (5)0.0030 (4)
C60.0159 (6)0.0175 (6)0.0147 (6)0.0012 (4)0.0038 (5)0.0022 (4)
C70.0174 (6)0.0227 (7)0.0176 (6)0.0013 (5)0.0046 (5)0.0033 (5)
C80.0172 (6)0.0203 (7)0.0198 (6)0.0002 (5)0.0043 (5)0.0005 (5)
C90.0142 (6)0.0198 (7)0.0160 (6)0.0011 (4)0.0037 (5)0.0022 (4)
C100.0192 (7)0.0312 (8)0.0214 (7)0.0042 (5)0.0001 (5)0.0053 (5)
C11A0.040 (3)0.041 (2)0.0254 (19)0.0053 (17)0.0117 (19)0.0020 (15)
C11B0.032 (4)0.062 (4)0.021 (2)0.003 (2)0.005 (2)0.002 (2)
C120.0248 (8)0.0409 (9)0.0243 (8)0.0052 (6)0.0003 (6)0.0076 (6)
C130.0216 (7)0.0244 (7)0.0238 (7)0.0058 (5)0.0012 (5)0.0017 (5)
Geometric parameters (Å, º) top
O1—C91.4558 (14)C6—H6B0.9900
O1—C11.4632 (14)C8—H8A0.9900
O2—C81.4208 (17)C8—H8B0.9900
O2—H20.8400C9—C131.5355 (19)
O4—H40.8400C9—C101.5377 (18)
O3—C71.257 (2)C10—C11B1.533 (4)
O4—C71.275 (2)C10—C11A1.537 (4)
O3—H30.8400C10—H10A0.9900
C1—C81.5176 (17)C10—H10B0.9900
C1—C61.5265 (17)C10—H10C0.9900
C1—C21.5287 (18)C10—H10D0.9900
C2—C31.5344 (19)C11A—C121.536 (4)
C2—H2A0.9900C11A—H11A0.9900
C2—H2B0.9900C11A—H11B0.9900
C3—C41.5356 (19)C11B—C121.530 (5)
C3—H3A0.9900C11B—H11C0.9900
C3—H3B0.9900C11B—H11D0.9900
C4—C51.5491 (19)C12—C131.529 (2)
C4—H4A0.9900C12—H12A0.9900
C4—H4B0.9900C12—H12B0.9900
C5—C71.5102 (17)C12—H12C0.9900
C5—C61.5275 (17)C12—H12D0.9900
C5—C91.5588 (17)C13—H13A0.9900
C6—H6A0.9900C13—H13B0.9900
C9—O1—C1110.43 (9)C13—C9—C5115.46 (10)
C8—O2—H2109.5C10—C9—C5118.22 (11)
C7—O4—H4109.5C11B—C10—C9104.5 (3)
C7—O3—H3109.5C9—C10—C11A106.60 (17)
O1—C1—C8108.57 (10)C11B—C10—H10A126.0
O1—C1—C6103.76 (10)C9—C10—H10A110.4
C8—C1—C6114.64 (10)C11A—C10—H10A110.4
O1—C1—C2107.52 (10)C9—C10—H10B110.4
C8—C1—C2111.96 (10)C11A—C10—H10B110.4
C6—C1—C2109.83 (10)H10A—C10—H10B108.6
C1—C2—C3110.51 (10)C11B—C10—H10C110.8
C1—C2—H2A109.5C9—C10—H10C110.8
C3—C2—H2A109.5H10A—C10—H10C93.7
C1—C2—H2B109.5C11B—C10—H10D110.8
C3—C2—H2B109.5C9—C10—H10D110.8
H2A—C2—H2B108.1H10B—C10—H10D122.3
C2—C3—C4114.26 (11)H10C—C10—H10D108.9
C2—C3—H3A108.7C12—C11A—C10105.7 (2)
C4—C3—H3A108.7C12—C11A—H11A110.6
C2—C3—H3B108.7C10—C11A—H11A110.6
C4—C3—H3B108.7C12—C11A—H11B110.6
H3A—C3—H3B107.6C10—C11A—H11B110.6
C3—C4—C5112.61 (10)H11A—C11A—H11B108.7
C3—C4—H4A109.1C12—C11B—C10106.2 (3)
C5—C4—H4A109.1C12—C11B—H11C110.5
C3—C4—H4B109.1C10—C11B—H11C110.5
C5—C4—H4B109.1C12—C11B—H11D110.5
H4A—C4—H4B107.8C10—C11B—H11D110.5
C7—C5—C6114.24 (10)H11C—C11B—H11D108.7
C7—C5—C4109.25 (10)C13—C12—C11B107.0 (2)
C6—C5—C4108.02 (10)C13—C12—C11A101.6 (3)
C7—C5—C9111.51 (10)C13—C12—H12A111.4
C6—C5—C9100.61 (9)C11B—C12—H12A94.1
C4—C5—C9113.03 (10)C11A—C12—H12A111.4
C1—C6—C599.95 (10)C13—C12—H12B111.4
C1—C6—H6A111.8C11B—C12—H12B122.3
C5—C6—H6A111.8C11A—C12—H12B111.4
C1—C6—H6B111.8H12A—C12—H12B109.3
C5—C6—H6B111.8C13—C12—H12C110.3
H6A—C6—H6B109.5C11B—C12—H12C110.3
O3—C7—O4122.98 (12)C11A—C12—H12C127.2
O3—C7—C5118.7 (1)H12B—C12—H12C94.7
O4—C7—C5118.4 (1)C13—C12—H12D110.3
O2—C8—C1110.79 (10)C11B—C12—H12D110.3
O2—C8—H8A109.5C11A—C12—H12D97.6
C1—C8—H8A109.5H12A—C12—H12D121.7
O2—C8—H8B109.5H12C—C12—H12D108.6
C1—C8—H8B109.5C12—C13—C9103.23 (11)
H8A—C8—H8B108.1C12—C13—H13A111.1
O1—C9—C13107.30 (10)C9—C13—H13A111.1
O1—C9—C10109.51 (10)C12—C13—H13B111.1
C13—C9—C10103.15 (11)C9—C13—H13B111.1
O1—C9—C5102.83 (9)H13A—C13—H13B109.1
C9—O1—C1—C8139.28 (10)C7—C5—C9—O1158.29 (10)
C9—O1—C1—C616.93 (12)C6—C5—C9—O136.77 (11)
C9—O1—C1—C299.40 (11)C4—C5—C9—O178.17 (12)
O1—C1—C2—C352.37 (13)C7—C5—C9—C1341.78 (14)
C8—C1—C2—C3171.54 (10)C6—C5—C9—C1379.74 (12)
C6—C1—C2—C359.91 (13)C4—C5—C9—C13165.33 (11)
C1—C2—C3—C440.09 (15)C7—C5—C9—C1081.00 (14)
C2—C3—C4—C539.86 (16)C6—C5—C9—C10157.49 (11)
C3—C4—C5—C7177.59 (11)C4—C5—C9—C1042.55 (15)
C3—C4—C5—C657.59 (14)O1—C9—C10—C11A95.2 (4)
C3—C4—C5—C952.81 (15)O1—C9—C10—C11B77.2 (5)
O1—C1—C6—C539.50 (11)C13—C9—C10—C11A18.8 (5)
C8—C1—C6—C5157.73 (10)C9—C10—C11A—C128.4 (7)
C2—C1—C6—C575.20 (12)C10—C11A—C12—C1332.3 (6)
C7—C5—C6—C1165.93 (11)C11A—C12—C13—C944.3 (4)
C4—C5—C6—C172.29 (12)C10—C9—C13—C1239.2 (1)
C9—C5—C6—C146.36 (11)C13—C9—C10—C11B36.9 (5)
C6—C5—C7—O3174.24 (12)C9—C10—C11B—C1220.1 (8)
C4—C5—C7—O353.13 (17)C10—C11B—C12—C134.3 (8)
C9—C5—C7—O372.53 (16)C11B—C12—C13—C927.0 (5)
C6—C5—C7—O45.56 (18)C5—C9—C10—C11B165.6 (5)
C4—C5—C7—O4126.66 (13)C5—C9—C10—C11A147.5 (4)
C9—C5—C7—O4107.67 (14)C11B—C10—C11A—C1277.3 (9)
O1—C1—C8—O272.76 (12)C11A—C10—C11B—C1279.0 (9)
C6—C1—C8—O242.72 (14)C10—C11B—C12—C11A78.8 (9)
C2—C1—C8—O2168.69 (10)C10—C11A—C12—C11B77.5 (9)
C1—O1—C9—C13109.70 (11)O1—C9—C13—C1276.38 (12)
C1—O1—C9—C10139.01 (10)C5—C9—C13—C12169.68 (11)
C1—O1—C9—C512.49 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.841.962.790 (1)170
O3—H3···O4ii0.841.832.636 (2)162
O4—H4···O3ii0.841.802.636 (2)171
C12—H12D···O3iii0.992.603.561 (2)163
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y+1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC17H26O4C13H20O4
Mr294.38240.29
Crystal system, space groupTriclinic, P1Monoclinic, P21/c
Temperature (K)170170
a, b, c (Å)8.757 (3), 8.807 (3), 11.769 (6)10.850 (3), 7.050 (2), 15.790 (5)
α, β, γ (°)84.073 (11), 75.766 (13), 61.044 (9)90, 94.207 (10), 90
V3)769.7 (5)1204.6 (6)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.090.10
Crystal size (mm)0.45 × 0.10 × 0.100.50 × 0.50 × 0.45 × 0.48 (radius)
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3531, 3531, 3087 2589, 2589, 2377
Rint0.0000.000
(sin θ/λ)max1)0.6500.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.176, 1.03 0.049, 0.154, 1.05
No. of reflections35312589
No. of parameters191169
No. of restraints04
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.460.40, 0.31

Computer programs: KappaCCD Server Software (Nonius, 2000), HKL DENZO and SCALEPACK (Otwinowski & Minor 1997), HKL DENZO and SCALEPACK, SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), Xtal3.6 (Hall et al., 1999) and PLATON (Spek, 2003), SHELXL97, WinGX (Farrugia, 1999) and PLATON.

Selected geometric parameters (Å, º) for (I) top
O3—C71.209 (2)O4—C71.318 (2)
O3—C7—C5123.5 (2)O4—C7—C5113.1 (1)
O1—C1—C8—O2179.8 (1)O1—C9—C14—C1559.9 (2)
O1—C9—C10—C11156.9 (1)O1—C9—C14—C1749.1 (2)
O1—C9—C10—C1347.6 (2)C17—C14—C15—C1622.2 (1)
C13—C10—C11—C1218.3 (1)C14—C15—C16—C1722.4 (1)
C10—C11—C12—C1318.4 (1)C15—C16—C17—C1422.4 (1)
C11—C12—C13—C1018.4 (1)C15—C14—C17—C1622.2 (1)
C11—C10—C13—C1218.3 (1)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O3i0.841.962.718 (2)149
O4—H4···O2ii0.841.782.585 (2)159
Symmetry codes: (i) x+1, y, z; (ii) x1, y+1, z.
Selected geometric parameters (Å, º) for (II) top
O3—C71.257 (2)O4—C71.275 (2)
O3—C7—C5118.7 (1)O4—C7—C5118.4 (1)
O1—C1—C8—O272.76 (12)C11A—C12—C13—C944.3 (4)
O1—C9—C10—C11A95.2 (4)C10—C9—C13—C1239.2 (1)
O1—C9—C10—C11B77.2 (5)C13—C9—C10—C11B36.9 (5)
C13—C9—C10—C11A18.8 (5)C9—C10—C11B—C1220.1 (8)
C9—C10—C11A—C128.4 (7)C10—C11B—C12—C134.3 (8)
C10—C11A—C12—C1332.3 (6)C11B—C12—C13—C927.0 (5)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O1i0.841.962.790 (1)170
O3—H3···O4ii0.841.832.636 (2)162
O4—H4···O3ii0.841.802.636 (2)171
C12—H12D···O3iii0.992.603.561 (2)163
Symmetry codes: (i) x, y+1/2, z+1/2; (ii) x+1, y+1, z; (iii) x+1, y+1/2, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds