Buy article online - an online subscription or single-article purchase is required to access this article.
Pentachloropyridine
N-oxide, C
5Cl
5NO, crystallizes in the monoclinic space group
P2
1/
c. In the crystal structure, molecules are linked by C—Cl
Cl halogen bonds into infinite ribbons extending along the crystallographic [100] direction. These molecular aggregates are further stabilized by very short intermolecular
N-oxide–
N-oxide interactions into herringbone motifs. Computations based on quantum chemistry methods allowed for a more detailed description of the
N-oxide–
N-oxide interactions and Cl
Cl halogen bonds. For this purpose, Hirshfeld surface analysis and the many-body approach to interaction energy were applied.
Supporting information
CCDC reference: 1811541
Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: Structure solution software; please supply; program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and
Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010), PLATON (Spek, 2009) and
WinGX (Farrugia, 2012).
Pentachloropyridine
N-oxide
top
Crystal data top
C5Cl5NO | F(000) = 520 |
Mr = 267.31 | Dx = 2.116 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54184 Å |
a = 8.5852 (2) Å | Cell parameters from 3739 reflections |
b = 17.0639 (4) Å | θ = 5.4–76.2° |
c = 5.9883 (2) Å | µ = 15.31 mm−1 |
β = 106.936 (3)° | T = 100 K |
V = 839.22 (4) Å3 | Plate, colourless |
Z = 4 | 0.34 × 0.08 × 0.02 mm |
Data collection top
Agilent SuperNova DualSource diffractometer | 1391 reflections with I > 2σ(I) |
Detector resolution: 10.4052 pixels mm-1 | Rint = 0.046 |
CrysAlisPro 1.171.39.15e (Rigaku Oxford Diffraction, 2015)
Empirical absorption correction using spherical harmonics,
implemented in SCALE3 ABSPACK scaling algorithm. scans | θmax = 68.5°, θmin = 5.2° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) | h = −10→10 |
Tmin = 0.100, Tmax = 1.000 | k = −17→20 |
8310 measured reflections | l = −7→7 |
1548 independent reflections | |
Refinement top
Refinement on F2 | 109 parameters |
Least-squares matrix: full | 0 restraints |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.0591P)2 + 0.0274P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.085 | (Δ/σ)max = 0.001 |
S = 1.04 | Δρmax = 0.40 e Å−3 |
1548 reflections | Δρmin = −0.44 e Å−3 |
Special details top
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cl4 | 0.66813 (6) | 0.46937 (3) | 0.91688 (9) | 0.01612 (17) | |
Cl3 | 0.32783 (7) | 0.41016 (3) | 0.60185 (10) | 0.01635 (17) | |
Cl2 | 0.31457 (7) | 0.31363 (3) | 0.14987 (10) | 0.01768 (17) | |
Cl6 | 0.94101 (7) | 0.32091 (4) | 0.32595 (11) | 0.02151 (18) | |
Cl5 | 0.98100 (7) | 0.42141 (4) | 0.78199 (10) | 0.02224 (18) | |
O1 | 0.6181 (2) | 0.29071 (10) | 0.0775 (3) | 0.0196 (4) | |
N1 | 0.6295 (2) | 0.32790 (11) | 0.2679 (3) | 0.0137 (4) | |
C3 | 0.5028 (3) | 0.38880 (13) | 0.5324 (4) | 0.0136 (5) | |
C5 | 0.7925 (3) | 0.39268 (13) | 0.6128 (4) | 0.0150 (5) | |
C4 | 0.6539 (3) | 0.41299 (13) | 0.6757 (4) | 0.0131 (5) | |
C2 | 0.4926 (3) | 0.34654 (13) | 0.3314 (4) | 0.0140 (5) | |
C6 | 0.7787 (3) | 0.34953 (14) | 0.4118 (4) | 0.0150 (5) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cl4 | 0.0184 (3) | 0.0165 (3) | 0.0140 (3) | −0.00124 (19) | 0.0056 (2) | −0.00348 (18) |
Cl3 | 0.0132 (3) | 0.0187 (3) | 0.0188 (3) | 0.00076 (18) | 0.0071 (2) | −0.0008 (2) |
Cl2 | 0.0155 (3) | 0.0199 (3) | 0.0157 (3) | −0.00312 (19) | 0.0015 (2) | −0.00179 (19) |
Cl6 | 0.0166 (3) | 0.0280 (3) | 0.0228 (3) | 0.0019 (2) | 0.0104 (2) | −0.0042 (2) |
Cl5 | 0.0128 (3) | 0.0333 (4) | 0.0197 (3) | −0.0038 (2) | 0.0033 (2) | −0.0063 (2) |
O1 | 0.0275 (9) | 0.0177 (8) | 0.0148 (9) | −0.0022 (7) | 0.0079 (7) | −0.0061 (6) |
N1 | 0.0168 (10) | 0.0120 (9) | 0.0128 (9) | −0.0011 (7) | 0.0051 (8) | −0.0008 (7) |
C3 | 0.0141 (11) | 0.0126 (11) | 0.0150 (11) | 0.0024 (8) | 0.0054 (8) | 0.0024 (8) |
C5 | 0.0152 (11) | 0.0141 (11) | 0.0146 (11) | −0.0019 (9) | 0.0028 (9) | 0.0003 (8) |
C4 | 0.0154 (11) | 0.0112 (11) | 0.0128 (11) | 0.0015 (8) | 0.0042 (9) | 0.0005 (8) |
C2 | 0.0161 (11) | 0.0105 (10) | 0.0148 (11) | 0.0003 (8) | 0.0036 (9) | 0.0021 (8) |
C6 | 0.0159 (11) | 0.0148 (11) | 0.0166 (11) | 0.0008 (8) | 0.0083 (9) | 0.0021 (9) |
Geometric parameters (Å, º) top
Cl4—C4 | 1.710 (2) | N1—C6 | 1.370 (3) |
Cl3—C3 | 1.711 (2) | N1—C2 | 1.374 (3) |
Cl2—C2 | 1.693 (2) | C3—C2 | 1.384 (3) |
Cl6—C6 | 1.692 (2) | C3—C4 | 1.393 (3) |
Cl5—C5 | 1.712 (2) | C5—C6 | 1.386 (3) |
O1—N1 | 1.284 (3) | C5—C4 | 1.393 (3) |
| | | |
Cl4···Cl5i | 3.555 (1) | O1···N1v | 2.766 (2) |
Cl3···Cl4ii | 3.532 (1) | Cl4···N1vi | 3.281 (1) |
Cl4···Cl4ii | 3.477 (1) | Cl2···Cl5vii | 3.572 (1) |
Cl3···Cl5iii | 3.455 (1) | Cl5···Cl2viii | 3.572 (1) |
Cl3···Cl6iii | 3.589 (1) | Cl2···Cl2v | 3.699 (1) |
Cl6···Cl2iv | 3.658 (1) | Cl2···Cl2ix | 3.699 (1) |
| | | |
O1—N1—C6 | 120.5 (2) | C5—C4—C3 | 118.4 (2) |
O1—N1—C2 | 120.7 (2) | C5—C4—Cl4 | 120.80 (18) |
C6—N1—C2 | 118.8 (2) | C3—C4—Cl4 | 120.79 (18) |
C2—C3—C4 | 120.1 (2) | N1—C2—C3 | 121.2 (2) |
C2—C3—Cl3 | 118.99 (18) | N1—C2—Cl2 | 115.51 (18) |
C4—C3—Cl3 | 120.86 (18) | C3—C2—Cl2 | 123.25 (19) |
C6—C5—C4 | 120.2 (2) | N1—C6—C5 | 121.1 (2) |
C6—C5—Cl5 | 119.55 (19) | N1—C6—Cl6 | 115.69 (18) |
C4—C5—Cl5 | 120.24 (18) | C5—C6—Cl6 | 123.18 (19) |
| | | |
C6—C5—C4—C3 | 0.1 (3) | C4—C3—C2—N1 | −0.4 (3) |
Cl5—C5—C4—C3 | 179.63 (17) | Cl3—C3—C2—N1 | 179.99 (17) |
C6—C5—C4—Cl4 | −177.46 (18) | C4—C3—C2—Cl2 | 178.99 (17) |
Cl5—C5—C4—Cl4 | 2.1 (3) | Cl3—C3—C2—Cl2 | −0.7 (3) |
C2—C3—C4—C5 | −0.8 (3) | O1—N1—C6—C5 | 177.2 (2) |
Cl3—C3—C4—C5 | 178.82 (17) | C2—N1—C6—C5 | −3.0 (3) |
C2—C3—C4—Cl4 | 176.73 (17) | O1—N1—C6—Cl6 | −2.3 (3) |
Cl3—C3—C4—Cl4 | −3.6 (3) | C2—N1—C6—Cl6 | 177.52 (17) |
O1—N1—C2—C3 | −177.9 (2) | C4—C5—C6—N1 | 1.8 (4) |
C6—N1—C2—C3 | 2.3 (3) | Cl5—C5—C6—N1 | −177.69 (17) |
O1—N1—C2—Cl2 | 2.7 (3) | C4—C5—C6—Cl6 | −178.72 (17) |
C6—N1—C2—Cl2 | −177.13 (17) | Cl5—C5—C6—Cl6 | 1.7 (3) |
Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) −x+1, −y+1, −z+2; (iii) x−1, y, z; (iv) x+1, y, z; (v) x, −y−1/2, z−3/2; (vi) x, y, z+1; (vii) x−1, y, z−1; (viii) x+1, y, z+1; (ix) x, −y−1/2, z−1/2. |
Interaction energy estimated for various dimers in
N-oxide–N-oxide-stabilized chain of molecules of (I) topAll values are given in kcal mol-1. Eint* corresponds to interaction
energy without BSSE correction. The other values have been corrected for this
error. |
Molecular pairs within the chain 1-m | Eint1-m* | Eint1-m |
1–2 | -9.06 | -5.91 |
1–3 | -7.13 | -4.77 |
1–4 | -0.64 | -0.36 |
1–5 | -0.19 | -0.12 |
1–6 | -0.12 | -0.06 |
Selected energy parameters estimated for model chain stabilized by
N-oxide–N-oxide interactions topAll values are given in kcal mol-1. n is the number of molecules in
the chain. Eint* corresponds to interaction energy without BSSE
correction. The other values are corrected for this error. Values of
Enonadd were estimated as Enonadd = Eint -
Eint2-body. |
n | Eint* | Eint | Eint2-body | Enonadd | Eint/molecule | Eint/molecule2-body | Enonadd/molecule |
2 | -9.02 | -5.91 | -5.91 | 0 | -2.95 | -2.95 | 0 |
3 | -25.03 | -16.72 | -16.59 | -0.13 | -5.57 | -5.53 | -0.04 |
4 | -41.64 | -27.72 | -27.63 | -0.09 | -6.93 | -6.91 | -0.02 |
5 | -58.40 | -38.88 | -38.79 | -0.09 | -7.78 | -7.76 | -0.02 |
6 | -75.39 | -50.24 | -50.01 | -0.23 | -8.37 | -8.33 | -0.04 |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.