Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The local environment of titanium in nanocrystalline sol-gel synthesized titania, cobaltiferous titania and silica–titania core–shell photocatalysts was investigated using X-ray absorption spectroscopy (XAS). Anatase reconstructively transforms to rutile via a persistent amorphous phase that is retained, in part, up to 1273 K. In nanotitania, temperature-dependent trends in Ti order correlation observed by XAS parallel the development of amorphous content extracted from powder X-ray diffraction patterns, such that amorphicity shows a transient maximum at ∼873 K with the onset of rutile crystallization. Cobaltiferous and core–shell materials behaved similarly, but with anatase retained to 973 and 1273 K, respectively. In the former, cobalt redox reactions may stabilize anatase to higher temperatures by ready charge-balancing during the loss of hydroxyl and the formation of oxygen vacancies. In the core–shell architecture, higher Ti coordination and interatomic distance variance in the first- and second-nearest-neighbour shells are maintained to 1273 K by interaction of a substantially aperiodic TiO6 network with the glassy silica substrate, which inhibits crystallization of rutile from the amorphous intermediate. Comparisons are also drawn with the commercial P25 catalyst. The overall transformation mechanism can be summarized as gel → non-stoichiometric anatase → amorphous titania → rutile. Smaller anatase crystals and a higher average Ti—Ti coordination environment in the core–shell structure may enhance photocatalytic activity directly, by creating larger specific surface areas and hosting reactive defects, or indirectly, by inhibiting exciton annihilation in aperiodic titania and delaying the crystallization of less photoactive rutile.

Subscribe to Journal of Applied Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds