Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
D-Mannosamine hydro­chloride (2-amino-2-de­oxy-D-mannose hydro­chloride), C6H14NO5+·Cl, (I), crystallized from a methanol/ethyl acetate/n-hexane solvent mixture at room tem­per­ature in a 4C1 chair conformation that is slightly distorted towards the C3,O5B form. A com­parison of the structural parameters of (I) with the corresponding parameters in α-D-glucosa­mine hydro­chloride, (II), and β-D-galactosamine hydro­chloride, (III)/(III′), was undertaken to evaluate the effects of ionic hydrogen bonding on structural properties. Three types of ionic hydrogen bonds are present in the crystals of (I)–(III)/(III′), i.e. N+—H...O, N+—H...Cl, and O—H...Cl. The exocyclic structural parameters in (I), (II), and (III)/(III′) appear to be most influenced by this bonding, especially the exocyclic hy­droxy groups, which adopt eclipsed conformations enabled by ionic hydrogen bonding to the chloride anion. Anomeric disorder was observed in crystals of (I), with an α:β ratio of 37:63. However, anomeric configuration appears to exert minimal structural effects; that is, bond lengths, bond angles, and torsion angles are essentially identical in both anomers. The observed disorder at the anomeric C atom of (I) appears to be caused by the presence of the chloride anion and atom O3 or O4 in proximal voids, which provide opportunities for hydrogen bonding to atom O1 in both axial and equatorial orientations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229622002121/wp3025sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229622002121/wp3025Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229622002121/wp3025sup3.pdf
Table S1: Rigid-bond vibration analysis data

CCDC reference: 2154074

Computing details top

Data collection: APEX3 (Bruker, 2018); cell refinement: SAINT (Bruker, 2018); data reduction: SAINT (Bruker, 2018); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b); molecular graphics: Mercury (Macrae et al., 2020); software used to prepare material for publication: SHELXL2018 (Sheldrick, 2015b).

2-Amino-2-deoxy-D-mannose hydrochloride top
Crystal data top
C6H14NO5+·ClDx = 1.540 Mg m3
Mr = 215.63Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 9972 reflections
a = 8.3512 (4) Åθ = 5.9–70.4°
b = 10.0750 (5) ŵ = 3.65 mm1
c = 11.0555 (6) ÅT = 120 K
V = 930.19 (8) Å3Block, colorless
Z = 40.28 × 0.20 × 0.18 mm
F(000) = 456
Data collection top
Bruker PHOTON II
diffractometer
1773 independent reflections
Radiation source: Ius micro-focus1770 reflections with I > 2σ(I)
Detector resolution: 7.41 pixels mm-1Rint = 0.068
ω and φ–scansθmax = 70.5°, θmin = 5.9°
Absorption correction: numerical
(SADABS; Krause et al., 2015)
h = 1010
Tmin = 0.462, Tmax = 0.589k = 1212
19393 measured reflectionsl = 1313
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.037H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.089 w = 1/[σ2(Fo2) + 1.3591P]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max < 0.001
1773 reflectionsΔρmax = 0.22 e Å3
160 parametersΔρmin = 0.25 e Å3
0 restraintsAbsolute structure: Flack x determined using 708 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: dualAbsolute structure parameter: 0.060 (10)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.62782 (14)0.46942 (10)0.83365 (9)0.0272 (3)
O10.4210 (7)0.4273 (5)0.1434 (4)0.0275 (16)0.628 (11)
H1O0.418 (19)0.515 (17)0.114 (14)0.12 (6)*0.628 (11)
O1A0.2130 (11)0.3879 (10)0.2779 (9)0.036 (3)0.372 (11)
H1OA0.16 (2)0.452 (16)0.241 (14)0.05 (4)*0.372 (11)
O30.5395 (4)0.1644 (3)0.4828 (3)0.0235 (7)
H3O0.494 (9)0.122 (7)0.531 (7)0.06 (2)*
O40.3977 (4)0.3747 (3)0.6342 (3)0.0227 (7)
H4O0.460 (7)0.391 (6)0.686 (5)0.034 (16)*
O50.4320 (3)0.5213 (3)0.3310 (2)0.0192 (6)
O60.3460 (4)0.7488 (3)0.4689 (3)0.0272 (7)
H6O0.360 (8)0.810 (6)0.514 (5)0.034 (14)*
N20.6321 (5)0.2938 (3)0.2770 (3)0.0162 (7)
H2NC0.690 (6)0.232 (5)0.316 (5)0.032 (14)*
H2NB0.631 (5)0.285 (4)0.201 (4)0.006 (9)*
H2NA0.673 (6)0.383 (6)0.295 (4)0.030 (14)*
C10.3767 (6)0.4101 (4)0.2640 (4)0.0224 (8)
H10.2578200.4012090.2712050.027*0.628 (11)
H1A0.4013750.4236260.1763120.027*0.372 (11)
C20.4593 (5)0.2851 (4)0.3081 (3)0.0172 (8)
H20.4117140.2068770.2656130.021*
C30.4359 (5)0.2680 (4)0.4440 (3)0.0167 (8)
H30.3230170.2389370.4584210.020*
C40.4651 (5)0.3944 (4)0.5169 (3)0.0157 (8)
H40.5829360.4098740.5245920.019*
C50.3873 (5)0.5150 (4)0.4575 (3)0.0167 (8)
H50.2681520.5087160.4648740.020*
C60.4445 (6)0.6424 (4)0.5127 (4)0.0217 (9)
H6A0.4374070.6372210.6019870.026*
H6B0.5576580.6583790.4903460.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0383 (5)0.0222 (5)0.0212 (4)0.0120 (5)0.0001 (5)0.0021 (4)
O10.046 (3)0.021 (3)0.016 (3)0.007 (2)0.004 (2)0.0019 (18)
O1A0.033 (5)0.030 (5)0.044 (6)0.015 (4)0.026 (4)0.010 (4)
O30.0240 (15)0.0191 (14)0.0273 (16)0.0069 (13)0.0075 (13)0.0079 (13)
O40.0245 (16)0.0300 (16)0.0135 (13)0.0005 (13)0.0023 (12)0.0053 (12)
O50.0286 (14)0.0154 (13)0.0135 (12)0.0019 (11)0.0022 (11)0.0002 (12)
O60.045 (2)0.0156 (14)0.0209 (14)0.0106 (15)0.0004 (14)0.0013 (12)
N20.0181 (17)0.0140 (16)0.0165 (16)0.0013 (14)0.0003 (15)0.0025 (12)
C10.029 (2)0.0185 (19)0.0197 (18)0.0055 (18)0.0071 (19)0.0032 (15)
C20.0171 (19)0.0154 (18)0.0192 (19)0.0011 (15)0.0020 (15)0.0023 (15)
C30.0150 (18)0.0124 (18)0.023 (2)0.0033 (15)0.0035 (15)0.0030 (16)
C40.0150 (18)0.0172 (18)0.0150 (18)0.0012 (15)0.0019 (15)0.0015 (15)
C50.0210 (19)0.0152 (17)0.0140 (16)0.0021 (16)0.0025 (15)0.0011 (14)
C60.029 (2)0.017 (2)0.020 (2)0.0000 (17)0.0002 (17)0.0011 (16)
Geometric parameters (Å, º) top
O1—C11.394 (6)N2—H2NA0.98 (6)
O1—H1O0.94 (17)C1—C21.516 (5)
O1A—C11.394 (11)C1—H11.0000
O1A—H1OA0.90 (18)C1—H1A1.0000
O3—C31.422 (5)C2—C31.525 (5)
O3—H3O0.78 (8)C2—H21.0000
O4—C41.428 (5)C3—C41.527 (5)
O4—H4O0.79 (6)C3—H31.0000
O5—C11.420 (5)C4—C51.526 (5)
O5—C51.448 (4)C4—H41.0000
O6—C61.435 (5)C5—C61.500 (5)
O6—H6O0.81 (6)C5—H51.0000
N2—C21.487 (5)C6—H6A0.9900
N2—H2NC0.90 (6)C6—H6B0.9900
N2—H2NB0.84 (4)
C1—O1—H1O116 (9)C1—C2—H2108.8
C1—O1A—H1OA111 (10)C3—C2—H2108.8
C3—O3—H3O108 (5)O3—C3—C2107.6 (3)
C4—O4—H4O112 (4)O3—C3—C4110.9 (3)
C1—O5—C5112.7 (3)C2—C3—C4113.9 (3)
C6—O6—H6O106 (4)O3—C3—H3108.1
C2—N2—H2NC112 (3)C2—C3—H3108.1
C2—N2—H2NB102 (3)C4—C3—H3108.1
H2NC—N2—H2NB114 (4)O4—C4—C5109.5 (3)
C2—N2—H2NA110 (3)O4—C4—C3107.5 (3)
H2NC—N2—H2NA110 (4)C5—C4—C3111.7 (3)
H2NB—N2—H2NA108 (4)O4—C4—H4109.4
O1—C1—O5108.3 (4)C5—C4—H4109.4
O1A—C1—O5112.8 (5)C3—C4—H4109.4
O1—C1—C2106.9 (4)O5—C5—C6105.9 (3)
O1A—C1—C2106.1 (5)O5—C5—C4109.9 (3)
O5—C1—C2109.8 (3)C6—C5—C4111.7 (3)
O1—C1—H1110.6O5—C5—H5109.8
O5—C1—H1110.6C6—C5—H5109.8
C2—C1—H1110.6C4—C5—H5109.8
O1A—C1—H1A109.4O6—C6—C5108.6 (3)
O5—C1—H1A109.4O6—C6—H6A110.0
C2—C1—H1A109.4C5—C6—H6A110.0
N2—C2—C1108.6 (3)O6—C6—H6B110.0
N2—C2—C3111.0 (3)C5—C6—H6B110.0
C1—C2—C3110.7 (3)H6A—C6—H6B108.3
N2—C2—H2108.8
C5—O5—C1—O1178.1 (4)O3—C3—C4—O474.2 (4)
C5—O5—C1—O1A52.6 (6)C2—C3—C4—O4164.3 (3)
C5—O5—C1—C265.5 (4)O3—C3—C4—C5165.7 (3)
O1—C1—C2—N250.3 (5)C2—C3—C4—C544.2 (5)
O1A—C1—C2—N2170.9 (5)C1—O5—C5—C6176.3 (3)
O5—C1—C2—N267.0 (4)C1—O5—C5—C462.9 (4)
O1—C1—C2—C3172.4 (4)O4—C4—C5—O5169.3 (3)
O1A—C1—C2—C367.0 (5)C3—C4—C5—O550.4 (4)
O5—C1—C2—C355.1 (5)O4—C4—C5—C673.5 (4)
N2—C2—C3—O348.8 (4)C3—C4—C5—C6167.6 (3)
C1—C2—C3—O3169.4 (3)O5—C5—C6—O670.9 (4)
N2—C2—C3—C474.6 (4)C4—C5—C6—O6169.5 (3)
C1—C2—C3—C446.1 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···Cl1i0.78 (8)2.38 (8)3.151 (3)173 (7)
O6—H6O···Cl1ii0.81 (6)2.33 (6)3.123 (3)171 (6)
O1a—H1Oa···O3iii0.94 (17)1.88 (17)2.785 (6)160 (14)
O1A—H1OA···Cl1iv0.90 (18)2.70 (18)3.247 (9)120 (12)
O1A—H1OA···O4iv0.90 (18)2.15 (17)3.017 (10)160 (15)
O4—H4O···Cl10.79 (6)2.29 (6)3.077 (3)172 (6)
N2—H2NB···O6v0.84 (4)1.92 (4)2.762 (4)172 (4)
N2—H2NC···O4vi0.90 (6)2.11 (6)2.960 (5)157 (5)
N2—H2NA···Cl1vii0.98 (6)2.27 (6)3.179 (4)153 (4)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y+1/2, z+1/2; (iv) x+1/2, y+1, z1/2; (v) x+1, y1/2, z+1/2; (vi) x+1/2, y+1/2, z+1; (vii) x+3/2, y+1, z1/2.
Cremer–Pople structural parameters for compounds (I)–(III)/(III') top
Compoundφ (°)θ (°)Q (Å)q2q3
(I)13.77711.0330.5450.1040.535
(II)302.6224.7810.5700.0480.568
(III)295.2704.4400.5940.0460.592
(III')301.5125.9550.5940.0620.591
Selected structural parameters (Å, °) in (I)–(III)/(III'). top
ParameterCompound
(I)(II)(III)a(III')a
C—C bond lengths (Å)
C1—C21.516 (6)1.527 (2)1.5231.532
C2—C31.525 (5)1.525 (2)1.5151.519
C3—C41.527 (5)1.528 (2)1.5281.522
C4—C51.526 (6)1.528 (2)1.5171.522
C5—C61.499 (6)1.515 (2)1.5251.496
C—O bond lengths (Å)
C1—O11.394 (6)/1.394 (11)1.390 (2)1.3901.398
C1—O51.420 (5)1.422 (2)1.4351.429
C3—O31.422 (5)1.431 (2)1.4261.428
C4—O41.428 (5)1.424 (2)1.4471.453
C5—O51.449 (4)1.442 (2)1.4461.441
C6—O61.435 (5)1.415 (2)1.4271.447
C—N bond lengths (Å)
C2—N21.486 (6)1.490 (2)1.5041.503
Bond angles (°)
C1—C2—C3110.6 (3)112.6 (1)111.2111.7
C2—C3—C4113.9 (3)109.7 (1)109.2109.7
C3—C4—C5111.6 (3)109.6 (1)108.1108.0
C4—C5—O5109.9 (3)109.0 (1)110.5109.4
C5—O5—C1112.6 (3)114.1 (1)110.1111.1
O5—C1—C2109.8 (3)109.2 (1)110.7109.7
C4—C5—C6111.8 (3)113.5 (1)110.2112.0
Torsion angles (°)b
C1—C2—C3—C4-46.1 (4)-51.6 (2)-53.8-52.6
C2—C3—C4—C544.2 (4)53.6 (2)56.055.6
C3—C4—C5—O5-50.4 (4)-58.5 (2)–61.8-62.1
C4—C5—O5—C162.8 (4)63.5 (2)64.366.0
C5—O5—C1—C2-65.5 (4)–59.8 (2)-60.1-60.8
O5—C1—C2—C355.2 (4)53.1 (2)55.854.3
C2—C1—O1—H-154 (11)/-170 (13)-163.2143.9149.3
C1—C2—N2—HA43 (3)52.953.353.6
C1—C2—N2—HB-71 (3)-67.1-53.3-59.2
C1—C2—N2—HC167 (4)173-177.0174.5
C2—C3—O3—H-141 (6)55.7-125.4-135.7
C3—C4—O4—H128 (5)-64.1-107.3-98.2
C3—C4—C5—C6-167.6 (3)-177.0 (1)178.5176.7
C4—C5—C6—O6-169.4 (3) (gt)62.1 (2) (gg)–170.6 (gt)-167.3 (gt)
C5—C6—O6—H163 (5)-78.5178.3-98.8
Notes: (a) s.u. values were not reported in the original article. (b) Definitions of the gg (gauchegauche), gt (gauchetrans), and tg (transgauche) conformers of the exocyclic hydroxymethyl groups in (I)–(III)/(III') are as follows: gg, H5 anti to O6; gt, C4 anti to O6; tg, O5 anti to O6.
Hydrogen-bond geometry in (I)–(III') (Å, °) top
D—H···AD—HH···AD···AD—H···A
Compound (I)
O1—H1O···O3iii0.94 (17)1.88 (17)2.785 (6)160 (14)
O1A—H1OA···Cl1iv0.90 (18)2.70 (18)3.247 (9)120 (12)
O1A—H1OA···O4iv0.90 (18)2.15 (17)3.017 (10)160 (15)
N2—H2NB···O6v0.84 (4)1.92 (4)2.762 (4)172 (4)
N2—H2NC···O4vi0.90 (6)2.11 (6)2.960 (5)157 (5)
N2—H2NA···Cl1vii0.98 (6)2.27 (6)3.179 (4)153 (4)
O3—H3O···Cl1i0.78 (8)2.38 (8)3.151 (3)173 (7)
O4—H4O···Cl10.79 (6)2.29 (6)3.077 (3)172 (6)
O6—H6O···Cl1ii0.81 (6)2.33 (6)3.123 (3)171 (6)
O1—H1O···Cl1iv0.822.353.145 (12)162
Compound (II)
N2—H2A···O6i0.891.892.777 (17)172
N2—H2B···O4ii0.892.152.893 (19)141
N2—H2C···Cl1iii0.892.383.174 (13)149
O3—H3O···Cl1v0.842.353.191 (14)173
O4—H4O···Cl10.822.353.167 (14)175
O6—H6O···O3v0.811.952.737 (17)163
Compound (III)
O1—H1O···Cl2i0.982.113.045159
N2—H2A···O3ii0.922.082.980166
N2—H2B···Cl1ii0.952.233.176170
N2—H2C···Cl2iii0.912.343.218162
O3—H3O···O4?iii0.872.022.865164
O4—H4O···O6iv0.882.022.896176
O6—H6O···Cl1v0.892.313.168161
O1'—H1?O···Cl20.882.183.058175
N2'—H2?A···O3?vi0.902.132.937150
N2'—H2?B···Cl10.952.323.260170
N2'—H2?C···Cl2vi0.902.453.270151
O3'—H3?O···O4iii0.772.323.073165
O4'—H4?O···O6?vii0.961.782.733175
O6'—H6?O···O6i0.892.012.847156
Symmetry codes for (I): (i) -x+1, y-1/2, -z+3/2; (ii) -x+1, y+1/2, -z+3/2; (iii) -x+1, y+1/2, -z+1/2; (iv) -x+1/2, -y+1, z-1/2; (v) -x+1, y-1/2, -z+1/2; (vi) x+1/2, -y+1/2, -z+1; (vii) -x+3/2, -y+1, z-1/2. Symmetry codes for (II): (i) -x, y+1/2, -z+2; (ii) -x+1, y+1/2, -z+2; (iii) x, y, z+1; (iv) x-1, y, z; (v) -x+1, y-1/2, -z+2. Symmetry codes for (III): (i) x-1/2, -y-1/2, -z-1; (ii) -x-1/2, -y, z-1/2; (iii) -x, y+1/2, -z-1/2; (iv) -x+1/2, -y, z+1/2; (v) x+1, y, z; (vi) x-1/2, -y-1/2, -z; (vii) x+1/2, -y-1/2, -z-1.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds