Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The new 4-amino-1,2,4-triazole asymmetric bridging ligand 4-amino-5-(pyridin-3-yl)-3-[4-(pyridin-4-yl)phen­yl]-4H-1,2,4-triazole (L) has been used to generate three novel isomorphic one-dimensional coordination polymers, viz. catena-poly[[tris­[dichloridomercury(II)]-bis­{[mu]3-4-amino-5-(pyridin-3-yl)-3-[4-(pyridin-4-yl)phen­yl]-4H-1,2,4-triazole}] aceto­nitrile monosolvate], {[Hg3Cl6(C18H14N6)2]·CH3CN}n, (I), and the bromido, {[Hg3Br6(C18H14N6)2]·CH3CN}n, (II), and iodido, {[Hg3I6(C18H14N6)2]·CH3CN}n, (III), analogs. The asymmetric ligand acts as a tridentate ligand to coordinate the three different HgII centers (two of which are symmetry-related). Two ligands and two symmetry-related HgII centers form centrosymmetric rectangular units which are linked into one-dimensional chains via the other unique Hg atoms, which sit on mirror planes. The chains are elaborated into a three-dimensional structure via inter­chain hydrogen bonds. The acetonitrile solvent mol­ecules are located in ellipsoidal cavities. The luminescent character of these three coordination complexes was investigated in the solid state.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112017659/wq3013sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112017659/wq3013Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112017659/wq3013IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270112017659/wq3013IIIsup4.hkl
Contains datablock III

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270112017659/wq3013IIsup5.pdf
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270112017659/wq3013IIIsup6.pdf
Supplementary material

CCDC references: 889364; 889365; 889366

Comment top

Coordination polymers containing metal nodes and organic ligands have attracted tremendous attention over the past 30 years because of their wide application as functional materials (Long & Yaghi, 2009; Spokoyny et al., 2009). The syntheses of coordination polymers by judicious choice of organic spacers and metal centers can be an efficient method for obtaining new types of luminescent materials, especially for d10 or d10d10 systems of metal centers (Morsali & Masoomi, 2009; Tang et al., 2011). The design and construction of coordination polymers based on rigid and bent organic ligands bridged by 4-amino-4H-1,2,4-triazole have been pursued because of their specific geometry (Liu et al., 2009; Du et al., 2006). In addition, hydrogen bonds play an important role in constructing high-dimensional supramolecular compounds (Mu et al., 2008).

The study of the asymmetric oxadiazole ligand with d10 metal centers has been previously carried out by our group (Song et al., 2010), but the coordination polymers generated by asymmetric 4-amino-4H-1,2,4-triazole-based organic ligands are extremely rare. As part of our systematic studies into self-assembly based on asymmetric ligands, we have synthesized a novel asymmetric rigid ligand, viz. 4-amino-3-[4-(pyridin-4-yl)phenyl]-5-(pyridin-3-yl)-4H-1,2,4-triazole (L), which has a short (pyridin-3-yl) and a long arm [4-(pyridin-4-yl)phenyl]. Three novel isomorphous coordination complexes, viz. {[Hg3X6(L)2].CH3CN}n, with X = Cl, (I), Br, (II), and I, (III), based on L were obtained and their structures explored.

The isomorphous compounds (I), (II) and (III) were crystallized in the orthorhombic space group Pnma, with one and a half HgII centers, one L ligand, three halide atoms and half an acetonitrile solvent molecule in the asymmetric unit. Single-crystal structural analysis revealed that complex (I) contains two crystallographically independent HgII centers, as shown in Fig. 1(a). The Hg1 center is coordinated by one pyridine N atom in the long arm of the ligand, one N atom of the triazole group and two halide atoms. The Hg2 center is coordinated by two pyridine N atoms in the short arm of the ligand in addition to two halide atoms. The intrachain Hg···Hg distance is 8.729 (1) Å, which is similar to our previous report on diiodido[2,5-bis(3-pyridyl)-1,3,4-oxadiazole]mercury (Dong et al., 2003). As shown in Fig. 1(b), two ligands, two Hg1 centers and four halide atoms form rectangular units. In these structural units, the long arms of two ligands and part of the triazole ring with two Hg1 centers form a rectangular 20-membered macrocycle. The pyridine and benzene rings of the long arms of the ligand are almost coplanar, with a dihedral angle of 4.158 (4)° between the planes. In the `rectangle', there are ππ interactions (ππ = 3.800 Å) between the aromatic groups (Fig. 3), while the two pyridine rings and the two benzene rings in the macrocycle are parallel. As shown in Fig. 2, the nearby Hg2 centers are coordinated to form one-dimensional zigzag chains along the [110] direction through Hg—N bonds involving the terminal pyridin-3-yl N atom of the short arm on the ligands. The Hg2 center is located in a distorted tetrahedral environment consisting of two pyridine N-atom donors and two coordinated halide counter-ions, which is similar to our previously reported complex diiodido[2,5-bis(3-pyridyl)-1,3,4-oxadiazole]mercury (Dong et al., 2003).

As shown in Figs. 4(a) and 4(b), the chains are linked by two types of hydrogen-bonding interactions {N—H···N [N5···N3 = 3.15 (1) Å] and N—H···Cl [N5···Cl3 = 3.51 (1) Å]} into three-dimensional networks. Weaker hydrogen-bonding interactions C—H···Cl [C7···Cl1 3.61 (1) Å] extended along the a axis (Fig. 4c). In the three-dimensional network, there are ellipsoidal grids, within which the the acetonitrile solvent molecules are arranged regularly (Fig. 5).

The luminescent properties of these three new coordination polymers were investigated in the solid state at room temperature. Upon excitation at λ = 395 nm, compounds (I)–(III) showed emission maxima at 469, 474 and 474 nm, respectively. Notably, in the cases of (I), (II) and (III), almost identical emission bands were observed with the different intensities (Fig. 6); thus, the different emission luminescent intensities of (I)–(III) might be attributed to the halide-to-ligand charge transfer (XLCT) (Park et al., 2009).

In summary, the asymmetric rigid ligand L can be used as a tridentate ligand to coordinate transition metal ions. Three novel one-dimensional coordination polymers have been synthesized based on L and HgX2 (X = Cl, Br and I), and their luminescent properties investigated in the solid state at room temperature.

Related literature top

For related literature, see: Dong et al. (2003); Du et al. (2006); Morsali & Masoomi (2009); Mu et al. (2008); Liu et al. (2009); Long & Yaghi (2009); Park, et al. (2009); Song et al. (2010); Spokoyny et al. (2009); Tang et al. (2011).

Experimental top

For the preparation of 4-amino-5-(3-bromophenyl)-3-(pyridin-3-yl)-4H-1,2,4-triazole, a mixture of hydrazine hydrate (6.90 g, 110 mmol), 3-bromobenzonitrile (5.00 g, 27.5 mmol) and pyridine-3-carbonitrile (2.86 g, 27.5 mmol) in ethanediol (10 ml) was stirred at 413 K for 12 h. The reaction was monitored by thin layer chromatography (TLC). Sufficient water was added to the mixture to cause precipitation. The precipitate was purified by silica-gel column chromatography using dichloromethane (DCM) and MeOH (30:1 v/v) as eluent to afford 4-amino-5-(3-bromophenyl)-3-(pyridin-3-yl)-4H-1,2,4-triazole as a white crystalline solid (yield 2.40 g, 7.6 mmol, 27.6%). 1H NMR (300 MHz, DMSO, 298 K, TMS): δ 9.18 (s, 1H, –C5H4N), 8.73 (d, 1H, –C5H4N), 8.39 (d, 1H, –C5H4N), 8.27 (s, 1H), 8.06 (d, 1H,–C6H4–), 7.75 (d, 1H, –C6H4–), 7.61 (m, 1H, –C6H4–), 7.54 (t, 1H, –C6H4–), 6.42 (s, 2H, –NH2); IR (KBr pellet, cm-1): 3417 (s), 3355 (s), 1623 (m), 1598 (m), 1567 (m), 1515 (w), 1477 (s), 1447 (m), 1399 (vs), 1331 (w), 1192 (w), 1070 (m), 1030 (w), 1015 (m), 997 (w), 976 (w), 892 (m), 815 (m), 794 (m), 766 (m), 690 (w). Analysis calculated for C12H12BrN5: C 22.45, H 1.54, N 8.96%; found: C 22.48, H 1.51, N 9.01%.

For the preparation of 4-amino-3-[4-(pyridin-4-yl)phenyl]-5-(pyridin-3-yl)-4H-1,2,4-triazole (L), a mixture of 4-amino-5-(3-bromophenyl)-3-(pyridin-3-yl)-4H-1,2,4-triazole (2.0 mmol) and pyridine-4-boronic acid (2.4 mmol), Pd(PPh3)4 (0.048 mmol), K2CO3 (6 mmol) in an EtOH–H2O system was stirred at 348–353 K for 48 h. After removal of the solvent under vacuum, the residue was purified by silica-gel column chromatography using DCM–MeOH (10:1 v/v) as eluent to afford L as a white crystalline solid (yield 2.40 g, 7.6 mmol, 90.2%). 1H NMR (300 MHz, DMSO, 298 K, TMS): δ 9.22 (s, 1H, –C5H4N), 8.73 (d, 3H, –C5H4N), 8.44 (d, 2H, –C5H4N), 8.13 (d, 1H, –C5H4N), 8.01 (d, 1H, –C5H4N), 7.90 (d, 2H, –C6H4–), 7.75 (t, 1H, –C6H4–), 7.63 (m, 1H, –C6H4–), 6.47 (s, 2H, –NH2); IR (KBr pellet, cm-1): 3406 (s), 3355 (s), 1637 (m), 1593 (m), 1509 (w), 1463 (m), 1400 (vs), 1264 (w), 1193 (w), 1070 (m), 1026 (w), 970 (w), 919 (w), 901 (m), 814 (w), 795 (m), 713 (m), 692 (m), 610 (m). Analysis calculated for C18H14N6: C 68.78, H 4.49, N 24.73%; found: C 68.80, H 4.47, N 24.73%.

For the preparation of (I), a solution of HgCl2 (10.86 mg, 0.04 mmol) in CH3CN (7 ml) was layered onto a solution of L (6.28 mg, 0.02 mmol) in CH2Cl2 (7 ml). The solution was left for about 5 d at room temperature and colorless crystals of (I) were obtained (yield 80%). IR (KBr pellet, cm-1): 3417 (s), 3330 (s), 2170 (w), 1607 (s), 1518 (w), 1459 (m), 1400 (vs), 1231 (m), 1192 (m), 1122 (m), 1076 (m), 1015 (m), 987 (m), 794 (s), 686 (m), 641 (m), 574 (m). Analysis calculated for C38H31Cl6Hg3N13: C 30.75, H 2.11, N 12.27%; found: C 30.78, H 2.06, N 12.28%.

For the preparation of (II), a solution of HgBr2 (14.42 mg, 0.04 mmol) in CH3CN (7 ml) was layered onto a solution of L (6.28 mg, 0.02 mmol) in CH2Cl2 (7 ml). The solution was left for about 5 d at room temperature and colorless crystals of (II) were obtained (yield 78%). IR (KBr pellet, cm-1): 3417 (s), 3330 (s), 2170 (w), 1607 (s), 1518 (w), 1459 (m), 1400 (vs), 1231 (m), 1192 (m), 1122 (m), 1076 (m), 1015 (m), 987 (m), 794 (s), 686 (m), 641 (m), 574 (m). Analysis calculated for C38H31Br6Hg3N13: C 26.07, H 1.78, N 10.40%; found: C 26.09, H 1.76, N 10.41%.

For the preparation of (III), a solution of HgI2 (18.18 mg, 0.04 mmol) in CH3CN (7 ml) was layered onto a solution of L (6.28 mg, 0.02 mmol) in CH2Cl2 (7 ml). The solution was left for about 5 d at room temperature and colorless crystals (III) were obtained (yield 80%). IR (KBr pellet, cm-1): 3417 (s), 3332 (s), 2170 (w), 1607 (s), 1515 (m), 1458 (m), 1400 (vs), 1230 (m), 1191 (m), 1121 (m), 1074 (m), 1013 (m), 986 (m), 796 (s), 687 (m), 640 (m), 573(m). Analysis calculated for C38H31Hg3I6N13: C 22.45, H 1.54, N 8.96%; found: C 22.46, H 1.52, N 8.98%.

Refinement top

For (I), H atoms were placed in geometrically idealized positions and included as riding atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) (aromatic) and C—H = 0.96 Å and Uiso(H) = 1.2Ueq(C) (acetonitrile). The NH2 group was assumed to be NH3 and three H atoms were added in geometrically idealized positions. One H atom without an acceptor was then deleted and refined as riding model, with N—H = 0.89 Å and Uiso(H) = 1.2Ueq(N). Half of one Cl atom (Cl4) is disordered over two orientations in the refined ratio 0.64 (8):0.36 (8), and the anisotropic displacement parameters (ADPs) of atoms Cl4 and Cl4' were restrained to be isotropic within a standard uncertainty of 0.01 Å2. The acetonitrile solvent molecule lies on a mirror position and was refined as partially occupied, using a total of 12 restraints. The highest peak of residual electron density was located at (0.0982, 0.7500, 0.0785), 1.00 Å from atom Hg2.

For (II), H atoms on C and N atoms were treated as for (I). The acetonitrile solvent molecule lies on a mirror position and wasrefined as partially occupied. The highest peak of residual electron density was located at (0.0488, 0.7500, 0.9981), 0.99 Å from atom Hg2.

For (III), H atoms on C and N atoms were treated as for (I). The acetonitrile solvent molecule lies on a mirror position and was refined as partially occupied; the ADPs of atoms C19, C20 and N7 was restrained to be isotropic within a standard uncertainty of 0.01 Å2, using a total of 18 restraints. The highest peak of residual electron density was located at (0.1152, 0.7500, 0.2023), 0.99 Å from atom I4.

Computing details top

For all compounds, data collection: SMART (Bruker, 2003); cell refinement: SMART (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. (a) The molecular structure of (I), with displacement ellipsoids drawn at the 30% probability level. H atoms have been omitted for clarity. (b) The rectangular 20-membered macrocycle formed by two ligands and two HgII centers. [Symmetry codes: (i) x, -y+3/2, z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, y+1/2, -z+1.]
[Figure 2] Fig. 2. Extension of the centrosymmetric units along the [110] direction. [Symmetry codes: (i) x, -y+3/2, z; (ii) -x+1, -y+1, -z+1; (iii) -x+1, y+1/2, -z+1; (iv) x, -y+1/2, z; (v) -x+1, y-1/2, -z+1; (vi) x, y+1, z; (vii) -x+1, -y+2, -z+1.]
[Figure 3] Fig. 3. , The ππ interactions in the rectanglular units (ππ = 3.800 Å).
[Figure 4] Fig. 4. (a) Hydrogen-bonding interactions extending along the c axis, (b) the three-dimensional networks formed via the two kinds of hydrogen bonds (d1 = 2.390 Å and d2 = 2.704 Å) and (c) the three-dimensional hydrogen-bonded network viewed down the a axis (d1 = 2.752 Å).
[Figure 5] Fig. 5. Ellipsoid grids containing acetonitrile solvent molecules.
[Figure 6] Fig. 6. Solid-state luminescent emission properties of the three novel coordination polymers at room temperature.
(I) catena-poly[[tris[dichloridomercury(II)]-bis{µ3-4-amino- 5-(pyridin-3-yl)-3-[4-(pyridin-4-yl)phenyl]-4H-1,2,4-triazole}] acetonitrile monosolvate] top
Crystal data top
[Hg3Cl6(C18H14N6)2]·C2H3NDx = 2.187 Mg m3
Mr = 1484.23Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 4616 reflections
a = 12.773 (2) Åθ = 2.4–24.4°
b = 27.267 (5) ŵ = 10.60 mm1
c = 12.941 (2) ÅT = 298 K
V = 4506.9 (14) Å3Plan, colourless
Z = 40.32 × 0.18 × 0.05 mm
F(000) = 2768
Data collection top
Bruker SMART CCD area-detector
diffractometer
4277 independent reflections
Radiation source: fine-focus sealed tube3278 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.077
ϕ and ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1515
Tmin = 0.133, Tmax = 0.619k = 3317
22532 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.188H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1128P)2 + 27.9072P]
where P = (Fo2 + 2Fc2)/3
4277 reflections(Δ/σ)max = 0.001
287 parametersΔρmax = 2.67 e Å3
12 restraintsΔρmin = 1.89 e Å3
Crystal data top
[Hg3Cl6(C18H14N6)2]·C2H3NV = 4506.9 (14) Å3
Mr = 1484.23Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 12.773 (2) ŵ = 10.60 mm1
b = 27.267 (5) ÅT = 298 K
c = 12.941 (2) Å0.32 × 0.18 × 0.05 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4277 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3278 reflections with I > 2σ(I)
Tmin = 0.133, Tmax = 0.619Rint = 0.077
22532 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06112 restraints
wR(F2) = 0.188H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.1128P)2 + 27.9072P]
where P = (Fo2 + 2Fc2)/3
4277 reflectionsΔρmax = 2.67 e Å3
287 parametersΔρmin = 1.89 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2512 (11)0.5128 (6)0.3878 (12)0.064 (4)
H10.21450.50710.32690.077*
C20.3371 (12)0.5424 (6)0.3839 (11)0.062 (4)
H20.35510.55810.32260.074*
C30.3977 (9)0.5490 (5)0.4722 (9)0.037 (2)
C40.3600 (9)0.5277 (5)0.5608 (9)0.044 (3)
H40.39420.53260.62340.053*
C50.2722 (10)0.4992 (6)0.5568 (9)0.052 (3)
H50.25100.48420.61790.062*
C60.4950 (9)0.5790 (4)0.4695 (8)0.036 (2)
C70.5323 (10)0.5987 (5)0.3788 (9)0.050 (3)
H70.49390.59440.31840.060*
C80.6262 (12)0.6251 (6)0.3744 (9)0.063 (4)
H80.65160.63650.31150.075*
C90.6799 (10)0.6337 (5)0.4639 (9)0.048 (3)
H90.74100.65220.46160.057*
C100.6455 (8)0.6156 (4)0.5576 (8)0.034 (2)
C110.5513 (9)0.5883 (5)0.5610 (8)0.040 (3)
H110.52650.57640.62380.048*
C120.7090 (7)0.6225 (4)0.6489 (8)0.031 (2)
C130.7644 (8)0.6399 (4)0.8043 (8)0.035 (2)
C140.7714 (8)0.6557 (4)0.9109 (7)0.033 (2)
C150.8593 (8)0.6798 (4)0.9434 (8)0.036 (2)
H150.91080.68650.89470.043*
C160.8017 (11)0.6836 (6)1.1088 (10)0.058 (4)
H160.81350.69191.17760.069*
C170.7105 (12)0.6617 (6)1.0845 (10)0.063 (4)
H170.65950.65671.13470.075*
C180.6942 (10)0.6468 (6)0.9846 (9)0.055 (4)
H180.63240.63100.96630.066*
C190.905 (3)0.75000.638 (3)0.090 (8)
C200.926 (5)0.75000.525 (4)0.21 (3)
H20A0.93690.71690.50130.320*0.50
H20B0.98820.76900.51050.320*0.50
H20C0.86790.76410.48880.320*0.50
Cl10.9409 (2)0.61459 (14)0.3833 (2)0.0510 (8)
Cl21.0295 (2)0.52970 (12)0.6709 (2)0.0447 (7)
Cl31.1093 (4)0.75000.9121 (4)0.0573 (12)
Cl41.066 (4)0.75001.253 (2)0.029 (6)0.36 (8)
Cl4'1.024 (3)0.75001.2638 (8)0.039 (4)0.64 (8)
Hg10.92151 (4)0.56482 (2)0.53538 (4)0.0524 (2)
Hg21.02020 (6)0.75001.07687 (5)0.0520 (3)
N10.2163 (8)0.4912 (4)0.4757 (8)0.045 (3)
N20.8105 (7)0.6135 (4)0.6523 (7)0.037 (2)
N30.8451 (6)0.6237 (4)0.7500 (7)0.039 (2)
N40.6777 (6)0.6387 (4)0.7429 (6)0.033 (2)
N50.5797 (6)0.6573 (4)0.7741 (7)0.045 (3)
H5A0.56600.68470.73920.067*
H5B0.53030.63520.76100.067*
N60.8757 (8)0.6942 (4)1.0405 (7)0.044 (2)
N70.880 (3)0.75000.713 (3)0.129 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.059 (8)0.073 (11)0.059 (8)0.028 (8)0.016 (7)0.002 (8)
C20.079 (10)0.060 (9)0.047 (7)0.031 (8)0.016 (7)0.011 (7)
C30.034 (5)0.033 (6)0.044 (6)0.002 (5)0.005 (5)0.008 (5)
C40.044 (7)0.053 (8)0.037 (6)0.008 (6)0.009 (5)0.003 (6)
C50.048 (7)0.068 (10)0.040 (6)0.006 (7)0.004 (5)0.007 (6)
C60.038 (6)0.038 (7)0.031 (5)0.001 (5)0.006 (4)0.003 (5)
C70.047 (7)0.067 (9)0.037 (6)0.013 (6)0.013 (5)0.005 (6)
C80.072 (9)0.088 (12)0.028 (6)0.024 (8)0.004 (6)0.016 (7)
C90.039 (6)0.058 (9)0.046 (6)0.011 (6)0.008 (5)0.000 (6)
C100.032 (5)0.039 (6)0.030 (5)0.004 (4)0.001 (4)0.006 (5)
C110.037 (6)0.053 (8)0.031 (5)0.005 (5)0.002 (5)0.008 (5)
C120.026 (5)0.035 (6)0.033 (5)0.005 (4)0.006 (4)0.003 (5)
C130.026 (5)0.037 (7)0.041 (6)0.006 (4)0.000 (4)0.003 (5)
C140.025 (5)0.043 (7)0.032 (5)0.001 (4)0.001 (4)0.003 (5)
C150.028 (5)0.041 (7)0.039 (6)0.002 (5)0.001 (4)0.005 (5)
C160.069 (9)0.072 (10)0.032 (6)0.011 (7)0.007 (6)0.012 (6)
C170.065 (9)0.082 (11)0.041 (7)0.022 (8)0.018 (6)0.005 (7)
C180.041 (7)0.082 (11)0.043 (7)0.014 (7)0.004 (5)0.000 (7)
C190.12 (2)0.069 (19)0.076 (18)0.0000.010 (17)0.000
C200.34 (9)0.09 (4)0.20 (6)0.0000.04 (6)0.000
Cl10.0514 (16)0.073 (2)0.0286 (13)0.0121 (15)0.0170 (12)0.0064 (14)
Cl20.0352 (14)0.0536 (18)0.0452 (15)0.0143 (12)0.0051 (11)0.0117 (14)
Cl30.063 (3)0.048 (3)0.062 (3)0.0000.005 (2)0.000
Cl40.036 (11)0.030 (7)0.021 (6)0.0000.021 (6)0.000
Cl4'0.054 (10)0.048 (4)0.016 (3)0.0000.017 (4)0.000
Hg10.0437 (3)0.0625 (4)0.0512 (4)0.0099 (2)0.0037 (2)0.0105 (2)
Hg20.0537 (4)0.0539 (5)0.0484 (4)0.0000.0190 (3)0.000
N10.041 (5)0.045 (6)0.050 (6)0.010 (4)0.010 (5)0.011 (5)
N20.033 (5)0.042 (6)0.035 (4)0.004 (4)0.003 (4)0.010 (4)
N30.025 (4)0.052 (6)0.041 (5)0.002 (4)0.005 (4)0.015 (5)
N40.016 (4)0.045 (6)0.038 (5)0.004 (3)0.000 (3)0.006 (4)
N50.024 (4)0.072 (8)0.038 (5)0.004 (4)0.007 (4)0.013 (5)
N60.052 (6)0.046 (6)0.034 (5)0.007 (5)0.010 (4)0.013 (4)
N70.18 (3)0.10 (2)0.11 (2)0.0000.02 (2)0.000
Geometric parameters (Å, º) top
C1—N11.356 (18)C14—C181.393 (16)
C1—C21.363 (19)C15—N61.333 (13)
C1—H10.9300C15—H150.9300
C2—C31.392 (17)C16—N61.326 (17)
C2—H20.9300C16—C171.35 (2)
C3—C41.374 (17)C16—H160.9300
C3—C61.487 (16)C17—C181.372 (18)
C4—C51.365 (18)C17—H170.9300
C4—H40.9300C18—H180.9300
C5—N11.288 (15)C19—N71.03 (4)
C5—H50.9300C19—C201.49 (6)
C6—C71.377 (17)C20—H20A0.9600
C6—C111.407 (15)C20—H20B0.9600
C7—C81.398 (18)C20—H20C0.9600
C7—H70.9300Cl1—Hg12.403 (3)
C8—C91.366 (17)Cl2—Hg12.428 (3)
C8—H80.9300Cl3—Hg22.418 (5)
C9—C101.382 (16)Cl4—Hg22.353 (19)
C9—H90.9300Hg1—N1i2.336 (10)
C10—C111.416 (16)Hg1—N22.462 (9)
C10—C121.445 (14)Hg2—N62.438 (10)
C11—H110.9300Hg2—N6ii2.438 (10)
C12—N21.319 (13)N1—Hg1i2.336 (10)
C12—N41.355 (13)N2—N31.369 (12)
C13—N31.323 (14)N4—N51.410 (12)
C13—N41.364 (13)N5—H5A0.8900
C13—C141.447 (14)N5—H5B0.8900
C14—C151.367 (15)
N1—C1—C2123.5 (12)N6—C16—C17123.8 (11)
N1—C1—H1118.2N6—C16—H16118.1
C2—C1—H1118.2C17—C16—H16118.1
C1—C2—C3119.7 (13)C16—C17—C18118.9 (12)
C1—C2—H2120.2C16—C17—H17120.5
C3—C2—H2120.2C18—C17—H17120.5
C4—C3—C2115.8 (11)C17—C18—C14119.1 (12)
C4—C3—C6123.0 (10)C17—C18—H18120.5
C2—C3—C6121.2 (11)C14—C18—H18120.5
C5—C4—C3119.9 (11)N7—C19—C20172 (5)
C5—C4—H4120.1C19—C20—H20A109.5
C3—C4—H4120.1C19—C20—H20B109.5
N1—C5—C4125.6 (12)H20A—C20—H20B109.5
N1—C5—H5117.2C19—C20—H20C109.5
C4—C5—H5117.2H20A—C20—H20C109.5
C7—C6—C11118.0 (11)H20B—C20—H20C109.5
C7—C6—C3121.6 (10)N1i—Hg1—Cl1113.4 (3)
C11—C6—C3120.4 (10)N1i—Hg1—Cl2102.4 (3)
C6—C7—C8122.2 (11)Cl1—Hg1—Cl2139.08 (11)
C6—C7—H7118.9N1i—Hg1—N287.5 (3)
C8—C7—H7118.9Cl1—Hg1—N2105.0 (2)
C9—C8—C7119.0 (11)Cl2—Hg1—N295.5 (2)
C9—C8—H8120.5Cl4—Hg2—Cl3137.4 (12)
C7—C8—H8120.5Cl4—Hg2—N6112.1 (9)
C8—C9—C10121.6 (12)Cl3—Hg2—N6100.7 (2)
C8—C9—H9119.2Cl4—Hg2—N6ii112.1 (9)
C10—C9—H9119.2Cl3—Hg2—N6ii100.7 (2)
C9—C10—C11119.0 (10)N6—Hg2—N6ii77.3 (5)
C9—C10—C12119.5 (10)C5—N1—C1115.4 (11)
C11—C10—C12121.4 (10)C5—N1—Hg1i125.3 (9)
C6—C11—C10120.2 (10)C1—N1—Hg1i118.7 (8)
C6—C11—H11119.9C12—N2—N3108.0 (8)
C10—C11—H11119.9C12—N2—Hg1130.2 (7)
N2—C12—N4108.7 (8)N3—N2—Hg1119.5 (6)
N2—C12—C10123.7 (9)C13—N3—N2107.9 (8)
N4—C12—C10127.6 (9)C12—N4—C13106.9 (8)
N3—C13—N4108.4 (9)C12—N4—N5129.6 (8)
N3—C13—C14123.9 (9)C13—N4—N5123.0 (8)
N4—C13—C14127.8 (9)N4—N5—H5A109.4
C15—C14—C18117.0 (10)N4—N5—H5B109.3
C15—C14—C13119.2 (9)H5A—N5—H5B109.5
C18—C14—C13123.8 (10)C16—N6—C15116.9 (10)
N6—C15—C14124.2 (10)C16—N6—Hg2123.1 (8)
N6—C15—H15117.9C15—N6—Hg2119.1 (8)
C14—C15—H15117.9
N1—C1—C2—C34 (3)C4—C5—N1—Hg1i172.2 (11)
C1—C2—C3—C45 (2)C2—C1—N1—C52 (2)
C1—C2—C3—C6176.8 (14)C2—C1—N1—Hg1i173.7 (13)
C2—C3—C4—C54 (2)N4—C12—N2—N30.2 (13)
C6—C3—C4—C5177.6 (12)C10—C12—N2—N3179.7 (10)
C3—C4—C5—N13 (2)N4—C12—N2—Hg1162.7 (7)
C4—C3—C6—C7178.1 (13)C10—C12—N2—Hg117.2 (16)
C2—C3—C6—C74 (2)N1i—Hg1—N2—C1239.2 (10)
C4—C3—C6—C112.5 (19)Cl1—Hg1—N2—C1274.4 (10)
C2—C3—C6—C11175.3 (13)Cl2—Hg1—N2—C12141.4 (10)
C11—C6—C7—C84 (2)N1i—Hg1—N2—N3121.6 (8)
C3—C6—C7—C8177.1 (14)Cl1—Hg1—N2—N3124.9 (7)
C6—C7—C8—C93 (2)Cl2—Hg1—N2—N319.4 (8)
C7—C8—C9—C102 (2)N4—C13—N3—N21.7 (12)
C8—C9—C10—C111 (2)C14—C13—N3—N2178.3 (10)
C8—C9—C10—C12175.3 (13)C12—N2—N3—C131.2 (13)
C7—C6—C11—C102.4 (19)Hg1—N2—N3—C13165.9 (7)
C3—C6—C11—C10178.2 (11)N2—C12—N4—C130.8 (12)
C9—C10—C11—C61.3 (18)C10—C12—N4—C13179.3 (11)
C12—C10—C11—C6175.2 (11)N2—C12—N4—N5173.2 (11)
C9—C10—C12—N247.6 (17)C10—C12—N4—N57.0 (19)
C11—C10—C12—N2128.9 (12)N3—C13—N4—C121.5 (12)
C9—C10—C12—N4132.6 (13)C14—C13—N4—C12178.5 (11)
C11—C10—C12—N451.0 (18)N3—C13—N4—N5174.5 (10)
N3—C13—C14—C1535.9 (18)C14—C13—N4—N55.5 (18)
N4—C13—C14—C15144.1 (12)C17—C16—N6—C153 (2)
N3—C13—C14—C18142.5 (13)C17—C16—N6—Hg2165.3 (13)
N4—C13—C14—C1837 (2)C14—C15—N6—C160.8 (19)
C18—C14—C15—N61.3 (19)C14—C15—N6—Hg2168.3 (9)
C13—C14—C15—N6177.2 (11)Cl4—Hg2—N6—C1629.8 (14)
N6—C16—C17—C184 (3)Cl3—Hg2—N6—C16177.8 (11)
C16—C17—C18—C141 (3)N6ii—Hg2—N6—C1679.1 (11)
C15—C14—C18—C171 (2)Cl4—Hg2—N6—C15161.8 (12)
C13—C14—C18—C17177.4 (14)Cl3—Hg2—N6—C159.4 (9)
C4—C5—N1—C11 (2)N6ii—Hg2—N6—C1589.3 (9)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cl1iii0.932.753.613 (12)154
N5—H5A···Cl3iv0.892.703.512 (12)152
N5—H5B···N3iv0.892.393.149 (12)143
Symmetry codes: (iii) x1/2, y, z+1/2; (iv) x1/2, y, z+3/2.
(II) catena-poly[[tris[dibromidomercury(II)]-bis{µ3-4-amino- 5-(pyridin-3-yl)-3-[4-(pyridin-4-yl)phenyl]-4H-1,2,4-triazole}] acetonitrile monosolvate] top
Crystal data top
[Hg3Br6(C18H14N6)2]·C2H3NDx = 2.501 Mg m3
Mr = 1750.99Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 4737 reflections
a = 12.8037 (16) Åθ = 2.2–24.2°
b = 27.890 (4) ŵ = 15.08 mm1
c = 13.0245 (17) ÅT = 298 K
V = 4651.0 (10) Å3Plan, colourless
Z = 40.25 × 0.20 × 0.03 mm
F(000) = 3200
Data collection top
Bruker SMART CCD area-detector
diffractometer
4422 independent reflections
Radiation source: fine-focus sealed tube3338 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
ϕ and ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1015
Tmin = 0.117, Tmax = 0.661k = 3033
23320 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0646P)2 + 19.0915P]
where P = (Fo2 + 2Fc2)/3
4422 reflections(Δ/σ)max = 0.001
281 parametersΔρmax = 2.17 e Å3
0 restraintsΔρmin = 2.04 e Å3
Crystal data top
[Hg3Br6(C18H14N6)2]·C2H3NV = 4651.0 (10) Å3
Mr = 1750.99Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 12.8037 (16) ŵ = 15.08 mm1
b = 27.890 (4) ÅT = 298 K
c = 13.0245 (17) Å0.25 × 0.20 × 0.03 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4422 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3338 reflections with I > 2σ(I)
Tmin = 0.117, Tmax = 0.661Rint = 0.075
23320 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0646P)2 + 19.0915P]
where P = (Fo2 + 2Fc2)/3
4422 reflectionsΔρmax = 2.17 e Å3
281 parametersΔρmin = 2.04 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2547 (9)0.5098 (5)0.3954 (8)0.063 (4)
H10.21590.50540.33580.076*
C20.3395 (9)0.5395 (4)0.3905 (8)0.058 (3)
H20.35740.55450.32910.069*
C30.3995 (7)0.5473 (4)0.4794 (7)0.038 (2)
C40.3639 (8)0.5246 (4)0.5667 (7)0.046 (3)
H40.39760.52960.62910.055*
C50.2781 (7)0.4944 (4)0.5621 (7)0.046 (3)
H50.25790.47850.62170.055*
C60.4918 (7)0.5790 (4)0.4759 (6)0.039 (2)
C70.5274 (8)0.5985 (4)0.3854 (7)0.050 (3)
H70.49070.59240.32520.061*
C80.6158 (9)0.6267 (4)0.3814 (7)0.053 (3)
H80.63700.64010.31940.063*
C90.6721 (7)0.6348 (4)0.4684 (7)0.042 (2)
H90.73240.65320.46540.050*
C100.6395 (7)0.6154 (4)0.5627 (6)0.034 (2)
C110.5495 (7)0.5878 (4)0.5656 (7)0.035 (2)
H110.52700.57500.62760.042*
C120.7065 (7)0.6219 (4)0.6518 (6)0.034 (2)
C130.7665 (7)0.6386 (4)0.8048 (6)0.035 (2)
C140.7750 (7)0.6544 (4)0.9115 (6)0.037 (2)
C150.8625 (7)0.6803 (4)0.9401 (7)0.039 (2)
H150.91060.68860.88960.047*
C160.8097 (9)0.6841 (5)1.1072 (8)0.060 (3)
H160.82120.69441.17420.072*
C170.7212 (9)0.6592 (6)1.0851 (8)0.069 (4)
H170.67390.65231.13720.083*
C180.7007 (8)0.6442 (4)0.9860 (8)0.050 (3)
H180.63960.62780.96990.061*
C190.9133 (18)0.75000.638 (2)0.088 (7)
C200.943 (3)0.75000.531 (2)0.175 (17)
H20A0.95340.71760.50800.263*0.50
H20B1.00710.76770.52240.263*0.50
H20C0.88910.76470.49060.263*0.50
Br10.93810 (11)0.61893 (6)0.37937 (9)0.0699 (4)
Br21.02939 (9)0.52835 (5)0.66479 (9)0.0633 (4)
Br31.11989 (15)0.75000.90326 (14)0.0651 (5)
Br41.0444 (2)0.75001.25598 (15)0.0980 (8)
Hg10.91579 (3)0.566873 (18)0.53097 (3)0.05143 (17)
Hg21.02217 (5)0.75001.06911 (4)0.0520 (2)
N10.2243 (6)0.4871 (3)0.4787 (6)0.042 (2)
N20.8075 (6)0.6138 (3)0.6533 (5)0.0393 (19)
N30.8451 (6)0.6236 (3)0.7500 (5)0.0398 (19)
N40.6770 (5)0.6370 (3)0.7464 (5)0.0337 (18)
N50.5794 (6)0.6554 (4)0.7804 (6)0.046 (2)
H5A0.56570.68280.74550.069*
H5B0.53000.63320.76730.069*
N60.8809 (7)0.6939 (3)1.0349 (6)0.043 (2)
N70.890 (2)0.75000.7162 (17)0.120 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.057 (7)0.098 (11)0.035 (5)0.031 (7)0.013 (5)0.001 (6)
C20.075 (8)0.064 (9)0.034 (5)0.028 (6)0.016 (5)0.001 (5)
C30.037 (5)0.032 (6)0.045 (6)0.003 (4)0.003 (4)0.008 (4)
C40.051 (6)0.060 (8)0.027 (4)0.002 (5)0.000 (4)0.005 (5)
C50.039 (5)0.061 (8)0.037 (5)0.009 (5)0.000 (4)0.004 (5)
C60.038 (5)0.050 (7)0.028 (5)0.001 (4)0.005 (4)0.006 (4)
C70.050 (6)0.074 (9)0.027 (5)0.009 (6)0.009 (4)0.001 (5)
C80.068 (7)0.061 (8)0.029 (5)0.013 (6)0.008 (5)0.009 (5)
C90.039 (5)0.049 (7)0.037 (5)0.004 (5)0.005 (4)0.002 (4)
C100.037 (5)0.037 (6)0.029 (4)0.005 (4)0.002 (4)0.008 (4)
C110.033 (5)0.040 (6)0.032 (5)0.004 (4)0.002 (4)0.005 (4)
C120.036 (5)0.040 (6)0.025 (4)0.002 (4)0.001 (4)0.007 (4)
C130.031 (4)0.044 (6)0.031 (4)0.007 (4)0.000 (4)0.004 (4)
C140.038 (5)0.047 (7)0.027 (4)0.000 (4)0.001 (4)0.001 (4)
C150.039 (5)0.038 (6)0.041 (5)0.002 (4)0.001 (4)0.001 (4)
C160.072 (8)0.080 (9)0.027 (5)0.003 (7)0.014 (5)0.002 (5)
C170.063 (7)0.113 (12)0.031 (5)0.025 (7)0.008 (5)0.002 (6)
C180.046 (6)0.063 (8)0.043 (6)0.016 (5)0.003 (5)0.001 (5)
C190.083 (15)0.073 (17)0.107 (18)0.0000.012 (14)0.000
C200.29 (5)0.15 (4)0.09 (2)0.0000.05 (2)0.000
Br10.0775 (8)0.0880 (11)0.0441 (6)0.0077 (7)0.0171 (6)0.0010 (6)
Br20.0578 (7)0.0794 (10)0.0529 (7)0.0176 (6)0.0055 (5)0.0120 (6)
Br30.0744 (11)0.0568 (12)0.0640 (10)0.0000.0057 (9)0.000
Br40.171 (2)0.0764 (16)0.0471 (10)0.0000.0423 (12)0.000
Hg10.0461 (3)0.0649 (4)0.0433 (3)0.0102 (2)0.00130 (17)0.0057 (2)
Hg20.0564 (4)0.0571 (4)0.0426 (3)0.0000.0175 (3)0.000
N10.041 (4)0.037 (5)0.047 (5)0.011 (4)0.003 (4)0.010 (4)
N20.037 (4)0.052 (6)0.030 (4)0.002 (4)0.003 (3)0.006 (3)
N30.035 (4)0.052 (6)0.033 (4)0.002 (4)0.004 (3)0.007 (4)
N40.026 (4)0.044 (5)0.031 (4)0.001 (3)0.003 (3)0.006 (3)
N50.028 (4)0.070 (7)0.041 (4)0.003 (4)0.000 (3)0.004 (4)
N60.047 (5)0.048 (6)0.033 (4)0.003 (4)0.008 (4)0.005 (4)
N70.14 (2)0.13 (2)0.083 (14)0.0000.011 (15)0.000
Geometric parameters (Å, º) top
C1—N11.315 (13)C14—C181.389 (13)
C1—C21.368 (15)C15—N61.314 (11)
C1—H10.9300C15—H150.9300
C2—C31.406 (13)C16—N61.339 (14)
C2—H20.9300C16—C171.359 (17)
C3—C41.379 (14)C16—H160.9300
C3—C61.478 (14)C17—C181.383 (15)
C4—C51.386 (14)C17—H170.9300
C4—H40.9300C18—H180.9300
C5—N11.303 (12)C19—N71.06 (3)
C5—H50.9300C19—C201.45 (4)
C6—C71.375 (13)C20—H20A0.9600
C6—C111.403 (12)C20—H20B0.9600
C7—C81.381 (15)C20—H20C0.9600
C7—H70.9300Br1—Hg12.4674 (14)
C8—C91.361 (13)Br2—Hg12.5115 (13)
C8—H80.9300Br3—Hg22.4963 (19)
C9—C101.406 (12)Br4—Hg22.4505 (19)
C9—H90.9300Hg1—N1i2.345 (8)
C10—C111.386 (13)Hg1—N22.484 (8)
C10—C121.455 (12)Hg2—N62.432 (8)
C11—H110.9300Hg2—N6ii2.432 (8)
C12—N21.313 (11)N1—Hg1i2.345 (8)
C12—N41.356 (10)N2—N31.376 (10)
C13—N31.302 (11)N4—N51.422 (10)
C13—N41.375 (11)N5—H5A0.9059
C13—C141.462 (12)N5—H5B0.9007
C14—C151.384 (13)
N1—C1—C2124.4 (10)N6—C16—C17121.5 (10)
N1—C1—H1117.8N6—C16—H16119.2
C2—C1—H1117.8C17—C16—H16119.2
C1—C2—C3119.2 (10)C16—C17—C18120.7 (10)
C1—C2—H2120.4C16—C17—H17119.6
C3—C2—H2120.4C18—C17—H17119.6
C4—C3—C2115.4 (9)C17—C18—C14117.4 (10)
C4—C3—C6124.4 (9)C17—C18—H18121.3
C2—C3—C6120.2 (9)C14—C18—H18121.3
C3—C4—C5120.4 (9)N7—C19—C20179 (3)
C3—C4—H4119.8C19—C20—H20A109.5
C5—C4—H4119.8C19—C20—H20B109.5
N1—C5—C4123.4 (10)H20A—C20—H20B109.5
N1—C5—H5118.3C19—C20—H20C109.5
C4—C5—H5118.3H20A—C20—H20C109.5
C7—C6—C11118.1 (9)H20B—C20—H20C109.5
C7—C6—C3121.8 (8)N1i—Hg1—Br1115.0 (2)
C11—C6—C3120.0 (8)N1i—Hg1—N286.9 (3)
C6—C7—C8121.9 (9)Br1—Hg1—N2105.5 (2)
C6—C7—H7119.0N1i—Hg1—Br2101.9 (2)
C8—C7—H7119.0Br1—Hg1—Br2137.73 (5)
C9—C8—C7119.8 (9)N2—Hg1—Br295.95 (18)
C9—C8—H8120.1N6—Hg2—N6ii80.0 (4)
C7—C8—H8120.1N6—Hg2—Br4105.57 (18)
C8—C9—C10120.5 (10)N6ii—Hg2—Br4105.57 (18)
C8—C9—H9119.8N6—Hg2—Br3102.38 (18)
C10—C9—H9119.8N6ii—Hg2—Br3102.38 (18)
C11—C10—C9118.9 (8)Br4—Hg2—Br3143.24 (9)
C11—C10—C12122.6 (8)C5—N1—C1117.2 (9)
C9—C10—C12118.3 (9)C5—N1—Hg1i123.3 (7)
C10—C11—C6120.8 (9)C1—N1—Hg1i119.5 (7)
C10—C11—H11119.6C12—N2—N3108.9 (7)
C6—C11—H11119.6C12—N2—Hg1129.1 (6)
N2—C12—N4108.3 (7)N3—N2—Hg1119.8 (5)
N2—C12—C10124.8 (8)C13—N3—N2107.1 (7)
N4—C12—C10126.9 (8)C12—N4—C13106.3 (7)
N3—C13—N4109.3 (7)C12—N4—N5129.8 (7)
N3—C13—C14124.0 (8)C13—N4—N5123.3 (7)
N4—C13—C14126.6 (8)N4—N5—H5A108.6
C15—C14—C18118.2 (9)N4—N5—H5B108.1
C15—C14—C13118.3 (8)H5A—N5—H5B110.3
C18—C14—C13123.5 (9)C15—N6—C16118.7 (9)
N6—C15—C14123.3 (9)C15—N6—Hg2119.4 (7)
N6—C15—H15118.3C16—N6—Hg2120.6 (7)
C14—C15—H15118.3
N1—C1—C2—C30 (2)C4—C5—N1—Hg1i176.9 (8)
C1—C2—C3—C42.1 (17)C2—C1—N1—C51.4 (19)
C1—C2—C3—C6179.7 (11)C2—C1—N1—Hg1i175.4 (11)
C2—C3—C4—C53.6 (16)N4—C12—N2—N30.1 (11)
C6—C3—C4—C5178.3 (10)C10—C12—N2—N3179.8 (9)
C3—C4—C5—N12.9 (17)N4—C12—N2—Hg1162.7 (6)
C4—C3—C6—C7176.1 (11)C10—C12—N2—Hg117.2 (15)
C2—C3—C6—C75.9 (16)N1i—Hg1—N2—C1238.1 (9)
C4—C3—C6—C110.0 (16)Br1—Hg1—N2—C1277.1 (9)
C2—C3—C6—C11178.0 (10)Br2—Hg1—N2—C12139.7 (8)
C11—C6—C7—C81.3 (17)N1i—Hg1—N2—N3122.9 (7)
C3—C6—C7—C8177.5 (11)Br1—Hg1—N2—N3122.0 (6)
C6—C7—C8—C91.9 (19)Br2—Hg1—N2—N321.3 (7)
C7—C8—C9—C101.3 (18)N4—C13—N3—N22.3 (11)
C8—C9—C10—C110.2 (16)C14—C13—N3—N2177.6 (9)
C8—C9—C10—C12175.3 (10)C12—N2—N3—C131.5 (11)
C9—C10—C11—C60.4 (15)Hg1—N2—N3—C13166.0 (6)
C12—C10—C11—C6174.5 (9)N2—C12—N4—C131.2 (11)
C7—C6—C11—C100.2 (15)C10—C12—N4—C13178.9 (10)
C3—C6—C11—C10176.4 (9)N2—C12—N4—N5171.9 (9)
C11—C10—C12—N2127.0 (11)C10—C12—N4—N58.2 (17)
C9—C10—C12—N248.0 (15)N3—C13—N4—C122.2 (11)
C11—C10—C12—N452.9 (15)C14—C13—N4—C12177.7 (10)
C9—C10—C12—N4132.2 (11)N3—C13—N4—N5173.7 (9)
N3—C13—C14—C1538.0 (15)C14—C13—N4—N56.2 (15)
N4—C13—C14—C15141.9 (10)C14—C15—N6—C162.9 (16)
N3—C13—C14—C18141.0 (11)C14—C15—N6—Hg2170.2 (8)
N4—C13—C14—C1839.1 (17)C17—C16—N6—C152.0 (18)
C18—C14—C15—N63.1 (16)C17—C16—N6—Hg2169.1 (11)
C13—C14—C15—N6176.0 (10)N6ii—Hg2—N6—C1587.7 (8)
N6—C16—C17—C181 (2)Br4—Hg2—N6—C15168.8 (7)
C16—C17—C18—C142 (2)Br3—Hg2—N6—C1512.9 (8)
C15—C14—C18—C172.3 (17)N6ii—Hg2—N6—C1679.4 (9)
C13—C14—C18—C17176.7 (11)Br4—Hg2—N6—C1624.2 (9)
C4—C5—N1—C10.3 (16)Br3—Hg2—N6—C16180.0 (8)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Br1iii0.932.853.678 (9)150
N5—H5A···Br3iv0.912.783.599 (10)150
N5—H5B···N3iv0.902.393.153 (10)142
Symmetry codes: (iii) x1/2, y, z+1/2; (iv) x1/2, y, z+3/2.
(III) catena-poly[[tris[diiodidomercury(II)]-bis{µ3-4-amino- 5-(pyridin-3-yl)-3-[4-(pyridin-4-yl)phenyl]-4H-1,2,4-triazole}] acetonitrile monosolvate] top
Crystal data top
[Hg3I6(C18H14N6)2]·C2H3NDx = 2.731 Mg m3
Mr = 2032.93Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 7784 reflections
a = 12.822 (3) Åθ = 2.3–27.5°
b = 28.976 (7) ŵ = 13.08 mm1
c = 13.309 (3) ÅT = 298 K
V = 4945 (2) Å3Plan, colourless
Z = 40.50 × 0.20 × 0.04 mm
F(000) = 3632
Data collection top
Bruker SMART CCD area-detector
diffractometer
4701 independent reflections
Radiation source: fine-focus sealed tube3888 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.060
ϕ and ω scansθmax = 25.5°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1515
Tmin = 0.059, Tmax = 0.623k = 3532
24554 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0671P)2 + 52.8532P]
where P = (Fo2 + 2Fc2)/3
4701 reflections(Δ/σ)max = 0.001
280 parametersΔρmax = 2.60 e Å3
18 restraintsΔρmin = 1.85 e Å3
Crystal data top
[Hg3I6(C18H14N6)2]·C2H3NV = 4945 (2) Å3
Mr = 2032.93Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 12.822 (3) ŵ = 13.08 mm1
b = 28.976 (7) ÅT = 298 K
c = 13.309 (3) Å0.50 × 0.20 × 0.04 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4701 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
3888 reflections with I > 2σ(I)
Tmin = 0.059, Tmax = 0.623Rint = 0.060
24554 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05018 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0671P)2 + 52.8532P]
where P = (Fo2 + 2Fc2)/3
4701 reflectionsΔρmax = 2.60 e Å3
280 parametersΔρmin = 1.85 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.2600 (10)0.5064 (5)0.4001 (9)0.057 (4)
H10.22190.50220.34130.069*
C20.3397 (11)0.5365 (5)0.3982 (8)0.054 (3)
H20.35640.55180.33890.065*
C30.3971 (8)0.5448 (4)0.4850 (7)0.030 (2)
C40.3663 (9)0.5214 (4)0.5691 (8)0.042 (3)
H40.39940.52710.63000.051*
C50.2876 (9)0.4899 (4)0.5644 (8)0.042 (3)
H50.27150.47300.62180.051*
C60.4870 (7)0.5782 (3)0.4854 (7)0.027 (2)
C70.5198 (8)0.5989 (4)0.3964 (7)0.036 (2)
H70.48340.59310.33730.044*
C80.6039 (9)0.6274 (4)0.3944 (8)0.045 (3)
H80.62250.64170.33440.054*
C90.6614 (8)0.6354 (4)0.4782 (7)0.035 (2)
H90.72010.65420.47580.042*
C100.6301 (8)0.6146 (3)0.5691 (7)0.028 (2)
C110.5450 (7)0.5865 (4)0.5712 (7)0.028 (2)
H110.52550.57270.63140.034*
C120.7022 (8)0.6202 (3)0.6574 (7)0.029 (2)
C130.7647 (7)0.6366 (3)0.8038 (7)0.028 (2)
C140.7755 (8)0.6525 (4)0.9088 (7)0.033 (2)
C150.8606 (8)0.6801 (4)0.9316 (7)0.034 (2)
H150.90570.68860.88010.041*
C160.8154 (10)0.6831 (4)1.0988 (8)0.046 (3)
H160.82850.69361.16360.055*
C170.7288 (11)0.6557 (5)1.0810 (9)0.059 (4)
H170.68460.64741.13350.071*
C180.7089 (9)0.6407 (5)0.9837 (8)0.049 (3)
H180.65050.62270.97000.059*
C190.922 (2)0.75000.638 (2)0.097 (8)
C200.967 (4)0.75000.536 (3)0.169 (17)
H20A0.97710.71880.51340.253*0.50
H20B1.03350.76560.53660.253*0.50
H20C0.92100.76570.49050.253*0.50
I10.93194 (8)0.62394 (4)0.37414 (6)0.0631 (3)
I21.03030 (7)0.52660 (3)0.66052 (6)0.0599 (3)
I31.12891 (13)0.75000.88685 (11)0.0707 (4)
I41.05389 (15)0.75001.24935 (10)0.0764 (5)
Hg10.90889 (4)0.569653 (17)0.53010 (3)0.04264 (16)
Hg21.02075 (5)0.75001.05464 (4)0.04159 (19)
N10.2324 (7)0.4823 (3)0.4806 (6)0.040 (2)
N20.8025 (6)0.6127 (3)0.6544 (6)0.0317 (19)
N30.8420 (7)0.6234 (3)0.7481 (6)0.036 (2)
N40.6741 (6)0.6355 (3)0.7499 (5)0.0287 (17)
N50.5783 (6)0.6520 (4)0.7853 (6)0.040 (2)
H5A0.56460.67940.75040.060*
H5B0.52890.62980.77210.060*
N60.8802 (7)0.6948 (3)1.0249 (6)0.035 (2)
N70.902 (2)0.75000.711 (2)0.129 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.062 (8)0.072 (10)0.037 (6)0.038 (7)0.015 (6)0.004 (6)
C20.071 (9)0.058 (8)0.033 (5)0.029 (7)0.010 (5)0.004 (5)
C30.030 (5)0.025 (5)0.034 (5)0.004 (4)0.003 (4)0.002 (4)
C40.038 (6)0.052 (7)0.037 (5)0.009 (5)0.005 (5)0.001 (5)
C50.036 (6)0.052 (7)0.039 (6)0.011 (5)0.002 (5)0.001 (5)
C60.027 (5)0.026 (5)0.027 (4)0.002 (4)0.001 (4)0.004 (4)
C70.040 (6)0.041 (6)0.028 (5)0.008 (5)0.008 (4)0.002 (4)
C80.052 (7)0.044 (7)0.038 (6)0.003 (6)0.002 (5)0.011 (5)
C90.034 (6)0.027 (6)0.044 (6)0.001 (4)0.000 (4)0.001 (4)
C100.037 (5)0.015 (5)0.033 (5)0.003 (4)0.006 (4)0.005 (4)
C110.023 (5)0.035 (6)0.027 (4)0.000 (4)0.001 (4)0.006 (4)
C120.033 (5)0.026 (5)0.029 (5)0.010 (4)0.000 (4)0.002 (4)
C130.030 (5)0.025 (5)0.030 (5)0.006 (4)0.002 (4)0.005 (4)
C140.038 (6)0.029 (6)0.032 (5)0.002 (4)0.002 (4)0.002 (4)
C150.038 (6)0.036 (6)0.028 (5)0.010 (5)0.005 (4)0.004 (4)
C160.052 (7)0.055 (8)0.032 (5)0.001 (6)0.010 (5)0.009 (5)
C170.058 (8)0.085 (11)0.035 (6)0.014 (7)0.009 (6)0.003 (6)
C180.034 (6)0.066 (9)0.048 (6)0.019 (6)0.005 (5)0.011 (6)
C190.095 (11)0.096 (12)0.099 (11)0.0000.006 (9)0.000
C200.177 (19)0.168 (19)0.162 (19)0.0000.004 (10)0.000
I10.0694 (6)0.0741 (7)0.0458 (5)0.0059 (5)0.0160 (4)0.0063 (4)
I20.0613 (6)0.0665 (6)0.0520 (5)0.0142 (4)0.0041 (4)0.0122 (4)
I30.0941 (11)0.0454 (8)0.0725 (8)0.0000.0119 (8)0.000
I40.1369 (14)0.0489 (8)0.0433 (6)0.0000.0357 (7)0.000
Hg10.0415 (3)0.0468 (3)0.0396 (2)0.0112 (2)0.00049 (18)0.00256 (19)
Hg20.0483 (4)0.0382 (4)0.0383 (3)0.0000.0146 (3)0.000
N10.041 (5)0.040 (5)0.039 (5)0.005 (4)0.001 (4)0.014 (4)
N20.022 (4)0.038 (5)0.035 (4)0.002 (4)0.005 (3)0.010 (4)
N30.030 (5)0.047 (6)0.031 (4)0.002 (4)0.001 (4)0.009 (4)
N40.024 (4)0.035 (5)0.028 (4)0.004 (3)0.003 (3)0.003 (3)
N50.019 (4)0.063 (7)0.038 (4)0.002 (4)0.001 (3)0.008 (4)
N60.044 (5)0.028 (5)0.034 (4)0.006 (4)0.012 (4)0.004 (4)
N70.129 (13)0.133 (13)0.127 (12)0.0000.005 (9)0.000
Geometric parameters (Å, º) top
C1—N11.327 (15)C14—C151.386 (14)
C1—C21.344 (16)C15—N61.337 (12)
C1—H10.9300C15—H150.9300
C2—C31.390 (14)C16—N61.331 (15)
C2—H20.9300C16—C171.386 (18)
C3—C41.366 (15)C16—H160.9300
C3—C61.506 (13)C17—C181.391 (16)
C4—C51.363 (15)C17—H170.9300
C4—H40.9300C18—H180.9300
C5—N11.340 (14)C19—N71.00 (4)
C5—H50.9300C19—C201.47 (4)
C6—C111.385 (13)C20—H20A0.9600
C6—C71.392 (14)C20—H20B0.9600
C7—C81.358 (16)C20—H20C0.9600
C7—H70.9300I1—Hg12.6211 (11)
C8—C91.357 (15)I2—Hg12.6444 (11)
C8—H80.9300I3—Hg22.6287 (17)
C9—C101.410 (14)I4—Hg22.6258 (14)
C9—H90.9300Hg1—N1i2.359 (9)
C10—C111.361 (14)Hg1—N22.481 (8)
C10—C121.504 (13)Hg2—N62.442 (9)
C11—H110.9300Hg2—N6ii2.442 (9)
C12—N21.305 (13)N1—Hg1i2.359 (9)
C12—N41.356 (12)N2—N31.381 (11)
C13—N31.296 (12)N4—N51.400 (11)
C13—N41.366 (12)N5—H5A0.9360
C13—C141.477 (13)N5—H5B0.9187
C14—C181.356 (15)
N1—C1—C2124.0 (11)N6—C16—C17121.3 (10)
N1—C1—H1118.0N6—C16—H16119.3
C2—C1—H1118.0C17—C16—H16119.3
C1—C2—C3119.9 (11)C16—C17—C18119.1 (11)
C1—C2—H2120.0C16—C17—H17120.5
C3—C2—H2120.0C18—C17—H17120.5
C4—C3—C2116.3 (10)C14—C18—C17119.3 (11)
C4—C3—C6122.5 (9)C14—C18—H18120.4
C2—C3—C6121.3 (9)C17—C18—H18120.4
C5—C4—C3120.5 (10)N7—C19—C20172 (4)
C5—C4—H4119.7C19—C20—H20A109.5
C3—C4—H4119.7C19—C20—H20B109.5
N1—C5—C4122.7 (10)H20A—C20—H20B109.5
N1—C5—H5118.7C19—C20—H20C109.5
C4—C5—H5118.7H20A—C20—H20C109.5
C11—C6—C7117.7 (9)H20B—C20—H20C109.5
C11—C6—C3121.8 (9)N1i—Hg1—N286.5 (3)
C7—C6—C3120.4 (8)N1i—Hg1—I1114.9 (2)
C8—C7—C6121.2 (9)N2—Hg1—I1106.8 (2)
C8—C7—H7119.4N1i—Hg1—I2101.0 (2)
C6—C7—H7119.4N2—Hg1—I297.08 (19)
C9—C8—C7121.3 (10)I1—Hg1—I2137.44 (4)
C9—C8—H8119.4N6—Hg2—N6ii81.9 (4)
C7—C8—H8119.4N6—Hg2—I4106.2 (2)
C8—C9—C10118.5 (10)N6ii—Hg2—I4106.2 (2)
C8—C9—H9120.7N6—Hg2—I3104.6 (2)
C10—C9—H9120.7N6ii—Hg2—I3104.6 (2)
C11—C10—C9120.1 (9)I4—Hg2—I3138.85 (7)
C11—C10—C12122.8 (9)C1—N1—C5116.4 (10)
C9—C10—C12116.7 (9)C1—N1—Hg1i119.5 (7)
C10—C11—C6121.2 (9)C5—N1—Hg1i124.1 (7)
C10—C11—H11119.4C12—N2—N3107.3 (8)
C6—C11—H11119.4C12—N2—Hg1130.2 (6)
N2—C12—N4110.0 (8)N3—N2—Hg1120.9 (6)
N2—C12—C10124.3 (9)C13—N3—N2107.6 (8)
N4—C12—C10125.6 (9)C12—N4—C13105.1 (8)
N3—C13—N4110.0 (8)C12—N4—N5130.5 (8)
N3—C13—C14124.1 (9)C13—N4—N5124.1 (7)
N4—C13—C14125.8 (9)N4—N5—H5A106.7
C18—C14—C15118.8 (9)N4—N5—H5B107.6
C18—C14—C13123.9 (10)H5A—N5—H5B111.6
C15—C14—C13117.4 (9)C16—N6—C15119.2 (9)
N6—C15—C14122.4 (10)C16—N6—Hg2120.5 (7)
N6—C15—H15118.8C15—N6—Hg2119.9 (7)
C14—C15—H15118.8
N1—C1—C2—C32 (2)C2—C1—N1—Hg1i179.5 (12)
C1—C2—C3—C41.0 (19)C4—C5—N1—C11.6 (18)
C1—C2—C3—C6179.8 (12)C4—C5—N1—Hg1i177.5 (9)
C2—C3—C4—C53.8 (18)N4—C12—N2—N30.1 (11)
C6—C3—C4—C5177.0 (10)C10—C12—N2—N3177.6 (9)
C3—C4—C5—N14.3 (19)N4—C12—N2—Hg1165.1 (6)
C4—C3—C6—C111.2 (16)C10—C12—N2—Hg117.2 (15)
C2—C3—C6—C11179.6 (11)N1i—Hg1—N2—C1236.9 (9)
C4—C3—C6—C7175.8 (11)I1—Hg1—N2—C1278.1 (9)
C2—C3—C6—C75.1 (16)I2—Hg1—N2—C12137.6 (9)
C11—C6—C7—C81.9 (16)N1i—Hg1—N2—N3126.5 (8)
C3—C6—C7—C8176.7 (10)I1—Hg1—N2—N3118.4 (7)
C6—C7—C8—C92.4 (19)I2—Hg1—N2—N325.9 (7)
C7—C8—C9—C102.0 (17)N4—C13—N3—N20.4 (11)
C8—C9—C10—C111.1 (16)C14—C13—N3—N2178.0 (9)
C8—C9—C10—C12173.7 (10)C12—N2—N3—C130.3 (11)
C9—C10—C11—C60.7 (15)Hg1—N2—N3—C13166.6 (7)
C12—C10—C11—C6172.8 (9)N2—C12—N4—C130.2 (11)
C7—C6—C11—C101.1 (15)C10—C12—N4—C13177.8 (9)
C3—C6—C11—C10175.8 (9)N2—C12—N4—N5173.1 (10)
C11—C10—C12—N2123.8 (11)C10—C12—N4—N54.5 (16)
C9—C10—C12—N248.6 (14)N3—C13—N4—C120.3 (11)
C11—C10—C12—N459.0 (14)C14—C13—N4—C12177.9 (9)
C9—C10—C12—N4128.7 (11)N3—C13—N4—N5173.4 (9)
N3—C13—C14—C18138.5 (12)C14—C13—N4—N54.1 (15)
N4—C13—C14—C1844.3 (17)C17—C16—N6—C150.7 (18)
N3—C13—C14—C1539.9 (15)C17—C16—N6—Hg2173.1 (10)
N4—C13—C14—C15137.4 (11)C14—C15—N6—C160.9 (17)
C18—C14—C15—N61.2 (17)C14—C15—N6—Hg2173.3 (8)
C13—C14—C15—N6177.3 (10)N6ii—Hg2—N6—C1683.0 (9)
N6—C16—C17—C181 (2)I4—Hg2—N6—C1621.6 (9)
C15—C14—C18—C171.3 (19)I3—Hg2—N6—C16173.9 (8)
C13—C14—C18—C17177.0 (12)N6ii—Hg2—N6—C1589.3 (8)
C16—C17—C18—C141 (2)I4—Hg2—N6—C15166.1 (8)
C2—C1—N1—C51 (2)I3—Hg2—N6—C1513.7 (8)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+3/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5B···N3iii0.922.423.173 (12)139
N5—H5A···I3iii0.942.863.706 (10)150
C7—H7···I1iv0.933.023.842 (10)148
Symmetry codes: (iii) x1/2, y, z+3/2; (iv) x1/2, y, z+1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formula[Hg3Cl6(C18H14N6)2]·C2H3N[Hg3Br6(C18H14N6)2]·C2H3N[Hg3I6(C18H14N6)2]·C2H3N
Mr1484.231750.992032.93
Crystal system, space groupOrthorhombic, PnmaOrthorhombic, PnmaOrthorhombic, Pnma
Temperature (K)298298298
a, b, c (Å)12.773 (2), 27.267 (5), 12.941 (2)12.8037 (16), 27.890 (4), 13.0245 (17)12.822 (3), 28.976 (7), 13.309 (3)
V3)4506.9 (14)4651.0 (10)4945 (2)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)10.6015.0813.08
Crystal size (mm)0.32 × 0.18 × 0.050.25 × 0.20 × 0.030.50 × 0.20 × 0.04
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Multi-scan
(SADABS; Bruker, 2003)
Multi-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.133, 0.6190.117, 0.6610.059, 0.623
No. of measured, independent and
observed [I > 2σ(I)] reflections
22532, 4277, 3278 23320, 4422, 3338 24554, 4701, 3888
Rint0.0770.0750.060
(sin θ/λ)max1)0.6060.6060.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.188, 1.02 0.049, 0.133, 1.03 0.050, 0.138, 1.04
No. of reflections427744224701
No. of parameters287281280
No. of restraints12018
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.1128P)2 + 27.9072P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0646P)2 + 19.0915P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0671P)2 + 52.8532P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)2.67, 1.892.17, 2.042.60, 1.85

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Cl1i0.932.753.613 (12)154.3
N5—H5A···Cl3ii0.892.703.512 (12)151.6
N5—H5B···N3ii0.892.393.149 (12)143.3
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C7—H7···Br1i0.932.853.678 (9)149.6
N5—H5A···Br3ii0.912.783.599 (10)150.3
N5—H5B···N3ii0.902.393.153 (10)142.2
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x1/2, y, z+3/2.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N5—H5B···N3i0.922.423.173 (12)139.3
N5—H5A···I3i0.942.863.706 (10)150.2
C7—H7···I1ii0.933.023.842 (10)147.5
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x1/2, y, z+1/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds