Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The ortho-, para- and meta-chloro-substituted N-chloro­phenyl-2-phthalimido­ethane­sulfonamide derivatives, C16H13ClN2O4S, have been structurally characterized by single-crystal X-ray crystallography. N-(2-Chloro­phenyl)-2-phthalimido­ethane­sulfonamide, (I), has ortho­rhom­bic (P212121) symmetry, N-(4-chloro­phenyl)-2-phthalimido­ethane­sulfonamide, (II), has triclinic (P\overline{1}) symmetry and N-(3-chloro­phenyl)-2-phthalimido­ethane­sulfonamide, (III), has monoclinic (P21/c) symmetry. The mol­ecules of (I)–(III) are regioisomers which have crystallized in different space groups as a result of the differing intra- and inter­molecular hydrogen-bond inter­actions which are present in each structure. Compounds (I) and (II) are stabilized by N—H...O and C—H...O hydrogen bonds, while (III) is stabilized by N—H...O, C—H...O and C—H...Cl hydrogen-bond inter­actions. The structure of (II) also displays π–π stacking inter­actions between the isoindole and benzene rings. All three structures are of inter­est with respect to their biological activities and have been studied as part of a programme to develop anti­convulsant drugs for the treatment of epilepsy.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615015223/wq3094sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615015223/wq3094Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615015223/wq3094IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615015223/wq3094IIIsup4.hkl
Contains datablock III

CCDC references: 1418861; 1418860; 1418859

Introduction top

In the chemical, biological and material sciences, isomers exhibit a variety of properties (Zhang et al., 2009). For instance, although positional isomers display similar functionalities (Park et al., 2005), stereoisomers of pharmaceutical compounds can exhibit profoundly different biological activities (Wermuth et al., 1997; Rebek, 2005), while for molecule-based functional materials, the bulk properties are not only related to a single molecular property but are also influenced to a large extent by inter­molecular inter­actions. Changes in the position of substituent groups can significantly alter the molecular configurations and crystal structures of the isomers (Fan & Yan, 2014). A slight difference in molecular structure can lead to a profound impact on crystal packing.

Various substituted N-phenyl phthalimide derivatives have shown potential anti­convulsant activity (Yadav et al., 2012). Taurine is known to have anti-epileptic activity, but as yet this has not been applied in the clinical setting (Gupta et al., 2005). 2-Phthalimido-N-substituted-phenyl­ethane­sulfonamides have been designed as potent anti­convulsant compounds and evaluated for anti­convulsant activity in animal experiments. Anti­convulsant activity has been shown to be sensitive to the position of the chlorine substituents. Thus, the ortho-chloro substituted isomer (I) is more active than (II) and (III) (Akgul et al., 2007). The para-substituted isomer (II) can be used as a disposable electrochemical biosensor and redox indicator; it reduces guanine base oxidation and can cause mutation (Ozkan-Ariksoysal et al., 2010).

We now report the structures of these three positional isomers of N-chloro­phenyl-2-phthalimido­ethane­sulfonamide derivatives, namely N-(2-chloro­phenyl)-2-phthalimido­ethane­sulfonamide, (I), N-(4-chloro­phenyl)-2-phthalimido­ethane­sulfonamide, (II), and N-(3-chloro­phenyl)-2-phthalimido­ethane­sulfonamide, (III) (see scheme). The purpose of this study is to determine the impact of the chlorine position on the inter­molecular inter­actions and ultimately on the crystal packing.

Experimental top

Synthesis and crystallization top

Synthesis and crystallization processes were reported in a previous study (Akgul et al., 2007).

Refinement top

Crystal data, data collection and structure refinement details are summarized in Table 1. For all three structures, H atoms were refined freely, giving C—H = 0.90 (4)–0.98 (3) Å and N—H = 0.83 (3) Å. [Please check added details and correct as necessary]

Results and discussion top

In the molecule of (I) (Fig. 1) there are two C—H···O and N—H···O type intra­molecular inter­actions (Table 2), which generate S(6) and S(8) motifs (Bernstein et al., 1995), respectively. There are also two types of inter­molecular inter­action. A polymeric chain along the b axis is generated by C7—H7A···O4i_I inter­molecular inter­actions with graph set C(6), while C7—H7B···O2ii_I inter­molecular inter­actions form a second polymeric chain, with graph set C(4), extending along the a axis [symmetry codes: (i_I) 1 - x, -1/2 + y, 1/2 - z; (ii_I) -1 + x, y, z]. Considering these two inter­actions together, they form a two-dimensional polymeric sheet parallel to the ab plane. In this plane, two graph sets, R44(18) and R54(18), can be defined, as shown in Fig 2.

In the molecule of (II) (Fig. 3), although there no significant intra­molecular inter­actions are observed, there do exist N—H···O, C—H···O and ππ type inter­molecular inter­actions (Table 3). The N1–H1···O2i_II inter­action forms a centrosymmetric dimer between the molecules with fractional coordinates (x, y, z) and (-x, 1 - y, -z), forming an R22(8) motif [symmetry code: (i_II) -x, 1 - y, -z]. In addition to this hydrogen bond, the dimer is stabilised by ππ inter­actions between the C1–C6 benzene ring and the C10–C15 ring, with a centroid-to-centroid distance of 3.8723 (18) Å. Finally, there is a C4—H4···O4ii_II inter­action, which results in the formation of a one-dimensional polymeric chain extending along the b axis with a C(11) motif [symmetry code: (ii_II) x, -1 + y, z]. Considering this chain and the dimeric inter­action generated by the N1—H1···O2i_II and ππ inter­actions, a one-dimensional bi-chain is formed along the b axis (Fig. 4).

In the molecule of (III) (Fig. 5) there is an intra­molecular C5—H5···O1 hydrogen bond which gives rise to an S(6) motif (Table 4). In addition, the C11—H11···O3i_III inter­action forms a dimeric structure, which can be described as an R22(12) motif, with the inversion-related molecule [symmetry code: (i_III) 1 - x, -y, -z]. The N1—H1···O4ii_III inter­molecular inter­action gives rise to a one-dimensional polymeric chain, described as a C(8) motif, extending along the a axis (Fig. 6) [symmetry code: (ii_III) 1 + x, y, z]. Considering this C(8) chain and the dimeric inter­action together, they generate a two-dimensional sheet parallel to the (031) plane. Providing further stabilisation to the C(8) chain is a C2—H2···Cl1iii_III inter­action, which generates a one-dimensional polymeric chain described as a C(5) motif extending along the a axis (Fig. 7) [symmetry code: (iii_III) 1 + x, 1/2 - y, 1/2 + z]. Considering this C(5) chain and the dimeric inter­action together, they form a two-dimensional sheet perpendicular to the b axis. Finally, considering these three inter­actions together, all molecules in the structure of (III) are connected to each other via C—H···O, N—H···O and C—H···Cl type inter­molecular inter­actions.

Intra- and inter­molecular hydrogen bonds play an important role in molecular and crystal structural conformations. To investigate the conformational differences of the three title compounds, the torsion angles around the C7—C8 and S1—C7 bonds were compared (Tables 5–7). The conformations about the S1—C7 bond for (I), (II) and (III) are -sc (-synclinal), +ap (+anti­periplanar) and -sc, respectively. The conformations about the C7—C8 bond for (I), (II) and (III) are -sc, -sc and +sc, respectively. Considering the intra­molecular inter­actions, (I) has an N—H···O type inter­action which folds the molecule into an -sc, -sc conformation.

The conformational differences between the three isomers is highlighted by comparison of the T1 (N1—S1—C7—C8) and T2 (S1—C7—C8—N2) torsion angles. Comparing the conformations of (I) and (II), the T2 angles are similar (-62.7 and -70.9°, respectively), but the T1 angles give rise to the difference, with values of -52.0 and -176.8°, respectively. Comparing (I) and (III), the T1 angles are similar (-52.0 and -70.2°, respectively) but the T2 angles lead to the difference, with values of -62.7 and +64.7°, respectively. In summary, the T1 dihedral angle is responsible for the difference between (I) and (II) and between (II) and (III), while the T2 angle is responsible for the difference between (I) and (III) and between (II) and (III). The bond distances and angles of the flexible linkage between the aromatic systems do not differ significantly between (I), (II) and (III), despite the differing conformations of these linkers.

The molecular structures of the three title compounds consist of two planar/aromatic rings, which are benzene and iso­indole rings. The dihedral angles between the mean planes of these rings for (I), (II) and (III) are 62.7 (1), 12.50 (9) and 8.25 (7)°, respectively.

Positional isomerization not only affects topology and packing differences, but also affects the physicochemical (Liao et al., 2010), kinetic and thermodynamic (Dhalluin et al., 2005) properties and the pharmaceutical activities of compounds (Banba et al., 2013). Considering the drug activity of the title compounds (Akgul et al., 2007), (I) was found to be more active than the others, while (II) and (III) show equal and weak activity compared with (I). In addition, the toxicity of aromatic compounds is higher than that of non-aromatics (Pramanik & Roy, 2014). Although (I) does not show any neurotoxic effect, (II) and (III) do show neurotoxicity.

To compare the efficiency of the title compounds as potential anti­convulsant drugs, their aromaticities were calculated and compared. Hypotetically, because of electron delocalization, the ortho- and para-positions of nitro-substituted benzene are partially negative charged. When an electron-withdrawing group (chlorine) is attached in the para- or ortho-postion, the aromticity of benzene decreases. To compare the aromaticities of these benzene rings, highest occupied molecular orbital (HOMA; Krygowski, 1993) aromaticity indices were calculated. Comparing the HOMA values of these compounds, the obtained values are 0.919, 0.930 and 0.948 for (I), (II) and (III), respectively. Thus, (I) is slightly less aromatic than (II) and (III), and so is a more suitable candidate for anti­convulsant drugs.

Although the main difference between the three title compounds is simply the position of the chlorine substituent, the resulting crystal systems and space groups are different from each other. Compound (I) crystallizes in a noncentrosymmetric chiral orthorhombic space group, while (II) and (III) crystallize in centrosymmetric triclinic and monoclinic space groups. In brief, positional isomerization plays an important role in the packing and structural conformation of the studied compounds.

Related literature top

For related literature, see: Ozkan-Ariksoysal et al. (2010); Bernstein et al. (1995); Fan & Yan (2014); Gupta et al. (2005); Park et al. (2005); Rebek (2005); Wermuth et al. (1997); Yadav et al. (2012); Zhang et al. (2009).

Computing details top

For all compounds, data collection: CrysAlis PRO (Agilent, 2014); cell refinement: CrysAlis PRO (Agilent, 2014); data reduction: CrysAlis PRO (Agilent, 2014); program(s) used to solve structure: SHELXS (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Intramolecular interactions are shown as dotted lines.
[Figure 2] Fig. 2. The crystal structure of (I), viewed along the c axis. Intra- and intermolecular hydrogen bonds are shown as dotted lines. The bond path which generates the graph-set motif is shown in a ball-and-stick drawing style and the other atoms are shown in a wireframe drawing style. For clarity, H atoms which do not play a role in the hydrogen bonding have been omitted. The generated graph-set motif can be represented in two forms, shown on the right-hand side as R54(18) and on the left-hand side as R44(18).
[Figure 3] Fig. 3. The molecular structure of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 4] Fig. 4. The intermolecular intreractions of structure (II), showing the bi-chain constructed by one-dimensional chain and dimeric interactions (dotted lines). The graph set-notations, as shown in the figure, are R22(8) and R44(26).
[Figure 5] Fig. 5. The molecular structure of (III), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. The intramolecular interaction is shown as a dotted line.
[Figure 6] Fig. 6. The intermolecular interactions of structure (III) (dotted lines), including N—H···O type interactions. Considering the dimeric interaction with this type of interaction, they construct a two-dimensional sheet parallel to the (031) plane. The graph-set notations, as shown in the figure, are R22(10) and R44(30).
[Figure 7] Fig. 7. The intermolecular interactions of structure (III) (dotted lines), including C—H···Cl type interactions. Considering the dimeric interaction with this type of interaction, they construct a two-dimensional sheet parallel to the (102) plane. The graph-set notations, as shown in the figure, are R22(10) and R66(58).
(I) N-(2-chlorophenyl)-2-phthalimidoethanesulfonamide top
Crystal data top
C16H13ClN2O4SDx = 1.546 Mg m3
Mr = 364.79Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 1162 reflections
a = 5.4126 (2) Åθ = 3.9–24.3°
b = 12.7656 (5) ŵ = 0.40 mm1
c = 22.6827 (8) ÅT = 293 K
V = 1567.26 (11) Å3Needle, colourless
Z = 40.35 × 0.07 × 0.05 mm
F(000) = 752
Data collection top
Agilent Xcalibur Eos
diffractometer
2894 independent reflections
Radiation source: Enhance (Mo) X-ray Source2484 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 16.1333 pixels mm-1θmax = 26.4°, θmin = 3.2°
ω scansh = 56
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2014)
k = 915
Tmin = 0.989, Tmax = 0.998l = 2828
4676 measured reflections
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.037 w = 1/[σ2(Fo2) + (0.0353P)2 + 0.1242P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.082(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.22 e Å3
2894 reflectionsΔρmin = 0.29 e Å3
269 parametersAbsolute structure: Flack x parameter determined using 803 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
0 restraintsAbsolute structure parameter: 0.02 (4)
Crystal data top
C16H13ClN2O4SV = 1567.26 (11) Å3
Mr = 364.79Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.4126 (2) ŵ = 0.40 mm1
b = 12.7656 (5) ÅT = 293 K
c = 22.6827 (8) Å0.35 × 0.07 × 0.05 mm
Data collection top
Agilent Xcalibur Eos
diffractometer
2894 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2014)
2484 reflections with I > 2σ(I)
Tmin = 0.989, Tmax = 0.998Rint = 0.018
4676 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037All H-atom parameters refined
wR(F2) = 0.082Δρmax = 0.22 e Å3
S = 1.06Δρmin = 0.29 e Å3
2894 reflectionsAbsolute structure: Flack x parameter determined using 803 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
269 parametersAbsolute structure parameter: 0.02 (4)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.1528 (2)0.56965 (9)0.18287 (5)0.0680 (4)
S10.55647 (15)0.26803 (7)0.19537 (4)0.0370 (2)
O10.5602 (5)0.1892 (2)0.15096 (11)0.0553 (7)
O20.7807 (4)0.2950 (2)0.22485 (11)0.0506 (7)
O30.4455 (5)0.2256 (2)0.40447 (10)0.0553 (7)
O40.5984 (6)0.49229 (19)0.27603 (11)0.0546 (8)
N10.4553 (6)0.3769 (2)0.16682 (13)0.0393 (7)
N20.4780 (5)0.3494 (2)0.33100 (11)0.0339 (6)
C10.1054 (7)0.4755 (3)0.12845 (15)0.0407 (8)
C20.0807 (8)0.4903 (4)0.0879 (2)0.0573 (11)
C30.1259 (9)0.4152 (4)0.0464 (2)0.0661 (14)
C40.0144 (9)0.3270 (4)0.04528 (19)0.0670 (14)
C50.2043 (8)0.3126 (4)0.08425 (17)0.0541 (11)
C60.2538 (6)0.3869 (3)0.12702 (14)0.0372 (8)
C70.3380 (7)0.2312 (3)0.24945 (15)0.0338 (7)
C80.2735 (6)0.3148 (3)0.29420 (15)0.0360 (8)
C90.5444 (7)0.3021 (3)0.38401 (14)0.0374 (8)
C100.7535 (6)0.3651 (3)0.40753 (14)0.0354 (8)
C110.8922 (8)0.3531 (3)0.45783 (16)0.0490 (10)
C121.0798 (8)0.4249 (4)0.46783 (17)0.0527 (11)
C131.1236 (8)0.5051 (4)0.42894 (19)0.0522 (11)
C140.9833 (7)0.5175 (3)0.37819 (17)0.0466 (10)
C150.7968 (6)0.4469 (3)0.36876 (14)0.0354 (8)
C160.6205 (6)0.4376 (3)0.31878 (14)0.0350 (8)
H8A0.142 (5)0.290 (2)0.3206 (12)0.024 (8)*
H7A0.397 (6)0.172 (3)0.2652 (14)0.039 (10)*
H141.007 (7)0.574 (3)0.3536 (16)0.054 (12)*
H50.301 (7)0.250 (3)0.0823 (16)0.047 (11)*
H10.480 (6)0.429 (3)0.1884 (14)0.035 (10)*
H8B0.206 (6)0.379 (3)0.2774 (14)0.033 (9)*
H30.238 (7)0.428 (3)0.0187 (18)0.062 (13)*
H7B0.202 (6)0.211 (2)0.2276 (14)0.038 (10)*
H110.862 (7)0.295 (3)0.4814 (15)0.046 (11)*
H131.238 (8)0.554 (3)0.4382 (17)0.057 (12)*
H20.165 (7)0.546 (3)0.0902 (16)0.044 (12)*
H121.174 (7)0.417 (3)0.5054 (17)0.062 (12)*
H40.017 (8)0.275 (4)0.0182 (19)0.074 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0714 (7)0.0491 (6)0.0834 (8)0.0162 (6)0.0174 (6)0.0138 (6)
S10.0316 (4)0.0414 (5)0.0380 (4)0.0095 (4)0.0001 (4)0.0008 (4)
O10.0665 (17)0.0525 (17)0.0468 (14)0.0235 (15)0.0072 (14)0.0098 (12)
O20.0267 (13)0.067 (2)0.0581 (16)0.0053 (12)0.0039 (11)0.0075 (14)
O30.0695 (18)0.0529 (16)0.0436 (14)0.0213 (16)0.0029 (13)0.0108 (13)
O40.083 (2)0.0342 (15)0.0469 (15)0.0101 (14)0.0184 (14)0.0089 (12)
N10.0435 (17)0.0360 (18)0.0383 (15)0.0020 (15)0.0063 (14)0.0005 (14)
N20.0383 (16)0.0328 (15)0.0306 (13)0.0038 (13)0.0022 (12)0.0003 (12)
C10.037 (2)0.044 (2)0.0415 (19)0.0017 (17)0.0005 (16)0.0076 (17)
C20.048 (3)0.060 (3)0.064 (3)0.008 (3)0.006 (2)0.016 (2)
C30.054 (3)0.093 (4)0.052 (3)0.005 (3)0.019 (2)0.010 (3)
C40.073 (3)0.081 (4)0.047 (2)0.005 (3)0.019 (2)0.011 (2)
C50.059 (3)0.061 (3)0.042 (2)0.016 (2)0.010 (2)0.008 (2)
C60.0316 (18)0.049 (2)0.0309 (16)0.0009 (17)0.0039 (14)0.0048 (16)
C70.0302 (17)0.0317 (19)0.0396 (18)0.0004 (17)0.0050 (15)0.0012 (17)
C80.0323 (18)0.035 (2)0.0412 (19)0.0002 (16)0.0013 (16)0.0032 (16)
C90.045 (2)0.0363 (19)0.0306 (16)0.0012 (17)0.0067 (16)0.0005 (15)
C100.0393 (19)0.0348 (19)0.0323 (16)0.0024 (16)0.0041 (15)0.0043 (15)
C110.059 (3)0.052 (3)0.0358 (19)0.002 (2)0.0061 (18)0.0011 (19)
C120.054 (3)0.062 (3)0.042 (2)0.006 (2)0.014 (2)0.009 (2)
C130.046 (2)0.056 (3)0.055 (2)0.004 (2)0.0061 (19)0.019 (2)
C140.053 (2)0.039 (2)0.048 (2)0.0068 (19)0.0028 (18)0.0052 (19)
C150.0373 (18)0.0337 (19)0.0353 (17)0.0010 (16)0.0021 (15)0.0064 (15)
C160.042 (2)0.0279 (17)0.0350 (17)0.0016 (16)0.0004 (14)0.0011 (15)
Geometric parameters (Å, º) top
Cl1—C11.742 (4)C5—C61.383 (5)
S1—O11.424 (3)C5—H50.96 (4)
S1—O21.428 (3)C7—C81.514 (5)
S1—N11.629 (3)C7—H7A0.90 (4)
S1—C71.768 (4)C7—H7B0.92 (3)
O3—C91.207 (4)C8—H8A0.98 (3)
O4—C161.201 (4)C8—H8B0.97 (3)
N1—C61.421 (4)C9—C101.487 (5)
N1—H10.83 (3)C10—C111.374 (5)
N2—C81.455 (4)C10—C151.385 (5)
N2—C91.392 (4)C11—C121.386 (6)
N2—C161.393 (4)C11—H110.93 (3)
C1—C21.378 (5)C12—C131.372 (6)
C1—C61.388 (5)C12—H121.00 (4)
C2—C31.365 (7)C13—C141.388 (5)
C2—H20.85 (4)C13—H130.90 (4)
C3—C41.359 (7)C14—C151.370 (5)
C3—H30.89 (4)C14—H140.93 (4)
C4—C51.368 (6)C15—C161.487 (4)
C4—H40.92 (4)
O1—S1—O2119.32 (15)C8—C7—H7A114 (2)
O1—S1—N1109.09 (16)C8—C7—H7B112 (2)
O1—S1—C7108.21 (17)H7A—C7—H7B105 (3)
O2—S1—N1105.43 (16)N2—C8—C7115.0 (3)
O2—S1—C7107.94 (16)N2—C8—H8A107.5 (16)
N1—S1—C7106.13 (17)N2—C8—H8B105.0 (19)
S1—N1—H1113 (2)C7—C8—H8A110.2 (17)
C6—N1—S1125.9 (3)C7—C8—H8B114.5 (19)
C6—N1—H1115 (2)H8A—C8—H8B104 (3)
C9—N2—C8124.1 (3)O3—C9—N2124.6 (3)
C9—N2—C16112.3 (3)O3—C9—C10129.6 (3)
C16—N2—C8123.5 (3)N2—C9—C10105.8 (3)
C2—C1—Cl1119.1 (3)C11—C10—C9130.8 (3)
C2—C1—C6121.3 (4)C11—C10—C15121.2 (3)
C6—C1—Cl1119.6 (3)C15—C10—C9108.0 (3)
C1—C2—H2118 (3)C10—C11—C12117.5 (4)
C3—C2—C1119.7 (4)C10—C11—H11118 (2)
C3—C2—H2123 (3)C12—C11—H11124 (2)
C2—C3—H3119 (3)C11—C12—H12117 (2)
C4—C3—C2119.7 (4)C13—C12—C11120.9 (4)
C4—C3—H3121 (3)C13—C12—H12122 (2)
C3—C4—C5121.3 (5)C12—C13—C14121.6 (4)
C3—C4—H4120 (3)C12—C13—H13119 (3)
C5—C4—H4118 (3)C14—C13—H13119 (3)
C4—C5—C6120.4 (4)C13—C14—H14121 (2)
C4—C5—H5119 (2)C15—C14—C13117.2 (4)
C6—C5—H5120 (2)C15—C14—H14122 (2)
C1—C6—N1120.1 (3)C10—C15—C16108.4 (3)
C5—C6—N1122.2 (3)C14—C15—C10121.4 (3)
C5—C6—C1117.6 (3)C14—C15—C16130.1 (3)
S1—C7—H7A105 (2)O4—C16—N2125.2 (3)
S1—C7—H7B104 (2)O4—C16—C15129.3 (3)
C8—C7—S1115.6 (3)N2—C16—C15105.5 (3)
Cl1—C1—C2—C3177.5 (4)C8—N2—C9—C10177.6 (3)
Cl1—C1—C6—N14.8 (4)C8—N2—C16—O43.1 (5)
Cl1—C1—C6—C5177.9 (3)C8—N2—C16—C15177.0 (3)
S1—N1—C6—C1146.9 (3)C9—N2—C8—C788.2 (4)
S1—N1—C6—C536.0 (5)C9—N2—C16—O4179.5 (3)
S1—C7—C8—N262.7 (4)C9—N2—C16—C150.6 (4)
O1—S1—N1—C642.2 (3)C9—C10—C11—C12179.3 (3)
O1—S1—C7—C8169.0 (3)C9—C10—C15—C14178.7 (3)
O2—S1—N1—C6171.4 (3)C9—C10—C15—C161.1 (4)
O2—S1—C7—C860.6 (3)C10—C11—C12—C130.4 (6)
O3—C9—C10—C111.0 (6)C10—C15—C16—O4179.6 (4)
O3—C9—C10—C15178.6 (4)C10—C15—C16—N20.3 (4)
N1—S1—C7—C852.0 (3)C11—C10—C15—C141.6 (5)
N2—C9—C10—C11179.0 (4)C11—C10—C15—C16179.3 (3)
N2—C9—C10—C151.4 (3)C11—C12—C13—C140.2 (6)
C1—C2—C3—C40.6 (7)C12—C13—C14—C150.7 (6)
C2—C1—C6—N1175.6 (3)C13—C14—C15—C101.4 (6)
C2—C1—C6—C51.6 (5)C13—C14—C15—C16178.4 (3)
C2—C3—C4—C51.3 (7)C14—C15—C16—O42.2 (6)
C3—C4—C5—C61.8 (7)C14—C15—C16—N2177.7 (4)
C4—C5—C6—N1177.5 (4)C15—C10—C11—C121.1 (5)
C4—C5—C6—C10.3 (6)C16—N2—C8—C795.7 (4)
C6—C1—C2—C32.1 (6)C16—N2—C9—O3178.8 (3)
C7—S1—N1—C674.2 (3)C16—N2—C9—C101.2 (4)
C8—N2—C9—O32.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.84 (4)2.24 (3)2.984 (4)148 (3)
C5—H5···O10.96 (4)2.24 (4)2.912 (5)127 (3)
C7—H7A···O4i0.90 (4)2.48 (4)3.123 (5)129 (3)
C7—H7B···O2ii0.92 (3)2.52 (3)3.174 (4)128 (2)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1, y, z.
(II) N-(4-chlorophenyl)-2-phthalimidoethanesulfonamide top
Crystal data top
C16H13ClN2O4SZ = 2
Mr = 364.79F(000) = 376
Triclinic, P1Dx = 1.487 Mg m3
a = 7.5484 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9887 (10) ÅCell parameters from 2152 reflections
c = 11.2112 (10) Åθ = 3.6–27.6°
α = 100.624 (8)°µ = 0.39 mm1
β = 98.405 (7)°T = 293 K
γ = 95.661 (8)°Needle, colourless
V = 815.01 (13) Å30.18 × 0.12 × 0.06 mm
Data collection top
Agilent Xcalibur Eos
diffractometer
3287 independent reflections
Radiation source: Enhance (Mo) X-ray Source2245 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 16.1333 pixels mm-1θmax = 26.4°, θmin = 3.1°
ω scansh = 89
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2014)
k = 1211
Tmin = 0.974, Tmax = 0.991l = 1313
5967 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044All H-atom parameters refined
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0509P)2 + 0.1892P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3287 reflectionsΔρmax = 0.36 e Å3
269 parametersΔρmin = 0.37 e Å3
Crystal data top
C16H13ClN2O4Sγ = 95.661 (8)°
Mr = 364.79V = 815.01 (13) Å3
Triclinic, P1Z = 2
a = 7.5484 (7) ÅMo Kα radiation
b = 9.9887 (10) ŵ = 0.39 mm1
c = 11.2112 (10) ÅT = 293 K
α = 100.624 (8)°0.18 × 0.12 × 0.06 mm
β = 98.405 (7)°
Data collection top
Agilent Xcalibur Eos
diffractometer
3287 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2014)
2245 reflections with I > 2σ(I)
Tmin = 0.974, Tmax = 0.991Rint = 0.023
5967 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.117All H-atom parameters refined
S = 1.02Δρmax = 0.36 e Å3
3287 reflectionsΔρmin = 0.37 e Å3
269 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.12262 (9)0.64365 (6)0.17046 (6)0.0474 (2)
Cl10.40898 (13)0.21113 (9)0.55665 (7)0.0877 (3)
O10.1404 (3)0.74094 (19)0.28272 (16)0.0617 (5)
O20.0077 (2)0.66582 (19)0.06416 (16)0.0613 (5)
N20.3718 (3)0.8007 (2)0.00577 (19)0.0526 (6)
O30.4483 (3)0.6276 (2)0.13529 (19)0.0730 (6)
O40.2650 (3)0.9967 (2)0.09429 (19)0.0753 (6)
N10.0440 (3)0.4938 (3)0.1914 (2)0.0567 (6)
C150.2363 (3)0.9237 (2)0.1272 (2)0.0449 (6)
C100.2968 (3)0.8135 (2)0.1968 (2)0.0443 (6)
C110.2729 (4)0.7948 (3)0.3226 (3)0.0568 (7)
C50.1819 (3)0.2998 (3)0.2443 (2)0.0475 (6)
C10.1694 (5)0.4902 (3)0.4040 (3)0.0661 (8)
C60.1349 (3)0.4282 (3)0.2810 (2)0.0471 (6)
C40.2632 (4)0.2323 (3)0.3294 (2)0.0515 (7)
C30.3013 (4)0.2958 (3)0.4514 (2)0.0543 (7)
C90.3824 (3)0.7322 (3)0.1123 (2)0.0503 (6)
C160.2867 (4)0.9181 (3)0.0042 (3)0.0522 (7)
C130.1220 (4)0.9958 (3)0.3088 (3)0.0649 (8)
C70.3389 (4)0.6241 (3)0.1331 (3)0.0518 (7)
C140.1475 (4)1.0161 (3)0.1820 (3)0.0555 (7)
C80.4433 (4)0.7558 (4)0.1163 (3)0.0616 (8)
C20.2545 (5)0.4229 (3)0.4887 (3)0.0696 (9)
C120.1851 (4)0.8875 (4)0.3776 (3)0.0664 (8)
H50.160 (3)0.256 (2)0.159 (2)0.051 (7)*
H7A0.401 (3)0.595 (2)0.199 (2)0.046 (7)*
H40.298 (3)0.151 (3)0.304 (2)0.058 (8)*
H20.282 (4)0.466 (3)0.567 (3)0.069 (9)*
H8A0.444 (4)0.833 (3)0.185 (3)0.069 (9)*
H140.112 (4)1.085 (3)0.133 (3)0.066 (9)*
H7B0.325 (3)0.553 (3)0.063 (2)0.056 (7)*
H110.315 (4)0.720 (3)0.370 (3)0.077 (9)*
H120.170 (5)0.881 (4)0.463 (3)0.102 (12)*
H130.060 (4)1.059 (3)0.343 (3)0.063 (8)*
H8B0.564 (5)0.739 (4)0.111 (3)0.093 (11)*
H10.010 (3)0.448 (3)0.130 (2)0.047 (8)*
H1A0.132 (3)0.575 (3)0.428 (2)0.063 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0565 (4)0.0443 (4)0.0406 (3)0.0169 (3)0.0005 (3)0.0080 (3)
Cl10.1223 (7)0.0831 (6)0.0596 (5)0.0158 (5)0.0063 (5)0.0348 (4)
O10.0830 (13)0.0531 (11)0.0479 (11)0.0239 (10)0.0074 (9)0.0020 (9)
O20.0680 (12)0.0588 (12)0.0541 (11)0.0206 (10)0.0117 (9)0.0142 (9)
N20.0622 (14)0.0519 (13)0.0482 (13)0.0144 (11)0.0111 (10)0.0163 (10)
O30.0917 (15)0.0619 (13)0.0829 (15)0.0417 (12)0.0363 (12)0.0258 (11)
O40.1066 (16)0.0588 (13)0.0559 (12)0.0174 (11)0.0175 (11)0.0068 (10)
N10.0596 (15)0.0568 (15)0.0479 (14)0.0016 (12)0.0068 (12)0.0116 (12)
C150.0470 (14)0.0355 (13)0.0542 (15)0.0059 (11)0.0141 (11)0.0098 (11)
C100.0427 (13)0.0407 (13)0.0499 (15)0.0053 (11)0.0105 (11)0.0084 (11)
C110.0640 (18)0.0544 (17)0.0523 (17)0.0109 (14)0.0148 (13)0.0060 (14)
C50.0486 (15)0.0531 (16)0.0369 (14)0.0018 (12)0.0029 (11)0.0048 (12)
C10.101 (2)0.0536 (18)0.0443 (16)0.0170 (17)0.0117 (15)0.0075 (14)
C60.0484 (14)0.0503 (15)0.0424 (14)0.0023 (12)0.0057 (11)0.0125 (12)
C40.0583 (17)0.0480 (16)0.0488 (15)0.0087 (13)0.0087 (12)0.0104 (13)
C30.0639 (17)0.0545 (17)0.0456 (15)0.0005 (13)0.0051 (12)0.0204 (13)
C90.0522 (15)0.0468 (15)0.0596 (17)0.0147 (13)0.0190 (12)0.0183 (13)
C160.0571 (16)0.0426 (15)0.0577 (17)0.0066 (13)0.0143 (13)0.0085 (13)
C130.0613 (18)0.066 (2)0.073 (2)0.0147 (16)0.0043 (15)0.0308 (17)
C70.0614 (17)0.0526 (17)0.0454 (15)0.0205 (14)0.0046 (13)0.0168 (14)
C140.0542 (16)0.0443 (15)0.070 (2)0.0129 (13)0.0132 (14)0.0115 (14)
C80.062 (2)0.069 (2)0.0535 (18)0.0055 (16)0.0020 (14)0.0211 (16)
C20.109 (3)0.0590 (19)0.0333 (15)0.0028 (17)0.0019 (15)0.0049 (14)
C120.070 (2)0.074 (2)0.0571 (19)0.0095 (16)0.0050 (15)0.0219 (17)
Geometric parameters (Å, º) top
S1—O11.4214 (18)C5—C41.374 (4)
S1—O21.4333 (17)C5—H50.96 (2)
S1—N11.626 (3)C1—C61.379 (4)
S1—C71.764 (3)C1—C21.381 (4)
Cl1—C31.729 (3)C1—H1A0.93 (3)
N2—C91.391 (3)C4—C31.373 (4)
N2—C161.393 (3)C4—H40.88 (3)
N2—C81.445 (3)C3—C21.360 (4)
O3—C91.203 (3)C13—C141.379 (4)
O4—C161.202 (3)C13—C121.377 (5)
N1—C61.428 (3)C13—H130.93 (3)
N1—H10.75 (2)C7—C81.522 (4)
C15—C101.384 (3)C7—H7A0.92 (3)
C15—C161.480 (4)C7—H7B0.94 (3)
C15—C141.375 (4)C14—H140.89 (3)
C10—C111.372 (4)C8—H8A0.98 (3)
C10—C91.477 (4)C8—H8B0.95 (3)
C11—C121.374 (4)C2—H20.89 (3)
C11—H110.95 (3)C12—H120.93 (4)
C5—C61.371 (4)
O1—S1—O2118.61 (11)C4—C3—Cl1118.9 (2)
O1—S1—N1108.99 (13)C2—C3—Cl1120.7 (2)
O1—S1—C7109.18 (13)C2—C3—C4120.5 (3)
O2—S1—N1105.52 (12)N2—C9—C10105.8 (2)
O2—S1—C7108.63 (13)O3—C9—N2124.6 (3)
N1—S1—C7105.05 (13)O3—C9—C10129.6 (3)
C9—N2—C16111.9 (2)N2—C16—C15105.9 (2)
C9—N2—C8123.7 (2)O4—C16—N2124.8 (3)
C16—N2—C8124.4 (2)O4—C16—C15129.3 (3)
S1—N1—H1109 (2)C14—C13—H13115.8 (18)
C6—N1—S1122.31 (18)C12—C13—C14121.0 (3)
C6—N1—H1114 (2)C12—C13—H13123.1 (18)
C10—C15—C16108.0 (2)S1—C7—H7A105.0 (15)
C14—C15—C10121.2 (3)S1—C7—H7B107.9 (16)
C14—C15—C16130.8 (2)C8—C7—S1114.2 (2)
C15—C10—C9108.4 (2)C8—C7—H7A108.6 (15)
C11—C10—C15120.8 (3)C8—C7—H7B112.4 (17)
C11—C10—C9130.8 (2)H7A—C7—H7B108 (2)
C10—C11—C12118.1 (3)C15—C14—C13117.7 (3)
C10—C11—H11120.9 (19)C15—C14—H14117.4 (19)
C12—C11—H11121.0 (19)C13—C14—H14124.9 (19)
C6—C5—C4120.4 (2)N2—C8—C7113.5 (2)
C6—C5—H5120.4 (15)N2—C8—H8A105.8 (17)
C4—C5—H5119.2 (15)N2—C8—H8B107 (2)
C6—C1—C2119.4 (3)C7—C8—H8A112.4 (18)
C6—C1—H1A119.1 (17)C7—C8—H8B108 (2)
C2—C1—H1A121.4 (17)H8A—C8—H8B110 (3)
C5—C6—N1119.3 (2)C1—C2—H2119 (2)
C5—C6—C1119.8 (3)C3—C2—C1120.3 (3)
C1—C6—N1120.8 (3)C3—C2—H2121.0 (19)
C5—C4—H4119.7 (18)C11—C12—C13121.1 (3)
C3—C4—C5119.5 (3)C11—C12—H12121 (2)
C3—C4—H4120.7 (18)C13—C12—H12118 (2)
S1—N1—C6—C5123.3 (2)C4—C3—C2—C10.6 (5)
S1—N1—C6—C159.3 (3)C9—N2—C16—O4178.0 (3)
S1—C7—C8—N270.9 (3)C9—N2—C16—C150.8 (3)
Cl1—C3—C2—C1179.7 (3)C9—N2—C8—C769.7 (4)
O1—S1—N1—C658.7 (2)C9—C10—C11—C12179.2 (3)
O1—S1—C7—C860.0 (2)C16—N2—C9—O3179.3 (3)
O2—S1—N1—C6172.9 (2)C16—N2—C9—C100.2 (3)
O2—S1—C7—C870.7 (2)C16—N2—C8—C7111.3 (3)
N1—S1—C7—C8176.8 (2)C16—C15—C10—C11178.2 (2)
C15—C10—C11—C120.8 (4)C16—C15—C10—C91.7 (3)
C15—C10—C9—N21.2 (3)C16—C15—C14—C13178.8 (3)
C15—C10—C9—O3178.2 (3)C7—S1—N1—C658.2 (3)
C10—C15—C16—N21.6 (3)C14—C15—C10—C111.3 (4)
C10—C15—C16—O4177.2 (3)C14—C15—C10—C9178.8 (2)
C10—C15—C14—C130.5 (4)C14—C15—C16—N2179.0 (3)
C10—C11—C12—C130.3 (5)C14—C15—C16—O42.2 (5)
C11—C10—C9—N2178.7 (3)C14—C13—C12—C111.1 (5)
C11—C10—C9—O31.8 (5)C8—N2—C9—O31.6 (4)
C5—C4—C3—Cl1178.3 (2)C8—N2—C9—C10179.0 (2)
C5—C4—C3—C22.0 (4)C8—N2—C16—O41.1 (4)
C6—C5—C4—C31.7 (4)C8—N2—C16—C15180.0 (2)
C6—C1—C2—C31.0 (5)C2—C1—C6—N1178.7 (3)
C4—C5—C6—N1177.4 (2)C2—C1—C6—C51.3 (5)
C4—C5—C6—C10.0 (4)C12—C13—C14—C150.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.75 (2)2.24 (2)2.961 (3)162 (2)
C4—H4···O4ii0.89 (3)2.53 (2)3.196 (3)133 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
(III) N-(3-chlorophenyl)-2-phthalimidoethanesulfonamide top
Crystal data top
C16H13ClN2O4SF(000) = 752
Mr = 364.79Dx = 1.491 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.5652 (2) ÅCell parameters from 2243 reflections
b = 25.5022 (12) Åθ = 3.7–28.6°
c = 11.5536 (5) ŵ = 0.39 mm1
β = 97.800 (4)°T = 293 K
V = 1624.58 (12) Å3Needle, colourless
Z = 40.50 × 0.15 × 0.09 mm
Data collection top
Agilent Xcalibur Eos
diffractometer
3298 independent reflections
Radiation source: Enhance (Mo) X-ray Source2582 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
Detector resolution: 16.1333 pixels mm-1θmax = 26.4°, θmin = 3.2°
ω scansh = 56
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2014)
k = 3122
Tmin = 0.982, Tmax = 0.996l = 1214
7040 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040All H-atom parameters refined
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.0471P)2 + 0.3678P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3298 reflectionsΔρmax = 0.19 e Å3
269 parametersΔρmin = 0.40 e Å3
0 restraints
Crystal data top
C16H13ClN2O4SV = 1624.58 (12) Å3
Mr = 364.79Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.5652 (2) ŵ = 0.39 mm1
b = 25.5022 (12) ÅT = 293 K
c = 11.5536 (5) Å0.50 × 0.15 × 0.09 mm
β = 97.800 (4)°
Data collection top
Agilent Xcalibur Eos
diffractometer
3298 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2014)
2582 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.996Rint = 0.022
7040 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.101All H-atom parameters refined
S = 1.04Δρmax = 0.19 e Å3
3298 reflectionsΔρmin = 0.40 e Å3
269 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.57180 (11)0.26538 (2)0.08458 (7)0.0707 (2)
S10.03092 (9)0.09436 (2)0.03822 (4)0.04136 (16)
O10.0363 (3)0.12447 (7)0.06525 (12)0.0621 (5)
O20.2110 (3)0.05457 (6)0.03952 (14)0.0571 (4)
O30.2310 (3)0.00238 (6)0.31988 (13)0.0531 (4)
O40.4443 (2)0.10432 (6)0.31218 (12)0.0473 (4)
N10.1327 (3)0.13385 (7)0.14414 (15)0.0408 (4)
N20.1244 (3)0.05004 (6)0.28675 (13)0.0367 (4)
C10.0852 (4)0.19565 (9)0.29543 (19)0.0489 (5)
C20.0380 (5)0.23626 (11)0.3393 (2)0.0686 (8)
C30.2418 (5)0.25774 (11)0.2757 (2)0.0647 (7)
C40.3173 (4)0.23846 (8)0.1670 (2)0.0472 (5)
C50.1972 (4)0.19835 (8)0.11952 (19)0.0411 (5)
C60.0044 (3)0.17622 (7)0.18532 (16)0.0360 (4)
C70.2415 (3)0.06659 (8)0.07370 (17)0.0375 (4)
C80.2175 (4)0.02790 (8)0.17376 (18)0.0412 (5)
C90.0935 (3)0.03358 (7)0.35299 (17)0.0380 (4)
C100.1084 (3)0.06212 (7)0.46552 (16)0.0375 (4)
C110.2853 (4)0.06133 (9)0.56105 (19)0.0487 (5)
C120.2481 (5)0.09233 (10)0.6556 (2)0.0558 (6)
C130.0431 (5)0.12297 (10)0.6528 (2)0.0567 (6)
C140.1332 (4)0.12401 (9)0.55640 (19)0.0484 (5)
C150.0968 (3)0.09288 (7)0.46262 (16)0.0366 (4)
C160.2489 (3)0.08511 (7)0.34885 (16)0.0360 (4)
H7A0.350 (4)0.0969 (7)0.0854 (17)0.036 (5)*
H140.271 (4)0.1439 (8)0.5533 (17)0.042 (6)*
H7B0.301 (4)0.0496 (8)0.0047 (19)0.051 (6)*
H8A0.381 (4)0.0139 (8)0.1790 (18)0.048 (6)*
H8B0.107 (4)0.0013 (8)0.1612 (17)0.045 (6)*
H1A0.223 (4)0.1804 (8)0.3377 (18)0.046 (6)*
H110.425 (4)0.0413 (9)0.562 (2)0.059 (7)*
H50.246 (4)0.1862 (8)0.050 (2)0.049 (6)*
H10.246 (4)0.1223 (9)0.1910 (19)0.045 (6)*
H120.366 (5)0.0923 (10)0.721 (2)0.071 (8)*
H30.316 (5)0.2865 (11)0.306 (2)0.078 (8)*
H130.022 (4)0.1425 (9)0.715 (2)0.066 (7)*
H20.020 (5)0.2491 (11)0.413 (3)0.091 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0515 (3)0.0599 (4)0.0954 (5)0.0073 (3)0.0096 (3)0.0214 (3)
S10.0345 (3)0.0566 (3)0.0341 (3)0.0054 (2)0.0089 (2)0.0095 (2)
O10.0704 (11)0.0859 (12)0.0308 (8)0.0143 (9)0.0103 (7)0.0030 (8)
O20.0370 (8)0.0699 (10)0.0664 (10)0.0019 (8)0.0141 (7)0.0268 (8)
O30.0456 (8)0.0532 (9)0.0607 (10)0.0172 (7)0.0076 (7)0.0016 (7)
O40.0358 (8)0.0567 (9)0.0484 (8)0.0123 (7)0.0021 (6)0.0009 (7)
N10.0325 (8)0.0476 (10)0.0400 (10)0.0006 (8)0.0035 (8)0.0073 (8)
N20.0366 (8)0.0395 (8)0.0340 (8)0.0051 (7)0.0049 (7)0.0000 (7)
C10.0487 (12)0.0544 (13)0.0404 (12)0.0072 (11)0.0054 (10)0.0044 (10)
C20.0779 (18)0.0743 (18)0.0486 (14)0.0214 (15)0.0094 (13)0.0201 (13)
C30.0697 (16)0.0584 (15)0.0642 (16)0.0189 (14)0.0033 (13)0.0112 (13)
C40.0420 (11)0.0422 (12)0.0557 (13)0.0009 (10)0.0010 (10)0.0108 (10)
C50.0423 (11)0.0429 (11)0.0361 (11)0.0071 (10)0.0020 (9)0.0047 (9)
C60.0344 (10)0.0376 (10)0.0360 (10)0.0044 (9)0.0048 (8)0.0018 (8)
C70.0286 (9)0.0482 (12)0.0348 (10)0.0031 (9)0.0010 (8)0.0074 (9)
C80.0401 (11)0.0407 (11)0.0426 (11)0.0017 (10)0.0048 (9)0.0057 (9)
C90.0338 (10)0.0368 (10)0.0440 (11)0.0030 (9)0.0070 (8)0.0065 (9)
C100.0381 (10)0.0368 (10)0.0373 (10)0.0005 (9)0.0044 (8)0.0085 (8)
C110.0450 (12)0.0521 (13)0.0470 (13)0.0003 (11)0.0009 (10)0.0119 (10)
C120.0612 (15)0.0617 (15)0.0404 (13)0.0097 (13)0.0080 (11)0.0089 (11)
C130.0752 (17)0.0573 (14)0.0382 (12)0.0103 (14)0.0098 (12)0.0061 (11)
C140.0530 (13)0.0497 (13)0.0439 (12)0.0029 (11)0.0117 (10)0.0018 (10)
C150.0374 (10)0.0381 (10)0.0351 (10)0.0002 (9)0.0076 (8)0.0063 (8)
C160.0337 (10)0.0375 (10)0.0377 (10)0.0009 (9)0.0086 (8)0.0043 (8)
Geometric parameters (Å, º) top
Cl1—C41.738 (2)C5—C61.387 (3)
S1—O11.4274 (16)C5—H50.87 (2)
S1—O21.4248 (16)C7—C81.512 (3)
S1—N11.6262 (17)C7—H7A1.000 (19)
S1—C71.7711 (19)C7—H7B0.93 (2)
O3—C91.202 (2)C8—H8A0.99 (2)
O4—C161.215 (2)C8—H8B0.99 (2)
N1—C61.413 (3)C9—C101.482 (3)
N1—H10.83 (2)C10—C111.376 (3)
N2—C81.452 (2)C10—C151.382 (3)
N2—C91.407 (2)C11—C121.386 (3)
N2—C161.389 (2)C11—H110.93 (2)
C1—C21.376 (3)C12—C131.380 (4)
C1—C61.382 (3)C12—H120.93 (3)
C1—H1A0.94 (2)C13—C141.381 (3)
C2—C31.378 (4)C13—H130.90 (2)
C2—H20.93 (3)C14—C151.380 (3)
C3—C41.360 (3)C14—H140.92 (2)
C3—H30.93 (3)C15—C161.477 (3)
C4—C51.376 (3)
O1—S1—N1108.78 (10)C8—C7—H7A113.1 (11)
O1—S1—C7105.89 (10)C8—C7—H7B109.7 (13)
O2—S1—O1119.73 (10)H7A—C7—H7B108.9 (17)
O2—S1—N1105.09 (9)N2—C8—C7114.67 (16)
O2—S1—C7109.62 (10)N2—C8—H8A107.8 (12)
N1—S1—C7107.17 (9)N2—C8—H8B105.7 (12)
S1—N1—H1115.4 (16)C7—C8—H8A107.2 (12)
C6—N1—S1125.93 (14)C7—C8—H8B111.8 (11)
C6—N1—H1115.2 (15)H8A—C8—H8B109.5 (16)
C9—N2—C8123.32 (16)O3—C9—N2124.27 (19)
C16—N2—C8124.91 (17)O3—C9—C10129.93 (19)
C16—N2—C9111.38 (16)N2—C9—C10105.80 (15)
C2—C1—C6119.5 (2)C11—C10—C9130.20 (19)
C2—C1—H1A122.4 (13)C11—C10—C15121.77 (19)
C6—C1—H1A118.1 (13)C15—C10—C9108.03 (17)
C1—C2—C3121.2 (2)C10—C11—C12117.2 (2)
C1—C2—H2118.2 (18)C10—C11—H11121.8 (14)
C3—C2—H2120.6 (18)C12—C11—H11121.0 (14)
C2—C3—H3119.2 (17)C11—C12—H12118.4 (16)
C4—C3—C2118.5 (2)C13—C12—C11121.1 (2)
C4—C3—H3122.1 (17)C13—C12—H12120.6 (16)
C3—C4—Cl1119.33 (18)C12—C13—C14121.6 (2)
C3—C4—C5122.1 (2)C12—C13—H13119.5 (16)
C5—C4—Cl1118.60 (18)C14—C13—H13118.9 (16)
C4—C5—C6119.0 (2)C13—C14—H14122.7 (13)
C4—C5—H5121.7 (14)C15—C14—C13117.3 (2)
C6—C5—H5119.3 (14)C15—C14—H14120.0 (13)
C1—C6—N1117.91 (18)C10—C15—C16108.50 (16)
C1—C6—C5119.76 (19)C14—C15—C10121.07 (19)
C5—C6—N1122.33 (18)C14—C15—C16130.43 (19)
S1—C7—H7A105.8 (11)O4—C16—N2124.41 (18)
S1—C7—H7B101.9 (13)O4—C16—C15129.33 (18)
C8—C7—S1116.65 (14)N2—C16—C15106.27 (16)
Cl1—C4—C5—C6179.24 (15)C8—N2—C9—C10174.67 (16)
S1—N1—C6—C1160.96 (16)C8—N2—C16—O45.5 (3)
S1—N1—C6—C518.8 (3)C8—N2—C16—C15174.53 (16)
S1—C7—C8—N264.7 (2)C9—N2—C8—C7118.4 (2)
O1—S1—N1—C658.08 (18)C9—N2—C16—O4178.48 (18)
O1—S1—C7—C8173.80 (15)C9—N2—C16—C151.5 (2)
O2—S1—N1—C6172.55 (16)C9—C10—C11—C12179.51 (19)
O2—S1—C7—C843.34 (18)C9—C10—C15—C14179.86 (17)
O3—C9—C10—C111.4 (3)C9—C10—C15—C160.0 (2)
O3—C9—C10—C15178.81 (19)C10—C11—C12—C130.6 (3)
N1—S1—C7—C870.20 (18)C10—C15—C16—O4179.11 (19)
N2—C9—C10—C11178.86 (19)C10—C15—C16—N20.9 (2)
N2—C9—C10—C150.9 (2)C11—C10—C15—C140.3 (3)
C1—C2—C3—C41.1 (4)C11—C10—C15—C16179.78 (17)
C2—C1—C6—N1178.8 (2)C11—C12—C13—C140.1 (4)
C2—C1—C6—C51.0 (3)C12—C13—C14—C150.3 (3)
C2—C3—C4—Cl1179.3 (2)C13—C14—C15—C100.2 (3)
C2—C3—C4—C50.2 (4)C13—C14—C15—C16179.7 (2)
C3—C4—C5—C61.2 (3)C14—C15—C16—O40.8 (3)
C4—C5—C6—N1177.96 (17)C14—C15—C16—N2179.24 (19)
C4—C5—C6—C11.8 (3)C15—C10—C11—C120.7 (3)
C6—C1—C2—C30.5 (4)C16—N2—C8—C769.4 (2)
C7—S1—N1—C655.98 (19)C16—N2—C9—O3178.21 (18)
C8—N2—C9—O35.1 (3)C16—N2—C9—C101.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O10.87 (2)2.46 (2)3.071 (3)128 (2)
N1—H1···O4i0.83 (2)2.12 (2)2.939 (2)172 (2)
C11—H11···O3ii0.93 (2)2.46 (2)3.282 (3)147 (2)
C2—H2···Cl1iii0.93 (3)2.83 (3)3.573 (3)138 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x+1, y+1/2, z+1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC16H13ClN2O4SC16H13ClN2O4SC16H13ClN2O4S
Mr364.79364.79364.79
Crystal system, space groupOrthorhombic, P212121Triclinic, P1Monoclinic, P21/c
Temperature (K)293293293
a, b, c (Å)5.4126 (2), 12.7656 (5), 22.6827 (8)7.5484 (7), 9.9887 (10), 11.2112 (10)5.5652 (2), 25.5022 (12), 11.5536 (5)
α, β, γ (°)90, 90, 90100.624 (8), 98.405 (7), 95.661 (8)90, 97.800 (4), 90
V3)1567.26 (11)815.01 (13)1624.58 (12)
Z424
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.400.390.39
Crystal size (mm)0.35 × 0.07 × 0.050.18 × 0.12 × 0.060.50 × 0.15 × 0.09
Data collection
DiffractometerAgilent Xcalibur Eos
diffractometer
Agilent Xcalibur Eos
diffractometer
Agilent Xcalibur Eos
diffractometer
Absorption correctionAnalytical
(CrysAlis PRO; Agilent, 2014)
Analytical
(CrysAlis PRO; Agilent, 2014)
Analytical
(CrysAlis PRO; Agilent, 2014)
Tmin, Tmax0.989, 0.9980.974, 0.9910.982, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
4676, 2894, 2484 5967, 3287, 2245 7040, 3298, 2582
Rint0.0180.0230.022
(sin θ/λ)max1)0.6250.6250.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.082, 1.06 0.044, 0.117, 1.02 0.040, 0.101, 1.04
No. of reflections289432873298
No. of parameters269269269
H-atom treatmentAll H-atom parameters refinedAll H-atom parameters refinedAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.22, 0.290.36, 0.370.19, 0.40
Absolute structureFlack x parameter determined using 803 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)??
Absolute structure parameter0.02 (4)??

Computer programs: CrysAlis PRO (Agilent, 2014), SHELXS (Sheldrick, 2008), SHELXL (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.84 (4)2.24 (3)2.984 (4)148 (3)
C5—H5···O10.96 (4)2.24 (4)2.912 (5)127 (3)
C7—H7A···O4i0.90 (4)2.48 (4)3.123 (5)129 (3)
C7—H7B···O2ii0.92 (3)2.52 (3)3.174 (4)128 (2)
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x1, y, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O2i0.75 (2)2.24 (2)2.961 (3)162 (2)
C4—H4···O4ii0.89 (3)2.53 (2)3.196 (3)133 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
C5—H5···O10.87 (2)2.46 (2)3.071 (3)128 (2)
N1—H1···O4i0.83 (2)2.12 (2)2.939 (2)172 (2)
C11—H11···O3ii0.93 (2)2.46 (2)3.282 (3)147 (2)
C2—H2···Cl1iii0.93 (3)2.83 (3)3.573 (3)138 (2)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x+1, y+1/2, z+1/2.
Selected geometric parameters (Å, º) for (I) top
Cl1—C11.742 (4)S1—C71.768 (4)
S1—O11.424 (3)N2—C81.455 (4)
S1—O21.428 (3)C7—C81.514 (5)
S1—N11.629 (3)
O1—S1—O2119.32 (15)O2—S1—C7107.94 (16)
O1—S1—N1109.09 (16)N1—S1—C7106.13 (17)
O1—S1—C7108.21 (17)C8—C7—S1115.6 (3)
O2—S1—N1105.43 (16)N2—C8—C7115.0 (3)
S1—C7—C8—N262.7 (4)N1—S1—C7—C852.0 (3)
Selected geometric parameters (Å, º) for (II) top
S1—O11.4214 (18)Cl1—C31.729 (3)
S1—O21.4333 (17)N2—C81.445 (3)
S1—N11.626 (3)C7—C81.522 (4)
S1—C71.764 (3)
O1—S1—O2118.61 (11)O2—S1—C7108.63 (13)
O1—S1—N1108.99 (13)N1—S1—C7105.05 (13)
O1—S1—C7109.18 (13)C8—C7—S1114.2 (2)
O2—S1—N1105.52 (12)N2—C8—C7113.5 (2)
S1—C7—C8—N270.9 (3)N1—S1—C7—C8176.8 (2)
Selected geometric parameters (Å, º) for (III) top
Cl1—C41.738 (2)S1—C71.7711 (19)
S1—O11.4274 (16)N2—C81.452 (2)
S1—O21.4248 (16)C7—C81.512 (3)
S1—N11.6262 (17)
O1—S1—N1108.78 (10)O2—S1—C7109.62 (10)
O1—S1—C7105.89 (10)N1—S1—C7107.17 (9)
O2—S1—O1119.73 (10)C8—C7—S1116.65 (14)
O2—S1—N1105.09 (9)N2—C8—C7114.67 (16)
S1—C7—C8—N264.7 (2)N1—S1—C7—C870.20 (18)
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds