Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615016617/wq3100sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S2053229615016617/wq3100Isup2.hkl |
CCDC reference: 773745
Heterometallic coordination polymers containing both transition metals and alkaline earth metals are currently being widely investigated, due to the aesthetically pleasing architectures that many such complexes possess and for their potential applications in the fields of catalysis, materials science and biochemistry (Cao et al., 2008; Fromm, 2008; Harder, 2003; Zhang et al., 2012; Lin et al., 2003). However, the construction of these heterometallic coordination polymers is a significant challenge (Chen et al., 2014). Firstly, the alkaline earth metals prefer O- to N-atom donors, while transition metals ions prefer N- to O-atom donors. Secondly, the broad span of coordination numbers of alkaline earth metals makes the topologies of the resulting coordination polymers difficult to control. Some rare examples of Fe–Sr heterometallic coordination complexes have been reported (Xu et al., 2015; Herbert et al., 2013; Samanta et al., 2006; Prodius et al., 2006), and most of them are trinuclear (Samanta et al., 2006; Prodius et al., 2006) or tetranuclear complexes (Herbert et al., 2013), or one-dimensional chain structures (Xu et al., 2015). Until now, no Fe–Sr heterometallic coordination polymers have been reported.
As an N-heterocyclic carboxylate ligand, pyridine-2,3-dicarboxylate (pydc2-) provides one N atom and two carboxylate groups to coordinate to metal ions. It can therefore coordinate with either transition metals or alkaline earth metals to form coordination complexes, as exemplified by two heterometallic complexes (Co–Ca–2,3-pydc and Co–Ba–2,3-pydc) reported by the Lazarescu group (Lazarescu et al., 2011) and five heterometallic SrII–MII–2,3-pydc (M = Co, Ni, Zn or Cu) three-dimensional coordination polymers reported by our group (Chen et al., 2014).
In our previous work, we have reported several series of Sr–transition metal (Chen et al., 2014, 2015) and Sr–Ln (Chen, et al., 2013) heterometallic coordination polymers based on N-heterocyclic carboxylate ligands. In this report, we present the synthesis and crystal structure analysis of the first three-dimensional FeIII–SrII heterometallic coordination polymer, {[Fe2Sr(pydc)4(H2O)2]·2nH2O}n, (1) (see Scheme 1), in which the coordination modes of the pydc2- ligand are different from that reported previously (Chen et al., 2014).
A mixture of pyridine-2,3-dicarboxylic acid (0.0331 g, 0.2 mmol), SrCl2·6H2O (0.0264 g, 0.1 mmol), Fe(OAc)2(OH) (0.0167 g, 0.087 mmol), imidazole (0.0193 g, 0.284 mmol) and H2O–C2H5OH (2 ml, 2:1 v/v) was sealed in a Pyrex bottle (8 ml) and heated at 363 K for 2 d. The bottle was then cooled to room temperature, generating light-brown block-shaped crystals of (1) (yield 0.0093 g, 23%, based on Fe). Elemental analysis, calculated for C28H20Fe2N4O20Sr: C 36.09, H 2.16, N 6.01%; found: C 36.21, H 2.15, N 6.13%.
H atoms on pyridine C atoms were positioned geometrically and refined as riding atoms, with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C). Water H atoms were located in a difference Fourier map and refined with restraints of O—H = 0.86 (1) Å and Uiso(H) = 1.5Ueq(O).
The asymmetric unit of (1) consists of two pydc2- ligands, one FeIII cation, half an SrII cation, one coordinated water molecule and a solvent water molecule (Fig. 1). There are four doubly deprotonated pydc2- ligands; two display a µ3-η1:η1:η1:η1 coordination mode and two exhibit a µ3-η1:η1:η1:η1:η1 mode (see Scheme 2). Each pydc2- ligand bridges two FeIII cations and one SrII cation. The FeIII cation is six-coordinated by one O atom (O5) and one N atom (N2) in coordination mode A (see Scheme 2), one O atom (O8B) in coordination mode B, one O atom (O2D) and one N atom (N1D) in coordination mode C, and one O atom (O4C) in coordination mode D, forming a slightly distorted octahedral structure. The Fe—O bond lengths range from 1.9448 (18) to 1.9810 (19) Å, and the Fe—N1 and Fe—N2 distances are 2.146 (2) and 2.171 (2) Å, respectively (Table 2). All the Fe—O and Fe—N distances are in good agreement with reference values (Xu et al., 2008; Wang et al., 2006; Goher et al., 1993; Allen et al., 1987). Each FeIII cation is bridged to two neighbouring FeIII cations; one side is bridged by two pydc2- ligands in a µ3-η1:η1:η1:η1 coordination mode and the other side is bridged by two pydc2- ligands in a µ3-η1:η1:η1:η1:η1 coordination mode, forming a one-dimensional [Fe2(pydc)4]n chain structure (Fig. 2). The average Fe···Fe distance is 6.566(s.u.?) Å. The SrII cation, which is located on an inversion centre, is eight-coordinated by two water molecules (O9 and O9A) and six O atoms from four pydc2- ligands, in which two atoms (O7 and O7A) display a µ3-η1:η1:η1:η1 coordination mode and four atoms (O1, O3, O1A and O3A) exhibit a µ3-η1:η1:η1:η1:η1 coordination mode. The Sr—O bond lengths range from 2.5617 (19) to 2.776 (2) Å, in good agreement with reported values (Chen et al., 2014). The one-dimensional [Fe2(pydc)4]n chains are bridged by SrII cations to form a three-dimensional framework (Fig. 3).
In addition, the structure of (1) is stabilized by intramolecular hydrogen-bond interactions (Table 3) between the coordinated water molecules and the carboxylate groups of the pydc2- ligands (O9—H9A···O4; see Table 3 for geometric parameters and symmetry codes), or between the pyridine ring and the coordinated water molecules (C3—H3···O9viii) or the carboxylate groups (intermolecular hydrogen bonds C4—H4···O2ix, C4—H4···O8x, C5—H5···O6x and C10—H10···O3i). The free water molecules are connected to the three-dimensional framework by three intermolecular hydrogen bonds (O10—H10A···O6v, O9—H9B···O10vi and O10—H10B···O7vii) (Fig. 4).
To better understand the three-dimensional framework of (1), a topological approach has been applied. As shown in Fig. 5, each pydc2- ligand bridges two FeIII cations and one SrII cation, which can be simplified to a 3-connected node with point symbol (4.82). The FeIII cation can be simplified to a 4-connected node with point symbol (42.84) and the SrII cation can be simplified to a 4-connected node with point symbol (84.122). The whole structure can be simplified to a 3-nodal 3,4,4-c net, with point symbol for the net (4.82)4(42.84)2(84.122). The topology type of the framework is tfj.
Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
[Fe2Sr(C7H3O4)4(H2O)2]·2H2O | V = 793.4 (3) Å3 |
Mr = 931.80 | Z = 1 |
Triclinic, P1 | F(000) = 466 |
Hall symbol: -P 1 | Dx = 1.950 Mg m−3 |
a = 8.1452 (16) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.6282 (19) Å | µ = 2.68 mm−1 |
c = 11.736 (2) Å | T = 293 K |
α = 105.69 (3)° | Block, light-brown |
β = 98.02 (3)° | 0.15 × 0.14 × 0.08 mm |
γ = 111.68 (3)° |
Bruker APEXII CCD area-detector diffractometer | 3105 independent reflections |
Radiation source: fine-focus sealed tube | 2607 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
φ and ω scans | θmax = 26.0°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | h = −10→9 |
Tmin = 0.690, Tmax = 0.814 | k = −10→11 |
11276 measured reflections | l = −13→14 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.028 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0395P)2 + 0.3626P] where P = (Fo2 + 2Fc2)/3 |
3105 reflections | (Δ/σ)max = 0.001 |
250 parameters | Δρmax = 0.49 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
[Fe2Sr(C7H3O4)4(H2O)2]·2H2O | γ = 111.68 (3)° |
Mr = 931.80 | V = 793.4 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.1452 (16) Å | Mo Kα radiation |
b = 9.6282 (19) Å | µ = 2.68 mm−1 |
c = 11.736 (2) Å | T = 293 K |
α = 105.69 (3)° | 0.15 × 0.14 × 0.08 mm |
β = 98.02 (3)° |
Bruker APEXII CCD area-detector diffractometer | 3105 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2005) | 2607 reflections with I > 2σ(I) |
Tmin = 0.690, Tmax = 0.814 | Rint = 0.024 |
11276 measured reflections |
R[F2 > 2σ(F2)] = 0.028 | 0 restraints |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.49 e Å−3 |
3105 reflections | Δρmin = −0.40 e Å−3 |
250 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sr1 | 1.0000 | 1.0000 | 0.0000 | 0.02299 (11) | |
Fe1 | 1.53110 (4) | 1.22869 (4) | 0.76823 (3) | 0.01849 (11) | |
O5 | 1.3100 (2) | 1.04567 (19) | 0.65193 (14) | 0.0239 (4) | |
O2 | 0.7297 (2) | 0.44673 (19) | −0.14731 (15) | 0.0232 (4) | |
O4 | 0.5482 (2) | 0.8478 (2) | 0.10123 (15) | 0.0279 (4) | |
O8 | 1.2881 (2) | 0.8582 (2) | 0.22875 (15) | 0.0265 (4) | |
O7 | 1.1399 (2) | 1.0079 (2) | 0.21988 (16) | 0.0282 (4) | |
O3 | 0.6225 (3) | 0.8977 (2) | −0.06144 (16) | 0.0330 (5) | |
O1 | 0.8093 (2) | 0.70237 (19) | −0.04546 (17) | 0.0301 (4) | |
N1 | 0.3830 (3) | 0.3732 (2) | −0.20190 (17) | 0.0209 (4) | |
O6 | 1.1454 (2) | 0.9051 (2) | 0.45821 (16) | 0.0341 (5) | |
N2 | 1.5520 (3) | 1.2580 (2) | 0.59304 (17) | 0.0211 (4) | |
C14 | 1.2676 (3) | 0.9857 (3) | 0.2677 (2) | 0.0215 (5) | |
C8 | 1.4190 (3) | 1.1348 (3) | 0.4975 (2) | 0.0194 (5) | |
C13 | 1.2782 (3) | 1.0171 (3) | 0.5355 (2) | 0.0215 (5) | |
C9 | 1.4154 (3) | 1.1213 (3) | 0.3770 (2) | 0.0212 (5) | |
O9 | 0.8715 (3) | 1.1438 (2) | 0.16180 (18) | 0.0414 (5) | |
C6 | 0.6935 (3) | 0.5666 (3) | −0.1051 (2) | 0.0205 (5) | |
C2 | 0.4184 (3) | 0.6334 (3) | −0.0895 (2) | 0.0209 (5) | |
C1 | 0.4910 (3) | 0.5274 (3) | −0.1329 (2) | 0.0189 (5) | |
C3 | 0.2291 (4) | 0.5775 (3) | −0.1174 (2) | 0.0290 (6) | |
H3 | 0.1759 | 0.6453 | −0.0872 | 0.035* | |
C7 | 0.5396 (3) | 0.8057 (3) | −0.0129 (2) | 0.0222 (5) | |
C4 | 0.1209 (4) | 0.4211 (3) | −0.1901 (3) | 0.0327 (6) | |
H4 | −0.0061 | 0.3831 | −0.2119 | 0.039* | |
C12 | 1.6822 (4) | 1.3723 (3) | 0.5706 (2) | 0.0309 (6) | |
H12 | 1.7726 | 1.4577 | 0.6364 | 0.037* | |
C5 | 0.2012 (3) | 0.3215 (3) | −0.2305 (2) | 0.0282 (6) | |
H5 | 0.1273 | 0.2154 | −0.2788 | 0.034* | |
C11 | 1.6864 (4) | 1.3673 (3) | 0.4528 (3) | 0.0397 (8) | |
H11 | 1.7783 | 1.4484 | 0.4392 | 0.048* | |
C10 | 1.5528 (4) | 1.2407 (3) | 0.3554 (2) | 0.0346 (7) | |
H10 | 1.5547 | 1.2352 | 0.2753 | 0.042* | |
O10 | 0.0825 (3) | 0.2537 (3) | 0.4079 (2) | 0.0533 (6) | |
H9A | 0.7666 | 1.0764 | 0.1578 | 0.080* | |
H10A | 0.0096 | 0.2178 | 0.4490 | 0.080* | |
H9B | 0.9189 | 1.1872 | 0.2397 | 0.080* | |
H10B | 0.1150 | 0.1792 | 0.3818 | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sr1 | 0.02621 (18) | 0.01633 (17) | 0.02160 (18) | 0.00651 (13) | 0.00160 (14) | 0.00547 (13) |
Fe1 | 0.02082 (19) | 0.01568 (18) | 0.01497 (18) | 0.00613 (14) | 0.00358 (14) | 0.00233 (13) |
O5 | 0.0257 (9) | 0.0208 (9) | 0.0169 (9) | 0.0032 (7) | 0.0047 (7) | 0.0039 (7) |
O2 | 0.0201 (8) | 0.0190 (9) | 0.0249 (9) | 0.0076 (7) | 0.0038 (7) | 0.0016 (7) |
O4 | 0.0405 (11) | 0.0243 (9) | 0.0177 (9) | 0.0117 (8) | 0.0112 (8) | 0.0070 (7) |
O8 | 0.0269 (9) | 0.0234 (9) | 0.0267 (9) | 0.0137 (8) | 0.0043 (8) | 0.0020 (7) |
O7 | 0.0286 (10) | 0.0335 (10) | 0.0244 (9) | 0.0176 (8) | 0.0025 (8) | 0.0092 (8) |
O3 | 0.0484 (12) | 0.0229 (9) | 0.0265 (10) | 0.0112 (9) | 0.0127 (9) | 0.0111 (8) |
O1 | 0.0240 (9) | 0.0176 (9) | 0.0370 (11) | 0.0041 (7) | 0.0019 (8) | 0.0021 (8) |
N1 | 0.0203 (10) | 0.0203 (10) | 0.0185 (10) | 0.0072 (8) | 0.0026 (8) | 0.0049 (8) |
O6 | 0.0265 (10) | 0.0332 (10) | 0.0220 (9) | −0.0026 (8) | 0.0010 (8) | 0.0035 (8) |
N2 | 0.0237 (10) | 0.0188 (10) | 0.0175 (10) | 0.0077 (8) | 0.0038 (8) | 0.0042 (8) |
C14 | 0.0254 (13) | 0.0252 (13) | 0.0136 (11) | 0.0098 (11) | 0.0068 (10) | 0.0070 (10) |
C8 | 0.0221 (12) | 0.0176 (12) | 0.0185 (12) | 0.0113 (10) | 0.0034 (10) | 0.0034 (9) |
C13 | 0.0232 (12) | 0.0212 (12) | 0.0182 (12) | 0.0106 (10) | 0.0039 (10) | 0.0032 (10) |
C9 | 0.0249 (13) | 0.0193 (12) | 0.0192 (12) | 0.0101 (10) | 0.0050 (10) | 0.0056 (10) |
O9 | 0.0395 (11) | 0.0377 (11) | 0.0457 (12) | 0.0164 (9) | 0.0126 (10) | 0.0122 (9) |
C6 | 0.0251 (12) | 0.0194 (12) | 0.0160 (12) | 0.0087 (10) | 0.0052 (10) | 0.0060 (10) |
C2 | 0.0279 (13) | 0.0228 (12) | 0.0153 (12) | 0.0120 (11) | 0.0064 (10) | 0.0099 (10) |
C1 | 0.0241 (12) | 0.0177 (12) | 0.0149 (12) | 0.0084 (10) | 0.0050 (10) | 0.0065 (9) |
C3 | 0.0327 (15) | 0.0299 (14) | 0.0313 (15) | 0.0194 (12) | 0.0090 (12) | 0.0124 (12) |
C7 | 0.0285 (13) | 0.0216 (12) | 0.0232 (13) | 0.0152 (11) | 0.0076 (11) | 0.0108 (10) |
C4 | 0.0194 (13) | 0.0345 (15) | 0.0436 (17) | 0.0117 (12) | 0.0048 (12) | 0.0143 (13) |
C12 | 0.0317 (14) | 0.0250 (14) | 0.0232 (13) | 0.0026 (11) | 0.0035 (11) | 0.0046 (11) |
C5 | 0.0220 (13) | 0.0269 (14) | 0.0279 (14) | 0.0067 (11) | 0.0013 (11) | 0.0059 (11) |
C11 | 0.0442 (17) | 0.0304 (15) | 0.0303 (15) | −0.0012 (13) | 0.0091 (13) | 0.0142 (12) |
C10 | 0.0471 (17) | 0.0302 (15) | 0.0195 (13) | 0.0086 (13) | 0.0083 (12) | 0.0096 (11) |
O10 | 0.0528 (14) | 0.0375 (12) | 0.0625 (15) | 0.0125 (10) | 0.0235 (12) | 0.0123 (11) |
Sr1—O1i | 2.5617 (19) | N1—Fe1v | 2.146 (2) |
Sr1—O1 | 2.5617 (19) | O6—C13 | 1.221 (3) |
Sr1—O9i | 2.612 (2) | N2—C12 | 1.333 (3) |
Sr1—O9 | 2.612 (2) | N2—C8 | 1.353 (3) |
Sr1—O7i | 2.6404 (19) | C14—C9 | 1.517 (3) |
Sr1—O7 | 2.6405 (19) | C8—C9 | 1.380 (3) |
Sr1—O3 | 2.776 (2) | C8—C13 | 1.501 (3) |
Sr1—O3i | 2.776 (2) | C9—C10 | 1.387 (4) |
Fe1—O8ii | 1.9448 (18) | O9—H9A | 0.8469 |
Fe1—O4iii | 1.9602 (18) | O9—H9B | 0.8577 |
Fe1—O5 | 1.970 (2) | C6—C1 | 1.514 (3) |
Fe1—O2iv | 1.9810 (19) | C2—C1 | 1.378 (3) |
Fe1—N1iv | 2.146 (2) | C2—C3 | 1.388 (4) |
Fe1—N2 | 2.171 (2) | C2—C7 | 1.507 (3) |
O5—C13 | 1.287 (3) | C3—C4 | 1.374 (4) |
O2—C6 | 1.283 (3) | C3—H3 | 0.9300 |
O2—Fe1v | 1.9810 (19) | C4—C5 | 1.370 (4) |
O4—C7 | 1.273 (3) | C4—H4 | 0.9300 |
O4—Fe1iii | 1.9602 (18) | C12—C11 | 1.376 (4) |
O8—C14 | 1.270 (3) | C12—H12 | 0.9300 |
O8—Fe1ii | 1.9449 (18) | C5—H5 | 0.9300 |
O7—C14 | 1.229 (3) | C11—C10 | 1.377 (4) |
O3—C7 | 1.226 (3) | C11—H11 | 0.9300 |
O1—C6 | 1.224 (3) | C10—H10 | 0.9300 |
N1—C5 | 1.334 (3) | O10—H10A | 0.8500 |
N1—C1 | 1.349 (3) | O10—H10B | 0.8500 |
O1i—Sr1—O1 | 180.00 (4) | C5—N1—Fe1v | 126.54 (17) |
O1i—Sr1—O9i | 104.40 (7) | C1—N1—Fe1v | 113.32 (16) |
O1—Sr1—O9i | 75.60 (7) | C12—N2—C8 | 119.2 (2) |
O1i—Sr1—O9 | 75.60 (7) | C12—N2—Fe1 | 128.33 (17) |
O1—Sr1—O9 | 104.40 (7) | C8—N2—Fe1 | 112.33 (16) |
O9i—Sr1—O9 | 180.00 (7) | O7—C14—O8 | 124.2 (2) |
O1i—Sr1—O7i | 85.42 (7) | O7—C14—C9 | 118.2 (2) |
O1—Sr1—O7i | 94.58 (7) | O8—C14—C9 | 117.5 (2) |
O9i—Sr1—O7i | 70.26 (6) | N2—C8—C9 | 122.2 (2) |
O9—Sr1—O7i | 109.74 (6) | N2—C8—C13 | 113.8 (2) |
O1i—Sr1—O7 | 94.58 (7) | C9—C8—C13 | 124.0 (2) |
O1—Sr1—O7 | 85.42 (7) | O6—C13—O5 | 124.9 (2) |
O9i—Sr1—O7 | 109.74 (6) | O6—C13—C8 | 120.2 (2) |
O9—Sr1—O7 | 70.26 (6) | O5—C13—C8 | 114.9 (2) |
O7i—Sr1—O7 | 180.0 | C8—C9—C10 | 117.8 (2) |
O1i—Sr1—O3 | 115.66 (6) | C8—C9—C14 | 123.6 (2) |
O1—Sr1—O3 | 64.34 (6) | C10—C9—C14 | 118.6 (2) |
O9i—Sr1—O3 | 115.86 (7) | Sr1—O9—H9A | 107.4 |
O9—Sr1—O3 | 64.14 (7) | Sr1—O9—H9B | 127.1 |
O7i—Sr1—O3 | 65.72 (6) | H9A—O9—H9B | 101.2 |
O7—Sr1—O3 | 114.28 (6) | O1—C6—O2 | 124.4 (2) |
O1i—Sr1—O3i | 64.34 (6) | O1—C6—C1 | 121.1 (2) |
O1—Sr1—O3i | 115.66 (6) | O2—C6—C1 | 114.44 (19) |
O9i—Sr1—O3i | 64.14 (7) | C1—C2—C3 | 118.3 (2) |
O9—Sr1—O3i | 115.86 (7) | C1—C2—C7 | 121.5 (2) |
O7i—Sr1—O3i | 114.28 (6) | C3—C2—C7 | 120.2 (2) |
O7—Sr1—O3i | 65.72 (6) | N1—C1—C2 | 121.7 (2) |
O3—Sr1—O3i | 180.0 | N1—C1—C6 | 113.3 (2) |
O8ii—Fe1—O4iii | 90.57 (8) | C2—C1—C6 | 124.9 (2) |
O8ii—Fe1—O5 | 102.46 (8) | C4—C3—C2 | 119.3 (2) |
O4iii—Fe1—O5 | 87.33 (8) | C4—C3—H3 | 120.3 |
O8ii—Fe1—O2iv | 89.83 (8) | C2—C3—H3 | 120.3 |
O4iii—Fe1—O2iv | 105.84 (8) | O3—C7—O4 | 123.4 (2) |
O5—Fe1—O2iv | 162.02 (7) | O3—C7—C2 | 119.9 (2) |
O8ii—Fe1—N1iv | 166.42 (7) | O4—C7—C2 | 116.7 (2) |
O4iii—Fe1—N1iv | 88.93 (8) | C5—C4—C3 | 119.6 (2) |
O5—Fe1—N1iv | 91.07 (8) | C5—C4—H4 | 120.2 |
O2iv—Fe1—N1iv | 77.28 (7) | C3—C4—H4 | 120.2 |
O8ii—Fe1—N2 | 92.77 (8) | N2—C12—C11 | 121.8 (2) |
O4iii—Fe1—N2 | 164.61 (8) | N2—C12—H12 | 119.1 |
O5—Fe1—N2 | 77.28 (8) | C11—C12—H12 | 119.1 |
O2iv—Fe1—N2 | 89.19 (8) | N1—C5—C4 | 121.5 (2) |
N1iv—Fe1—N2 | 91.28 (8) | N1—C5—H5 | 119.3 |
C13—O5—Fe1 | 121.39 (15) | C4—C5—H5 | 119.3 |
C6—O2—Fe1v | 121.12 (15) | C12—C11—C10 | 119.1 (3) |
C7—O4—Fe1iii | 144.33 (16) | C12—C11—H11 | 120.4 |
C14—O8—Fe1ii | 143.19 (16) | C10—C11—H11 | 120.4 |
C14—O7—Sr1 | 136.49 (16) | C11—C10—C9 | 119.9 (3) |
C7—O3—Sr1 | 115.05 (17) | C11—C10—H10 | 120.0 |
C6—O1—Sr1 | 156.83 (17) | C9—C10—H10 | 120.0 |
C5—N1—C1 | 119.5 (2) | H10A—O10—H10B | 102.7 |
O8ii—Fe1—O5—C13 | −86.54 (19) | C9—C8—C13—O6 | −3.8 (4) |
O4iii—Fe1—O5—C13 | −176.54 (19) | N2—C8—C13—O5 | −3.6 (3) |
O2iv—Fe1—O5—C13 | 45.6 (3) | C9—C8—C13—O5 | 176.5 (2) |
N1iv—Fe1—O5—C13 | 94.58 (19) | N2—C8—C9—C10 | −1.0 (4) |
N2—Fe1—O5—C13 | 3.51 (18) | C13—C8—C9—C10 | 178.8 (2) |
O1i—Sr1—O7—C14 | −92.6 (2) | N2—C8—C9—C14 | −179.5 (2) |
O1—Sr1—O7—C14 | 87.4 (2) | C13—C8—C9—C14 | 0.3 (4) |
O9i—Sr1—O7—C14 | 14.5 (2) | O7—C14—C9—C8 | 97.4 (3) |
O9—Sr1—O7—C14 | −165.5 (2) | O8—C14—C9—C8 | −85.3 (3) |
O7i—Sr1—O7—C14 | 36 (12) | O7—C14—C9—C10 | −81.1 (3) |
O3—Sr1—O7—C14 | 146.6 (2) | O8—C14—C9—C10 | 96.2 (3) |
O3i—Sr1—O7—C14 | −33.4 (2) | Sr1—O1—C6—O2 | 113.1 (4) |
O1i—Sr1—O3—C7 | −136.83 (16) | Sr1—O1—C6—C1 | −68.1 (5) |
O1—Sr1—O3—C7 | 43.17 (16) | Fe1v—O2—C6—O1 | 175.19 (18) |
O9i—Sr1—O3—C7 | 100.53 (17) | Fe1v—O2—C6—C1 | −3.7 (3) |
O9—Sr1—O3—C7 | −79.47 (17) | C5—N1—C1—C2 | 0.8 (3) |
O7i—Sr1—O3—C7 | 151.45 (18) | Fe1v—N1—C1—C2 | −170.73 (18) |
O7—Sr1—O3—C7 | −28.55 (18) | C5—N1—C1—C6 | 178.3 (2) |
O3i—Sr1—O3—C7 | 70 (100) | Fe1v—N1—C1—C6 | 6.7 (2) |
O1i—Sr1—O1—C6 | 124 (14) | C3—C2—C1—N1 | 0.6 (4) |
O9i—Sr1—O1—C6 | −72.6 (4) | C7—C2—C1—N1 | −179.8 (2) |
O9—Sr1—O1—C6 | 107.4 (4) | C3—C2—C1—C6 | −176.5 (2) |
O7i—Sr1—O1—C6 | −4.3 (4) | C7—C2—C1—C6 | 3.1 (4) |
O7—Sr1—O1—C6 | 175.7 (4) | O1—C6—C1—N1 | 178.6 (2) |
O3—Sr1—O1—C6 | 56.0 (4) | O2—C6—C1—N1 | −2.5 (3) |
O3i—Sr1—O1—C6 | −124.0 (4) | O1—C6—C1—C2 | −4.1 (4) |
O8ii—Fe1—N2—C12 | −78.2 (2) | O2—C6—C1—C2 | 174.9 (2) |
O4iii—Fe1—N2—C12 | 179.5 (3) | C1—C2—C3—C4 | −2.1 (4) |
O5—Fe1—N2—C12 | 179.7 (2) | C7—C2—C3—C4 | 178.3 (2) |
O2iv—Fe1—N2—C12 | 11.6 (2) | Sr1—O3—C7—O4 | 70.3 (3) |
N1iv—Fe1—N2—C12 | 88.9 (2) | Sr1—O3—C7—C2 | −110.4 (2) |
O8ii—Fe1—N2—C8 | 96.90 (17) | Fe1iii—O4—C7—O3 | −176.5 (2) |
O4iii—Fe1—N2—C8 | −5.4 (4) | Fe1iii—O4—C7—C2 | 4.1 (4) |
O5—Fe1—N2—C8 | −5.25 (16) | C1—C2—C7—O3 | 73.9 (3) |
O2iv—Fe1—N2—C8 | −173.32 (17) | C3—C2—C7—O3 | −106.5 (3) |
N1iv—Fe1—N2—C8 | −96.07 (17) | C1—C2—C7—O4 | −106.7 (3) |
Sr1—O7—C14—O8 | −56.2 (4) | C3—C2—C7—O4 | 72.9 (3) |
Sr1—O7—C14—C9 | 120.9 (2) | C2—C3—C4—C5 | 2.2 (4) |
Fe1ii—O8—C14—O7 | 158.5 (2) | C8—N2—C12—C11 | −0.9 (4) |
Fe1ii—O8—C14—C9 | −18.6 (4) | Fe1—N2—C12—C11 | 173.8 (2) |
C12—N2—C8—C9 | 1.5 (4) | C1—N1—C5—C4 | −0.7 (4) |
Fe1—N2—C8—C9 | −174.06 (19) | Fe1v—N1—C5—C4 | 169.6 (2) |
C12—N2—C8—C13 | −178.3 (2) | C3—C4—C5—N1 | −0.8 (4) |
Fe1—N2—C8—C13 | 6.1 (2) | N2—C12—C11—C10 | −0.1 (5) |
Fe1—O5—C13—O6 | 179.1 (2) | C12—C11—C10—C9 | 0.7 (5) |
Fe1—O5—C13—C8 | −1.2 (3) | C8—C9—C10—C11 | −0.1 (4) |
N2—C8—C13—O6 | 176.0 (2) | C14—C9—C10—C11 | 178.5 (3) |
Symmetry codes: (i) −x+2, −y+2, −z; (ii) −x+3, −y+2, −z+1; (iii) −x+2, −y+2, −z+1; (iv) x+1, y+1, z+1; (v) x−1, y−1, z−1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9A···O4 | 0.85 | 2.11 | 2.898 (3) | 156 |
O10—H10A···O6vi | 0.85 | 2.04 | 2.875 (3) | 168 |
O9—H9B···O10vii | 0.86 | 2.01 | 2.835 (3) | 161 |
O10—H10B···O7viii | 0.85 | 2.24 | 2.995 (3) | 147 |
C3—H3···O9ix | 0.93 | 2.55 | 3.225 (3) | 130 |
C4—H4···O2x | 0.93 | 2.60 | 3.380 (3) | 142 |
C4—H4···O8xi | 0.93 | 2.53 | 3.292 (3) | 140 |
C5—H5···O6xi | 0.93 | 2.49 | 3.172 (3) | 131 |
C10—H10···O3i | 0.93 | 2.43 | 3.233 (3) | 145 |
Symmetry codes: (i) −x+2, −y+2, −z; (vi) −x+1, −y+1, −z+1; (vii) x+1, y+1, z; (viii) x−1, y−1, z; (ix) −x+1, −y+2, −z; (x) x−1, y, z; (xi) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | [Fe2Sr(C7H3O4)4(H2O)2]·2H2O |
Mr | 931.80 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 8.1452 (16), 9.6282 (19), 11.736 (2) |
α, β, γ (°) | 105.69 (3), 98.02 (3), 111.68 (3) |
V (Å3) | 793.4 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 2.68 |
Crystal size (mm) | 0.15 × 0.14 × 0.08 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2005) |
Tmin, Tmax | 0.690, 0.814 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11276, 3105, 2607 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.028, 0.071, 1.02 |
No. of reflections | 3105 |
No. of parameters | 250 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.49, −0.40 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 1999), SHELXTL (Sheldrick, 2008).
Sr1—O1 | 2.5617 (19) | Fe1—O4iii | 1.9602 (18) |
Sr1—O9 | 2.612 (2) | Fe1—O5 | 1.970 (2) |
Sr1—O7i | 2.6404 (19) | Fe1—O2iv | 1.9810 (19) |
Sr1—O7 | 2.6405 (19) | Fe1—N1iv | 2.146 (2) |
Sr1—O3 | 2.776 (2) | Fe1—N2 | 2.171 (2) |
Fe1—O8ii | 1.9448 (18) | ||
O1i—Sr1—O1 | 180.00 (4) | O9—Sr1—O3i | 115.86 (7) |
O1i—Sr1—O9i | 104.40 (7) | O7i—Sr1—O3i | 114.28 (6) |
O1—Sr1—O9i | 75.60 (7) | O7—Sr1—O3i | 65.72 (6) |
O1—Sr1—O9 | 104.40 (7) | O3—Sr1—O3i | 180.0 |
O9i—Sr1—O9 | 180.00 (7) | O8ii—Fe1—O4iii | 90.57 (8) |
O1i—Sr1—O7i | 85.42 (7) | O8ii—Fe1—O5 | 102.46 (8) |
O1—Sr1—O7i | 94.58 (7) | O4iii—Fe1—O5 | 87.33 (8) |
O9i—Sr1—O7i | 70.26 (6) | O8ii—Fe1—O2iv | 89.83 (8) |
O9—Sr1—O7i | 109.74 (6) | O4iii—Fe1—O2iv | 105.84 (8) |
O1i—Sr1—O7 | 94.58 (7) | O5—Fe1—O2iv | 162.02 (7) |
O1—Sr1—O7 | 85.42 (7) | O8ii—Fe1—N1iv | 166.42 (7) |
O9i—Sr1—O7 | 109.74 (6) | O4iii—Fe1—N1iv | 88.93 (8) |
O9—Sr1—O7 | 70.26 (6) | O5—Fe1—N1iv | 91.07 (8) |
O7i—Sr1—O7 | 180.0 | O2iv—Fe1—N1iv | 77.28 (7) |
O1i—Sr1—O3 | 115.66 (6) | O8ii—Fe1—N2 | 92.77 (8) |
O1—Sr1—O3 | 64.34 (6) | O4iii—Fe1—N2 | 164.61 (8) |
O9—Sr1—O3 | 64.14 (7) | O5—Fe1—N2 | 77.28 (8) |
O7—Sr1—O3 | 114.28 (6) | O2iv—Fe1—N2 | 89.19 (8) |
O9i—Sr1—O3i | 64.14 (7) | N1iv—Fe1—N2 | 91.28 (8) |
Symmetry codes: (i) −x+2, −y+2, −z; (ii) −x+3, −y+2, −z+1; (iii) −x+2, −y+2, −z+1; (iv) x+1, y+1, z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9A···O4 | 0.85 | 2.11 | 2.898 (3) | 156 |
O10—H10A···O6v | 0.85 | 2.04 | 2.875 (3) | 168 |
O9—H9B···O10vi | 0.86 | 2.01 | 2.835 (3) | 161 |
O10—H10B···O7vii | 0.85 | 2.24 | 2.995 (3) | 147 |
C3—H3···O9viii | 0.93 | 2.55 | 3.225 (3) | 130 |
C4—H4···O2ix | 0.93 | 2.60 | 3.380 (3) | 142 |
C4—H4···O8x | 0.93 | 2.53 | 3.292 (3) | 140 |
C5—H5···O6x | 0.93 | 2.49 | 3.172 (3) | 131 |
C10—H10···O3i | 0.93 | 2.43 | 3.233 (3) | 145 |
Symmetry codes: (i) −x+2, −y+2, −z; (v) −x+1, −y+1, −z+1; (vi) x+1, y+1, z; (vii) x−1, y−1, z; (viii) −x+1, −y+2, −z; (ix) x−1, y, z; (x) −x+1, −y+1, −z. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register