Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the search for potential ferroelectric materials, mol­ecular-based one-, two- and three-dimensional cadmium(II) organic–inorganic compounds have been of inter­est as they often display solid–solid phase transitions induced by a variation in temperature. A new cadmium dicyanamide complex, poly[4-di­methyl­amino-1-ethyl­pyridin-1-ium [tri-μ-dicyanamido-κ6N1:N5-cadmium(II)]], {(C9H15N2)[Cd(C2N3)3]}n, was synthesized by the reaction of 4-di­methyl­amino-1-ethyl­pyridin-1-ium bromide, cadmium nitrate tetra­hydrate and sodium dicyanamide in aqueous solution. In the crystal structure, each CdII cation is octa­hedrally coordinated by six terminal N atoms from six anionic dicyanamide (dca) ligands. Neighbouring CdII cations are linked together by dicyanamide bridges to form a two-dimensional coordination polymer. The organic cations are not involved in the formation of the supra­molecular network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229615013315/yo3009sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229615013315/yo3009Isup2.hkl
Contains datablock I

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229615013315/yo3009sup3.pdf
Supplementary material

CCDC reference: 1412135

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Poly[4-dimethylamino-1-ethylpyridin-1-ium [tri-µ-dicyanamido-κ6N1:N5-cadmium(II)]] top
Crystal data top
(C9H15N2)[Cd(C2N3)3]F(000) = 920
Mr = 461.78Dx = 1.569 Mg m3
Orthorhombic, PbcmMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2c 2bCell parameters from 2313 reflections
a = 7.7042 (15) Åθ = 3.0–30.5°
b = 14.457 (3) ŵ = 1.14 mm1
c = 17.549 (4) ÅT = 293 K
V = 1954.5 (7) Å3Block, colourless
Z = 40.30 × 0.26 × 0.25 mm
Data collection top
Rigaku SCXmini
diffractometer
1674 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 27.5°, θmin = 3.0°
ω scansh = 106
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1818
Tmin = 0.726, Tmax = 0.763l = 2222
12742 measured reflections3 standard reflections every 180 reflections
2313 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0288P)2 + 3.5336P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max < 0.001
2313 reflectionsΔρmax = 0.71 e Å3
135 parametersΔρmin = 0.68 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0819 (12)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N40.4868 (6)0.1538 (5)0.5628 (4)0.147 (3)
Cd11.00000.00000.50000.03462 (13)
C80.8972 (5)0.0452 (3)0.3147 (2)0.0455 (10)
N60.8310 (8)0.0675 (7)0.25000.103 (3)
C70.6357 (6)0.1231 (3)0.5438 (3)0.0554 (12)
N71.2099 (5)0.1165 (3)0.5082 (2)0.0505 (9)
N30.7743 (5)0.1009 (3)0.5357 (2)0.0561 (10)
N50.9464 (5)0.0313 (3)0.37423 (19)0.0535 (9)
C91.3433 (5)0.1308 (3)0.5305 (3)0.0511 (11)
N10.0430 (6)0.1777 (3)0.75000.0427 (11)
N20.3536 (6)0.3695 (3)0.75000.0426 (11)
C50.2009 (8)0.1208 (4)0.75000.0510 (15)
H5A0.20110.08130.79470.061*0.50
H5B0.20110.08130.70530.061*0.50
C30.2322 (7)0.3040 (4)0.75000.0367 (12)
C20.1607 (6)0.2682 (3)0.6814 (2)0.0430 (10)
H20.20640.28650.63480.052*
C10.0266 (5)0.2076 (3)0.6834 (2)0.0459 (10)
H10.01900.18580.63770.055*
C40.4247 (6)0.4055 (3)0.8219 (2)0.0540 (11)
H4A0.33150.42690.85370.081*
H4B0.50230.45580.81140.081*
H4C0.48670.35710.84780.081*
C60.3625 (10)0.1798 (5)0.75000.074 (2)
H6A0.46320.14070.75000.111*
H6B0.36350.21820.70530.111*0.50
H6C0.36350.21820.79470.111*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N40.036 (3)0.227 (7)0.178 (7)0.039 (3)0.032 (3)0.141 (6)
Cd10.02607 (19)0.0542 (2)0.02363 (18)0.00032 (17)0.00107 (15)0.00130 (16)
C80.030 (2)0.077 (3)0.029 (2)0.006 (2)0.0046 (16)0.001 (2)
N60.053 (4)0.231 (9)0.024 (3)0.057 (5)0.0000.000
C70.034 (2)0.073 (3)0.059 (3)0.006 (2)0.006 (2)0.024 (2)
N70.0354 (19)0.065 (2)0.051 (2)0.0069 (16)0.0029 (17)0.0034 (18)
N30.036 (2)0.073 (2)0.059 (2)0.0111 (18)0.0014 (18)0.014 (2)
N50.056 (2)0.075 (2)0.0294 (18)0.000 (2)0.0025 (16)0.0042 (17)
C90.032 (2)0.067 (3)0.054 (3)0.011 (2)0.0070 (19)0.020 (2)
N10.046 (3)0.039 (2)0.043 (3)0.004 (2)0.0000.000
N20.036 (3)0.057 (3)0.035 (2)0.001 (2)0.0000.000
C50.047 (4)0.046 (3)0.060 (4)0.001 (3)0.0000.000
C30.036 (3)0.043 (3)0.032 (3)0.007 (2)0.0000.000
C20.053 (2)0.046 (2)0.030 (2)0.0033 (18)0.0053 (18)0.0016 (16)
C10.054 (3)0.047 (2)0.036 (2)0.003 (2)0.0003 (19)0.0071 (18)
C40.047 (2)0.072 (3)0.043 (2)0.004 (2)0.000 (2)0.008 (2)
C60.056 (5)0.073 (5)0.094 (6)0.013 (4)0.0000.000
Geometric parameters (Å, º) top
Cd1—N5i2.291 (3)N2—C31.332 (7)
Cd1—N52.291 (3)N2—C41.471 (5)
Cd1—N72.339 (4)N2—C4v1.471 (5)
Cd1—N7i2.339 (4)C5—C61.509 (9)
Cd1—N32.355 (4)C5—H5A0.9700
Cd1—N3i2.355 (4)C5—H5B0.9700
C7—N31.124 (5)C3—C21.421 (5)
N4—C71.275 (6)C3—C2v1.421 (5)
N4—C9ii1.286 (6)C2—C11.355 (6)
C8—N51.130 (5)C2—H20.9300
C8—N61.285 (5)C1—H10.9300
N6—C8iii1.285 (5)C4—H4A0.9600
N7—C91.119 (5)C4—H4B0.9600
C9—N4iv1.286 (6)C4—H4C0.9600
N1—C1v1.357 (5)C6—H6A0.9600
N1—C11.357 (5)C6—H6B0.9600
N1—C51.469 (7)C6—H6C0.9600
C7—N4—C9ii124.6 (5)C4—N2—C4v118.3 (5)
N5i—Cd1—N5180.00 (5)N1—C5—C6111.5 (5)
N5i—Cd1—N787.62 (13)N1—C5—H5A109.3
N5—Cd1—N792.38 (13)C6—C5—H5A109.3
N5i—Cd1—N7i92.38 (13)N1—C5—H5B109.3
N5—Cd1—N7i87.62 (13)C6—C5—H5B109.3
N7—Cd1—N7i180.00 (13)H5A—C5—H5B108.0
N5i—Cd1—N389.98 (14)N2—C3—C2122.1 (3)
N5—Cd1—N390.02 (14)N2—C3—C2v122.1 (3)
N7—Cd1—N392.78 (14)C2—C3—C2v115.8 (5)
N7i—Cd1—N387.22 (14)C1—C2—C3120.6 (4)
N5i—Cd1—N3i90.02 (14)C1—C2—H2119.7
N5—Cd1—N3i89.98 (14)C3—C2—H2119.7
N7—Cd1—N3i87.22 (14)C2—C1—N1122.0 (4)
N7i—Cd1—N3i92.78 (14)C2—C1—H1119.0
N3—Cd1—N3i180.00 (18)N1—C1—H1119.0
N5—C8—N6174.1 (6)N2—C4—H4A109.5
C8iii—N6—C8124.1 (6)N2—C4—H4B109.5
N3—C7—N4171.0 (5)H4A—C4—H4B109.5
C9—N7—Cd1142.2 (4)N2—C4—H4C109.5
C7—N3—Cd1155.8 (4)H4A—C4—H4C109.5
C8—N5—Cd1170.8 (4)H4B—C4—H4C109.5
N7—C9—N4iv172.6 (5)C5—C6—H6A109.5
C1v—N1—C1119.0 (5)C5—C6—H6B109.5
C1v—N1—C5120.4 (3)H6A—C6—H6B109.5
C1—N1—C5120.4 (3)C5—C6—H6C109.5
C3—N2—C4120.8 (2)H6A—C6—H6C109.5
C3—N2—C4v120.8 (2)H6B—C6—H6C109.5
N5—C8—N6—C8iii164 (6)N7i—Cd1—N5—C842 (3)
C9ii—N4—C7—N3167 (4)N3—Cd1—N5—C846 (3)
N5i—Cd1—N7—C944.9 (6)N3i—Cd1—N5—C8134 (3)
N5—Cd1—N7—C9135.1 (6)Cd1—N7—C9—N4iv108 (5)
N7i—Cd1—N7—C9147 (16)C1v—N1—C5—C687.3 (4)
N3—Cd1—N7—C9134.8 (6)C1—N1—C5—C687.3 (4)
N3i—Cd1—N7—C945.2 (6)C4—N2—C3—C2179.8 (4)
N4—C7—N3—Cd1140 (4)C4v—N2—C3—C22.5 (8)
N5i—Cd1—N3—C7105.0 (10)C4—N2—C3—C2v2.5 (8)
N5—Cd1—N3—C775.0 (10)C4v—N2—C3—C2v179.8 (4)
N7—Cd1—N3—C7167.4 (10)N2—C3—C2—C1174.1 (4)
N7i—Cd1—N3—C712.6 (10)C2v—C3—C2—C13.4 (7)
N3i—Cd1—N3—C712 (100)C3—C2—C1—N10.9 (7)
N6—C8—N5—Cd154 (8)C1v—N1—C1—C21.8 (8)
N5i—Cd1—N5—C814 (100)C5—N1—C1—C2172.8 (4)
N7—Cd1—N5—C8138 (3)
Symmetry codes: (i) x+2, y, z+1; (ii) x1, y, z; (iii) x, y, z+1/2; (iv) x+1, y, z; (v) x, y, z+3/2.
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds