Buy article online - an online subscription or single-article purchase is required to access this article.
Despite the large number of reported crystalline structures of coordination complexes bearing pyridines as ligands, the relevance of π–π interactions among these hereroaromatic systems in the stabilization of their supramolecular structures and properties is not very well documented in the recent literature. The title compound, [CoCl
2(C
5H
6N
2)
2], was obtained as bright-blue crystals suitable for single-crystal X-ray diffraction analysis from the reaction of 4-aminopyridine with cobalt(II) chloride in ethanol. The new complex was fully characterized by a variety of spectroscopic techniques and single-crystal X-ray diffraction. The crystal structure showed a tetrahedral complex stabilized mainly by bidimensional motifs constructed by π–π interactions with large horizontal displacements between the 4-aminopyridine units, and N—H
Cl hydrogen bonds. Other short contacts, such as C—H
Cl interactions, complete the three-dimensional arrangement. The supramolecular investigation was extended by statistical studies using the Cambridge Structural Database and a Hirshfeld surface analysis.
Supporting information
CCDC reference: 1540857
Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009) and PLATON (Spek, 2009).
Bis(4-aminopyridine-
κN1)dichloridocobalt(II)
top
Crystal data top
[CoCl2(C5H6N2)2] | F(000) = 638 |
Mr = 316.98 | Dx = 1.603 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 8.9262 (9) Å | Cell parameters from 655 reflections |
b = 9.9679 (10) Å | θ = 4.3–23.4° |
c = 14.9683 (13) Å | µ = 1.66 mm−1 |
β = 101.825 (10)° | T = 293 K |
V = 1303.6 (2) Å3 | Prism, blue |
Z = 4 | 0.63 × 0.12 × 0.05 mm |
Data collection top
Xcalibur, Eos, Gemini diffractometer | 1515 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 790 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.099 |
Detector resolution: 16.1158 pixels mm-1 | θmax = 28.8°, θmin = 3.8° |
ω scans | h = −11→12 |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) | k = −11→12 |
Tmin = 0.349, Tmax = 1.000 | l = −19→20 |
4351 measured reflections | |
Refinement top
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.062 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.143 | w = 1/[σ2(Fo2) + (0.0291P)2] where P = (Fo2 + 2Fc2)/3 |
S = 1.01 | (Δ/σ)max < 0.001 |
1515 reflections | Δρmax = 0.48 e Å−3 |
81 parameters | Δρmin = −0.37 e Å−3 |
Special details top
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
Co1 | 0.5000 | 0.57032 (10) | 0.7500 | 0.0445 (4) | 0.973 (5) |
Cl1 | 0.28833 (18) | 0.43946 (15) | 0.71750 (9) | 0.0653 (7) | 0.977 (6) |
N1 | 0.5120 (5) | 0.6761 (4) | 0.6377 (3) | 0.0492 (12) | |
N2 | 0.4901 (7) | 0.8335 (4) | 0.3784 (3) | 0.0805 (18) | |
H2A | 0.5401 | 0.7964 | 0.3416 | 0.097* | |
H2B | 0.4343 | 0.9029 | 0.3612 | 0.097* | |
C5 | 0.4266 (6) | 0.7858 (5) | 0.6082 (4) | 0.0510 (14) | |
H5 | 0.3705 | 0.8250 | 0.6473 | 0.061* | |
C1 | 0.5911 (7) | 0.6233 (5) | 0.5793 (4) | 0.0603 (17) | |
H1 | 0.6527 | 0.5492 | 0.5983 | 0.072* | |
C2 | 0.5866 (8) | 0.6718 (6) | 0.4937 (4) | 0.0663 (18) | |
H2 | 0.6430 | 0.6298 | 0.4559 | 0.080* | |
C3 | 0.4990 (7) | 0.7829 (5) | 0.4627 (3) | 0.0559 (15) | |
C4 | 0.4186 (6) | 0.8418 (5) | 0.5245 (3) | 0.0537 (15) | |
H4 | 0.3604 | 0.9187 | 0.5081 | 0.064* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Co1 | 0.0407 (7) | 0.0566 (8) | 0.0380 (6) | 0.000 | 0.0122 (4) | 0.000 |
Cl1 | 0.0595 (11) | 0.0848 (12) | 0.0534 (9) | −0.0247 (9) | 0.0156 (7) | −0.0028 (7) |
N1 | 0.053 (3) | 0.051 (3) | 0.048 (2) | −0.009 (2) | 0.021 (2) | −0.007 (2) |
N2 | 0.127 (5) | 0.067 (3) | 0.047 (3) | 0.005 (3) | 0.019 (3) | 0.009 (2) |
C5 | 0.043 (3) | 0.055 (3) | 0.059 (3) | −0.005 (3) | 0.021 (3) | −0.007 (3) |
C1 | 0.074 (4) | 0.055 (4) | 0.060 (3) | 0.007 (3) | 0.034 (3) | 0.005 (3) |
C2 | 0.093 (5) | 0.055 (4) | 0.061 (4) | 0.000 (3) | 0.041 (4) | −0.006 (3) |
C3 | 0.070 (4) | 0.055 (3) | 0.045 (3) | −0.018 (3) | 0.017 (3) | −0.002 (3) |
C4 | 0.052 (4) | 0.054 (3) | 0.054 (3) | 0.001 (3) | 0.007 (3) | 0.005 (3) |
Geometric parameters (Å, º) top
Co1—Cl1i | 2.2652 (15) | C5—H5 | 0.9300 |
Co1—Cl1 | 2.2653 (15) | C5—C4 | 1.360 (7) |
Co1—N1 | 2.006 (4) | C1—H1 | 0.9300 |
Co1—N1i | 2.006 (4) | C1—C2 | 1.363 (7) |
N1—C5 | 1.354 (6) | C2—H2 | 0.9300 |
N1—C1 | 1.339 (6) | C2—C3 | 1.380 (7) |
N2—H2A | 0.8600 | C3—C4 | 1.410 (7) |
N2—H2B | 0.8600 | C4—H4 | 0.9300 |
N2—C3 | 1.346 (6) | | |
| | | |
Cl1i—Co1—Cl1 | 109.68 (9) | C4—C5—H5 | 118.3 |
N1—Co1—Cl1i | 107.29 (13) | N1—C1—H1 | 118.1 |
N1—Co1—Cl1 | 107.96 (13) | N1—C1—C2 | 123.8 (5) |
N1i—Co1—Cl1i | 107.96 (13) | C2—C1—H1 | 118.1 |
N1i—Co1—Cl1 | 107.29 (14) | C1—C2—H2 | 119.8 |
N1—Co1—N1i | 116.6 (2) | C1—C2—C3 | 120.4 (5) |
C5—N1—Co1 | 125.1 (3) | C3—C2—H2 | 119.8 |
C1—N1—Co1 | 117.8 (4) | N2—C3—C2 | 122.4 (5) |
C1—N1—C5 | 116.2 (4) | N2—C3—C4 | 121.3 (6) |
H2A—N2—H2B | 120.0 | C2—C3—C4 | 116.3 (5) |
C3—N2—H2A | 120.0 | C5—C4—C3 | 119.8 (5) |
C3—N2—H2B | 120.0 | C5—C4—H4 | 120.1 |
N1—C5—H5 | 118.3 | C3—C4—H4 | 120.1 |
N1—C5—C4 | 123.4 (5) | | |
| | | |
Co1—N1—C5—C4 | −168.6 (4) | C5—N1—C1—C2 | −1.5 (9) |
Co1—N1—C1—C2 | 168.0 (5) | C1—N1—C5—C4 | 0.1 (8) |
N1—C5—C4—C3 | 1.7 (8) | C1—C2—C3—N2 | −179.4 (5) |
N1—C1—C2—C3 | 1.0 (10) | C1—C2—C3—C4 | 0.9 (9) |
N2—C3—C4—C5 | 178.1 (5) | C2—C3—C4—C5 | −2.1 (8) |
Symmetry code: (i) −x+1, y, −z+3/2. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
C5—H5···Cl1ii | 0.93 (1) | 2.93 (1) | 3.644 (6) | 176 (1) |
C2—H2···Cl1iii | 0.93 (1) | 2.87 (1) | 3.727 (6) | 154 (1) |
N2—H2b···Cl1iv | 0.86 (1) | 2.62 (1) | 3.447 (6) | 163 (1) |
Symmetry codes: (ii) −x+1/2, y+1/2, −z+3/2; (iii) −x+1, −y+1, −z+1; (iv) −x+1/2, −y+3/2, −z+1. |
π–π interactions topCg1 is the centroid of pyridine ring, CCD is the centre-to-centre
distance (distance between ring centroids), DA is the dihedral angle, SA is the
slippage angle (angle subtended by the intercentroid vector to the plane
normal), IPD is the interplanar distance (distance from one plane to the
neighbouring centroid) and R is the normal distance between the planes of the
interacting rings. |
Dimer | Ring 1···Ring 2 | CCD (Å) | R (Å) | DA (°) | SA (°) | IPD (Å) |
A | Cg1···Cg1 | 4.523 (4) | 3.377 (5) | 0.03 | 41.70 | 3.009 |
B | Cg1···Cg1 | 4.833 (4) | 3.098 (5) | 0.00 | 50.12 | 3.326 |
C | Cg1···Cg1 | 4.924 (4) | 3.057 (5) | 0.00 | 51.60 | 3.976 |
Symmetry code: -x+1/2, -y+3/2, -x+1. [To what does
this symmetry code apply?] |
Structural comparison (Å) of different aminopyridine–metal complexes topCompound | Interactions | | | |
| N—H···Cl | C—H···Cl | Cl···Cl | π–π |
CoCl2(4-aminopyridine)2, (I) | 2.615 | 2.869/2.930 | | 4.523 |
CoCl2[4-(dimethylamino)pyridine]2 | | 2.789/2.825 | | |
ZnCl2(4-amino-2-chloropyridine)2 | 2.928 | 2.711 | 3.371 | |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.