Buy article online - an online subscription or single-article purchase is required to access this article.
Li–B–C alloys have attracted much interest because of their potential use in lithium-ion batteries and superconducting materials. The formation of the new compound LiBC
3 [lithium boron tricarbide; own structure type, space group
Pm2,
a = 2.5408 (3) Å and
c = 7.5989 (9) Å] has been revealed and belongs to the graphite-like structure family. The crystal structure of LiBC
3 presents hexagonal graphene carbon networks, lithium layers and heterographene B/C networks, alternating sequentially along the
c axis. According to electronic structure calculations using the tight-binding linear muffin-tin orbital-atomic spheres approximations (TB–LMTO–ASA) method, strong covalent B—C and C—C interactions are established. The coordination polyhedra for the B and C atoms are trigonal prisms and for the Li atoms are hexagonal prisms.
Supporting information
CCDC reference: 1580572
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis CCD (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS2014 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).
Lithium boron tricarbide
top
Crystal data top
Li0.96BC3 | Dx = 2.091 Mg m−3 Dm = 2.13 (3) Mg m−3 Dm measured by volumetric |
Mr = 53.50 | Mo Kα radiation, λ = 0.71073 Å |
Hexagonal, P6m2 | Cell parameters from 77 reflections |
a = 2.5408 (3) Å | θ = 2.7–29.6° |
c = 7.5989 (9) Å | µ = 0.10 mm−1 |
V = 42.48 (1) Å3 | T = 293 K |
Z = 1 | Plate, metallic grey |
F(000) = 25.9 | 0.08 × 0.06 × 0.01 mm |
Data collection top
Oxford Diffraction Xcalibur3 CCD diffractometer | 73 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.110 |
ω scans | θmax = 29.7°, θmin = 2.7° |
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2008) | h = −3→3 |
Tmin = 0.993, Tmax = 0.998 | k = −3→3 |
1554 measured reflections | l = −10→10 |
77 independent reflections | |
Refinement top
Refinement on F2 | 11 parameters |
Least-squares matrix: full | 0 restraints |
R[F2 > 2σ(F2)] = 0.032 | w = 1/[σ2(Fo2) + (0.0528P)2 + 0.0041P] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.098 | (Δ/σ)max < 0.001 |
S = 1.23 | Δρmax = 0.15 e Å−3 |
77 reflections | Δρmin = −0.15 e Å−3 |
Special details top
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell esds are taken
into account individually in the estimation of esds in distances, angles
and torsion angles; correlations between esds in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refined as a 2-component inversion twin. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
C1 | 0.0000 | 0.0000 | 0.0000 | 0.0383 (19) | |
C2 | 0.3333 | 0.6667 | 0.5000 | 0.0350 (12) | |
C3 | 0.3333 | 0.6667 | 0.0000 | 0.0295 (11) | |
B1 | 0.0000 | 0.0000 | 0.5000 | 0.066 (4) | |
Li1 | 0.6667 | 0.3333 | 0.2500 | 0.083 (10)* | 0.49 (6) |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
C1 | 0.037 (3) | 0.037 (3) | 0.041 (3) | 0.0185 (13) | 0.000 | 0.000 |
C2 | 0.0349 (18) | 0.0349 (18) | 0.035 (2) | 0.0174 (9) | 0.000 | 0.000 |
C3 | 0.0282 (15) | 0.0282 (15) | 0.032 (2) | 0.0141 (7) | 0.000 | 0.000 |
B1 | 0.066 (5) | 0.066 (5) | 0.068 (7) | 0.033 (3) | 0.000 | 0.000 |
Geometric parameters (Å, º) top
C1—C3i | 1.4669 (2) | C3—Li1vi | 2.4002 (2) |
C1—C3 | 1.4669 (2) | C3—Li1xii | 2.4002 (2) |
C1—C3ii | 1.4669 (2) | C3—Li1iv | 2.4002 (2) |
C1—Li1iii | 2.4002 (2) | C3—Li1v | 2.4002 (2) |
C1—Li1 | 2.4002 (2) | C3—Li1 | 2.4002 (2) |
C1—Li1iv | 2.4002 (2) | B1—C2i | 1.4669 (2) |
C1—Li1v | 2.4002 (2) | B1—C2ii | 1.4669 (2) |
C1—Li1vi | 2.4002 (2) | B1—Li1x | 2.4002 (2) |
C1—Li1ii | 2.4002 (2) | B1—Li1ii | 2.4002 (2) |
C2—B1vii | 1.4669 (2) | B1—Li1iv | 2.4002 (2) |
C2—B1viii | 1.4669 (2) | B1—Li1xi | 2.4002 (2) |
C2—B1 | 1.4669 (2) | B1—Li1 | 2.4002 (2) |
C2—Li1ix | 2.4002 (2) | B1—Li1xiii | 2.4002 (2) |
C2—Li1iv | 2.4002 (2) | Li1—C3i | 2.4002 (2) |
C2—Li1vii | 2.4002 (2) | Li1—C2xiv | 2.4002 (2) |
C2—Li1x | 2.4002 (2) | Li1—B1viii | 2.4002 (2) |
C2—Li1xi | 2.4002 (2) | Li1—B1xiv | 2.4002 (2) |
C2—Li1 | 2.4002 (2) | Li1—C1xiv | 2.4002 (2) |
C3—C1vii | 1.4669 (2) | Li1—C3xiv | 2.4002 (2) |
C3—C1viii | 1.4669 (2) | Li1—C2i | 2.4002 (2) |
C3—Li1vii | 2.4002 (2) | Li1—C1viii | 2.4002 (2) |
| | | |
C3i—C1—C3 | 120.0 | Li1xii—C3—Li1 | 144.413 (4) |
C3i—C1—C3ii | 120.0 | Li1iv—C3—Li1 | 63.916 (8) |
C3—C1—C3ii | 120.0 | Li1v—C3—Li1 | 104.651 (9) |
C3i—C1—Li1iii | 72.206 (2) | C2i—B1—C2 | 120.0 |
C3—C1—Li1iii | 127.675 (5) | C2i—B1—C2ii | 120.0 |
C3ii—C1—Li1iii | 72.206 (2) | C2—B1—C2ii | 120.0 |
C3i—C1—Li1 | 72.206 (2) | C2i—B1—Li1x | 72.206 (2) |
C3—C1—Li1 | 72.206 (2) | C2—B1—Li1x | 72.206 (2) |
C3ii—C1—Li1 | 127.675 (5) | C2ii—B1—Li1x | 127.675 (5) |
Li1iii—C1—Li1 | 144.413 (4) | C2i—B1—Li1ii | 72.206 (2) |
C3i—C1—Li1iv | 127.675 (5) | C2—B1—Li1ii | 127.675 (5) |
C3—C1—Li1iv | 72.206 (2) | C2ii—B1—Li1ii | 72.206 (2) |
C3ii—C1—Li1iv | 72.206 (2) | Li1x—B1—Li1ii | 144.413 (4) |
Li1iii—C1—Li1iv | 144.413 (4) | C2i—B1—Li1iv | 127.675 (5) |
Li1—C1—Li1iv | 63.916 (8) | C2—B1—Li1iv | 72.206 (2) |
C3i—C1—Li1v | 72.206 (2) | C2ii—B1—Li1iv | 72.206 (2) |
C3—C1—Li1v | 72.206 (2) | Li1x—B1—Li1iv | 144.413 (4) |
C3ii—C1—Li1v | 127.675 (5) | Li1ii—B1—Li1iv | 63.916 (7) |
Li1iii—C1—Li1v | 63.916 (7) | C2i—B1—Li1xi | 127.675 (5) |
Li1—C1—Li1v | 104.651 (9) | C2—B1—Li1xi | 72.206 (2) |
Li1iv—C1—Li1v | 144.413 (4) | C2ii—B1—Li1xi | 72.206 (2) |
C3i—C1—Li1vi | 127.675 (5) | Li1x—B1—Li1xi | 63.916 (8) |
C3—C1—Li1vi | 72.206 (2) | Li1ii—B1—Li1xi | 144.413 (4) |
C3ii—C1—Li1vi | 72.206 (2) | Li1iv—B1—Li1xi | 104.651 (9) |
Li1iii—C1—Li1vi | 63.916 (7) | C2i—B1—Li1 | 72.206 (2) |
Li1—C1—Li1vi | 144.413 (4) | C2—B1—Li1 | 72.206 (2) |
Li1iv—C1—Li1vi | 104.651 (9) | C2ii—B1—Li1 | 127.675 (5) |
Li1v—C1—Li1vi | 63.916 (8) | Li1x—B1—Li1 | 104.651 (9) |
C3i—C1—Li1ii | 72.206 (2) | Li1ii—B1—Li1 | 63.916 (7) |
C3—C1—Li1ii | 127.675 (5) | Li1iv—B1—Li1 | 63.916 (8) |
C3ii—C1—Li1ii | 72.206 (2) | Li1xi—B1—Li1 | 144.413 (4) |
Li1iii—C1—Li1ii | 104.651 (9) | C2i—B1—Li1xiii | 72.206 (2) |
Li1—C1—Li1ii | 63.916 (7) | C2—B1—Li1xiii | 127.675 (5) |
Li1iv—C1—Li1ii | 63.916 (7) | C2ii—B1—Li1xiii | 72.206 (2) |
Li1v—C1—Li1ii | 144.413 (4) | Li1x—B1—Li1xiii | 63.916 (8) |
Li1vi—C1—Li1ii | 144.413 (4) | Li1ii—B1—Li1xiii | 104.651 (9) |
B1vii—C2—B1viii | 120.0 | Li1iv—B1—Li1xiii | 144.413 (4) |
B1vii—C2—B1 | 120.0 | Li1xi—B1—Li1xiii | 63.916 (8) |
B1viii—C2—B1 | 120.0 | Li1—B1—Li1xiii | 144.413 (4) |
B1vii—C2—Li1ix | 72.206 (2) | C3i—Li1—C2xiv | 144.413 (4) |
B1viii—C2—Li1ix | 72.206 (2) | C3i—Li1—B1viii | 180.0 |
B1—C2—Li1ix | 127.675 (5) | C2xiv—Li1—B1viii | 35.587 (4) |
B1vii—C2—Li1iv | 72.206 (2) | C3i—Li1—C1 | 35.587 (4) |
B1viii—C2—Li1iv | 127.675 (5) | C2xiv—Li1—C1 | 180.0 |
B1—C2—Li1iv | 72.206 (2) | B1viii—Li1—C1 | 144.413 (4) |
Li1ix—C2—Li1iv | 144.413 (4) | C3i—Li1—B1xiv | 116.084 (7) |
B1vii—C2—Li1vii | 72.206 (2) | C2xiv—Li1—B1xiv | 35.587 (4) |
B1viii—C2—Li1vii | 72.206 (2) | B1viii—Li1—B1xiv | 63.916 (7) |
B1—C2—Li1vii | 127.675 (5) | C1—Li1—B1xiv | 144.413 (4) |
Li1ix—C2—Li1vii | 104.651 (9) | C3i—Li1—C1xiv | 35.587 (4) |
Li1iv—C2—Li1vii | 63.916 (7) | C2xiv—Li1—C1xiv | 116.084 (8) |
B1vii—C2—Li1x | 127.675 (5) | B1viii—Li1—C1xiv | 144.413 (4) |
B1viii—C2—Li1x | 72.206 (2) | C1—Li1—C1xiv | 63.916 (8) |
B1—C2—Li1x | 72.206 (2) | B1xiv—Li1—C1xiv | 104.651 (9) |
Li1ix—C2—Li1x | 63.916 (8) | C3i—Li1—C3xiv | 63.916 (7) |
Li1iv—C2—Li1x | 144.413 (4) | C2xiv—Li1—C3xiv | 104.651 (9) |
Li1vii—C2—Li1x | 144.413 (4) | B1viii—Li1—C3xiv | 116.084 (7) |
B1vii—C2—Li1xi | 72.206 (2) | C1—Li1—C3xiv | 75.349 (9) |
B1viii—C2—Li1xi | 127.675 (5) | B1xiv—Li1—C3xiv | 116.084 (8) |
B1—C2—Li1xi | 72.206 (2) | C1xiv—Li1—C3xiv | 35.587 (4) |
Li1ix—C2—Li1xi | 63.916 (8) | C3i—Li1—C2i | 104.651 (9) |
Li1iv—C2—Li1xi | 104.651 (9) | C2xiv—Li1—C2i | 63.916 (7) |
Li1vii—C2—Li1xi | 144.413 (4) | B1viii—Li1—C2i | 75.349 (9) |
Li1x—C2—Li1xi | 63.916 (8) | C1—Li1—C2i | 116.084 (7) |
B1vii—C2—Li1 | 127.675 (5) | B1xiv—Li1—C2i | 35.587 (4) |
B1viii—C2—Li1 | 72.206 (2) | C1xiv—Li1—C2i | 116.084 (8) |
B1—C2—Li1 | 72.206 (2) | C3xiv—Li1—C2i | 144.413 (4) |
Li1ix—C2—Li1 | 144.413 (4) | C3i—Li1—C1viii | 75.349 (9) |
Li1iv—C2—Li1 | 63.916 (8) | C2xiv—Li1—C1viii | 116.084 (7) |
Li1vii—C2—Li1 | 63.916 (7) | B1viii—Li1—C1viii | 104.651 (9) |
Li1x—C2—Li1 | 104.651 (9) | C1—Li1—C1viii | 63.916 (7) |
Li1xi—C2—Li1 | 144.413 (4) | B1xiv—Li1—C1viii | 144.413 (4) |
C1vii—C3—C1viii | 120.0 | C1xiv—Li1—C1viii | 63.916 (8) |
C1vii—C3—C1 | 120.0 | C3xiv—Li1—C1viii | 35.587 (4) |
C1viii—C3—C1 | 120.0 | C2i—Li1—C1viii | 180.0 |
C1vii—C3—Li1vii | 72.206 (2) | C3i—Li1—B1 | 116.084 (7) |
C1viii—C3—Li1vii | 72.206 (2) | C2xiv—Li1—B1 | 75.349 (9) |
C1—C3—Li1vii | 127.675 (5) | B1viii—Li1—B1 | 63.916 (7) |
C1vii—C3—Li1vi | 72.206 (2) | C1—Li1—B1 | 104.651 (9) |
C1viii—C3—Li1vi | 127.675 (5) | B1xiv—Li1—B1 | 63.916 (8) |
C1—C3—Li1vi | 72.206 (2) | C1xiv—Li1—B1 | 144.413 (4) |
Li1vii—C3—Li1vi | 144.413 (4) | C3xiv—Li1—B1 | 180.0 |
C1vii—C3—Li1xii | 72.206 (2) | C2i—Li1—B1 | 35.587 (4) |
C1viii—C3—Li1xii | 72.206 (2) | C1viii—Li1—B1 | 144.413 (4) |
C1—C3—Li1xii | 127.675 (5) | C3i—Li1—C3 | 63.916 (8) |
Li1vii—C3—Li1xii | 104.651 (9) | C2xiv—Li1—C3 | 144.413 (4) |
Li1vi—C3—Li1xii | 63.916 (8) | B1viii—Li1—C3 | 116.084 (8) |
C1vii—C3—Li1iv | 72.206 (2) | C1—Li1—C3 | 35.587 (4) |
C1viii—C3—Li1iv | 127.675 (5) | B1xiv—Li1—C3 | 180.0 |
C1—C3—Li1iv | 72.206 (2) | C1xiv—Li1—C3 | 75.349 (9) |
Li1vii—C3—Li1iv | 63.916 (7) | C3xiv—Li1—C3 | 63.916 (8) |
Li1vi—C3—Li1iv | 104.651 (9) | C2i—Li1—C3 | 144.413 (4) |
Li1xii—C3—Li1iv | 144.413 (4) | C1viii—Li1—C3 | 35.587 (4) |
C1vii—C3—Li1v | 127.675 (5) | B1—Li1—C3 | 116.084 (8) |
C1viii—C3—Li1v | 72.206 (2) | C3i—Li1—C2 | 144.413 (4) |
C1—C3—Li1v | 72.206 (2) | C2xiv—Li1—C2 | 63.916 (8) |
Li1vii—C3—Li1v | 144.413 (4) | B1viii—Li1—C2 | 35.587 (4) |
Li1vi—C3—Li1v | 63.916 (8) | C1—Li1—C2 | 116.084 (8) |
Li1xii—C3—Li1v | 63.916 (8) | B1xiv—Li1—C2 | 75.349 (9) |
Li1iv—C3—Li1v | 144.413 (4) | C1xiv—Li1—C2 | 180.0 |
C1vii—C3—Li1 | 127.675 (5) | C3xiv—Li1—C2 | 144.413 (4) |
C1viii—C3—Li1 | 72.206 (2) | C2i—Li1—C2 | 63.916 (8) |
C1—C3—Li1 | 72.206 (2) | C1viii—Li1—C2 | 116.084 (8) |
Li1vii—C3—Li1 | 63.916 (8) | B1—Li1—C2 | 35.587 (4) |
Li1vi—C3—Li1 | 144.413 (4) | C3—Li1—C2 | 104.651 (9) |
Symmetry codes: (i) x, y−1, z; (ii) x−1, y−1, z; (iii) −x+y, −x, −z; (iv) x−1, y, z; (v) −x+y+1, −x+1, −z; (vi) −x+y, −x+1, −z; (vii) x, y+1, z; (viii) x+1, y+1, z; (ix) −x+y+1, −x+2, −z+1; (x) −x+y+1, −x+1, −z+1; (xi) −x+y, −x+1, −z+1; (xii) −x+y+1, −x+2, −z; (xiii) −x+y, −x, −z+1; (xiv) x+1, y, z. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.