Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270112038322/yp3017sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270112038322/yp3017Isup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270112038322/yp3017IIsup3.hkl | |
Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112038322/yp3017Isup4.cml | |
Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270112038322/yp3017IIsup5.cml |
CCDC references: 906580; 906581
For related literature, see: Allen et al. (1987); Bernstein et al. (1995); Da Settimo, Primofiore, Da Settimo, Marini, Novellino, Greco, Martini, Giannaccini & Lucacchini (1996); Hyatt et al. (2007); Zukerman-Schpector, Pinto, DaC, Da Silva & Da Silva (1994).
The title compounds were prepared using a previously reported procedure (Da Settimo et al., 1996). Recrystallization from ethyl acetate afforded (I) and (II) as yellow [Both colourless in CIF data tables - please clarify] crystalline products which were suitable for X-ray analysis. Spectroscopic analysis for (I): 1H NMR (300 MHz, DMSO-d6, δ, p.p.m): 7.22–7.25 (m, 2H), 7.49–7.52 (m, 1H), 7.70 (sb, 1H), 8.06 (sb, 1H), 8.19–8.22 (m, 1H), 8.67 (d, 1H), 12.17 (sb, 1H); 13C NMR (75 MHz, DMSO-d6, δ p.p.m.): 111.95, 112.41, 121.10, 122.32, 123.22, 125.98, 136.11, 138.10, 165.80, 182.72. Spectroscopic analysis for (II): 1H NMR (300 MHz, DMSO-d6, δ, p.p.m): 2.93 (s, 3H), 3.01 (s, 3H), 7.23–7.32 (m, 2H), 7.51–7.57 (m, 1H), 8.10 (dd, 1H), 8.14 (s, 1H), 12.17 (sb, 1H); 13C NMR (75 MHz, DMSO-d6, δ, p.p.m.): 33.41, 36.81, 112.52, 112.83, 120.71, 122.38, 123.38, 124.75, 136.73, 136.83, 167.11, 186.44.
H atoms were found in difference Fourier maps and subsequently placed in idealized positions, with C—H = 0.95 (CArH), 0.98 (CMeH) or 0.88 Å (NH2), and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(methyl C).
Data collection: APEX2 (Bruker, 2006) for (I); COLLECT (Nonius, 1999) for (II). Cell refinement: APEX2 (Bruker, 2006) for (I); SCALEPACK (Otwinowski & Minor, 1997) for (II). Data reduction: APEX2 (Bruker, 2006) for (I); DENZO-SMN (Otwinowski & Minor, 1997) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and local procedures.
C10H8N2O2 | F(000) = 392 |
Mr = 188.18 | Dx = 1.479 Mg m−3 |
Monoclinic, P21/c | Cu Kα radiation, λ = 1.54178 Å |
Hall symbol: -P 2ybc | Cell parameters from 8721 reflections |
a = 5.1253 (4) Å | θ = 4.6–69.0° |
b = 19.4363 (14) Å | µ = 0.88 mm−1 |
c = 8.4953 (6) Å | T = 90 K |
β = 93.251 (3)° | Needle, colourless |
V = 844.91 (11) Å3 | 0.30 × 0.08 × 0.06 mm |
Z = 4 |
Bruker X8 Proteum diffractometer | 1518 independent reflections |
Radiation source: fine-focus rotating anode | 1481 reflections with I > 2σ(I) |
Graded multilayer optics monochromator | Rint = 0.042 |
Detector resolution: 18 pixels mm-1 | θmax = 68.9°, θmin = 4.6° |
ϕ and ω scans | h = −4→6 |
Absorption correction: multi-scan [SADABS (Bruker, 2006) and XABS2 (Parkin et al., 1995)] | k = −23→23 |
Tmin = 0.744, Tmax = 0.949 | l = −10→10 |
10887 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.058 | H-atom parameters constrained |
wR(F2) = 0.158 | w = 1/[σ2(Fo2) + (0.037P)2 + 1.8838P] where P = (Fo2 + 2Fc2)/3 |
S = 1.24 | (Δ/σ)max < 0.001 |
1518 reflections | Δρmax = 0.33 e Å−3 |
128 parameters | Δρmin = −0.33 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0033 (9) |
C10H8N2O2 | V = 844.91 (11) Å3 |
Mr = 188.18 | Z = 4 |
Monoclinic, P21/c | Cu Kα radiation |
a = 5.1253 (4) Å | µ = 0.88 mm−1 |
b = 19.4363 (14) Å | T = 90 K |
c = 8.4953 (6) Å | 0.30 × 0.08 × 0.06 mm |
β = 93.251 (3)° |
Bruker X8 Proteum diffractometer | 1518 independent reflections |
Absorption correction: multi-scan [SADABS (Bruker, 2006) and XABS2 (Parkin et al., 1995)] | 1481 reflections with I > 2σ(I) |
Tmin = 0.744, Tmax = 0.949 | Rint = 0.042 |
10887 measured reflections |
R[F2 > 2σ(F2)] = 0.058 | 0 restraints |
wR(F2) = 0.158 | H-atom parameters constrained |
S = 1.24 | Δρmax = 0.33 e Å−3 |
1518 reflections | Δρmin = −0.33 e Å−3 |
128 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.0782 (5) | 0.77152 (13) | 0.5558 (3) | 0.0227 (6) | |
H1 | −0.0529 | 0.7766 | 0.6173 | 0.027* | |
N2 | 0.7272 (5) | 0.56011 (12) | 0.4103 (3) | 0.0219 (6) | |
H2A | 0.7242 | 0.5163 | 0.4362 | 0.026* | |
H2B | 0.8761 | 0.5800 | 0.3904 | 0.026* | |
O1 | 0.7253 (4) | 0.68365 (10) | 0.2684 (2) | 0.0221 (5) | |
O2 | 0.2916 (4) | 0.57240 (10) | 0.4272 (3) | 0.0231 (5) | |
C1 | 0.1826 (5) | 0.71168 (15) | 0.5181 (3) | 0.0195 (6) | |
H1A | 0.1282 | 0.6681 | 0.5546 | 0.023* | |
C2 | 0.2054 (6) | 0.82452 (15) | 0.4845 (3) | 0.0207 (7) | |
C3 | 0.1592 (6) | 0.89462 (16) | 0.4918 (4) | 0.0274 (7) | |
H3 | 0.0254 | 0.9129 | 0.5524 | 0.033* | |
C4 | 0.3164 (6) | 0.93666 (16) | 0.4069 (4) | 0.0297 (8) | |
H4 | 0.2880 | 0.9850 | 0.4068 | 0.036* | |
C5 | 0.5163 (6) | 0.90938 (16) | 0.3211 (4) | 0.0270 (7) | |
H5 | 0.6249 | 0.9396 | 0.2663 | 0.032* | |
C6 | 0.5597 (6) | 0.83963 (15) | 0.3143 (4) | 0.0225 (7) | |
H6 | 0.6958 | 0.8218 | 0.2548 | 0.027* | |
C7 | 0.4006 (5) | 0.79562 (15) | 0.3960 (3) | 0.0186 (6) | |
C8 | 0.3834 (5) | 0.72223 (15) | 0.4173 (3) | 0.0183 (6) | |
C9 | 0.5462 (5) | 0.67120 (15) | 0.3542 (3) | 0.0185 (6) | |
C10 | 0.5078 (5) | 0.59616 (15) | 0.4013 (3) | 0.0192 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0145 (12) | 0.0325 (14) | 0.0213 (13) | 0.0038 (10) | 0.0036 (10) | −0.0025 (10) |
N2 | 0.0094 (11) | 0.0211 (13) | 0.0356 (15) | −0.0008 (9) | 0.0044 (10) | 0.0028 (10) |
O1 | 0.0138 (10) | 0.0286 (11) | 0.0247 (11) | −0.0003 (8) | 0.0072 (8) | 0.0019 (8) |
O2 | 0.0120 (10) | 0.0239 (11) | 0.0335 (12) | −0.0002 (8) | 0.0037 (8) | 0.0031 (9) |
C1 | 0.0142 (14) | 0.0269 (15) | 0.0175 (14) | 0.0009 (11) | 0.0007 (11) | 0.0001 (11) |
C2 | 0.0155 (14) | 0.0276 (16) | 0.0186 (15) | 0.0018 (11) | −0.0028 (11) | −0.0035 (11) |
C3 | 0.0221 (16) | 0.0295 (17) | 0.0301 (18) | 0.0043 (13) | −0.0037 (13) | −0.0079 (13) |
C4 | 0.0274 (17) | 0.0231 (16) | 0.0375 (19) | 0.0039 (13) | −0.0071 (14) | −0.0030 (13) |
C5 | 0.0239 (16) | 0.0261 (16) | 0.0302 (18) | −0.0039 (12) | −0.0049 (13) | 0.0023 (13) |
C6 | 0.0167 (15) | 0.0268 (16) | 0.0237 (16) | −0.0012 (12) | −0.0016 (12) | 0.0005 (12) |
C7 | 0.0130 (13) | 0.0253 (15) | 0.0171 (14) | 0.0009 (11) | −0.0024 (11) | −0.0001 (11) |
C8 | 0.0124 (13) | 0.0229 (14) | 0.0195 (14) | 0.0015 (11) | 0.0011 (11) | −0.0003 (11) |
C9 | 0.0118 (13) | 0.0238 (15) | 0.0200 (15) | −0.0011 (11) | 0.0009 (11) | 0.0007 (11) |
C10 | 0.0128 (14) | 0.0245 (15) | 0.0206 (15) | −0.0003 (11) | 0.0028 (11) | −0.0010 (11) |
N1—C1 | 1.327 (4) | C3—C4 | 1.379 (5) |
N1—C2 | 1.378 (4) | C3—H3 | 0.9500 |
N1—H1 | 0.8800 | C4—C5 | 1.395 (5) |
N2—C10 | 1.323 (4) | C4—H4 | 0.9500 |
N2—H2A | 0.8800 | C5—C6 | 1.376 (4) |
N2—H2B | 0.8800 | C5—H5 | 0.9500 |
O1—C9 | 1.228 (3) | C6—C7 | 1.394 (4) |
O2—C10 | 1.232 (3) | C6—H6 | 0.9500 |
C1—C8 | 1.391 (4) | C7—C8 | 1.441 (4) |
C1—H1A | 0.9500 | C8—C9 | 1.421 (4) |
C2—C3 | 1.385 (4) | C9—C10 | 1.528 (4) |
C2—C7 | 1.403 (4) | ||
C1—N1—C2 | 110.0 (2) | C6—C5—C4 | 121.5 (3) |
C1—N1—H1 | 125.0 | C6—C5—H5 | 119.3 |
C2—N1—H1 | 125.0 | C4—C5—H5 | 119.3 |
C10—N2—H2A | 120.0 | C5—C6—C7 | 118.9 (3) |
C10—N2—H2B | 120.0 | C5—C6—H6 | 120.6 |
H2A—N2—H2B | 120.0 | C7—C6—H6 | 120.6 |
N1—C1—C8 | 110.0 (3) | C6—C7—C2 | 118.5 (3) |
N1—C1—H1A | 125.0 | C6—C7—C8 | 135.4 (3) |
C8—C1—H1A | 125.0 | C2—C7—C8 | 106.2 (2) |
N1—C2—C3 | 129.1 (3) | C1—C8—C9 | 126.9 (3) |
N1—C2—C7 | 107.8 (3) | C1—C8—C7 | 106.0 (2) |
C3—C2—C7 | 123.1 (3) | C9—C8—C7 | 127.0 (3) |
C4—C3—C2 | 117.0 (3) | O1—C9—C8 | 124.1 (3) |
C4—C3—H3 | 121.5 | O1—C9—C10 | 117.1 (3) |
C2—C3—H3 | 121.5 | C8—C9—C10 | 118.7 (2) |
C3—C4—C5 | 121.1 (3) | O2—C10—N2 | 124.1 (3) |
C3—C4—H4 | 119.5 | O2—C10—C9 | 122.3 (2) |
C5—C4—H4 | 119.5 | N2—C10—C9 | 113.5 (2) |
C2—N1—C1—C8 | −0.9 (3) | N1—C1—C8—C9 | 178.3 (3) |
C1—N1—C2—C3 | 179.8 (3) | N1—C1—C8—C7 | 1.0 (3) |
C1—N1—C2—C7 | 0.4 (3) | C6—C7—C8—C1 | 178.4 (3) |
N1—C2—C3—C4 | −179.5 (3) | C2—C7—C8—C1 | −0.7 (3) |
C7—C2—C3—C4 | −0.2 (4) | C6—C7—C8—C9 | 1.0 (5) |
C2—C3—C4—C5 | −1.5 (5) | C2—C7—C8—C9 | −178.1 (3) |
C3—C4—C5—C6 | 1.9 (5) | C1—C8—C9—O1 | −178.2 (3) |
C4—C5—C6—C7 | −0.4 (5) | C7—C8—C9—O1 | −1.3 (5) |
C5—C6—C7—C2 | −1.2 (4) | C1—C8—C9—C10 | −1.4 (4) |
C5—C6—C7—C8 | 179.8 (3) | C7—C8—C9—C10 | 175.5 (3) |
N1—C2—C7—C6 | −179.0 (3) | O1—C9—C10—O2 | −149.3 (3) |
C3—C2—C7—C6 | 1.5 (4) | C8—C9—C10—O2 | 33.7 (4) |
N1—C2—C7—C8 | 0.2 (3) | O1—C9—C10—N2 | 30.4 (4) |
C3—C2—C7—C8 | −179.2 (3) | C8—C9—C10—N2 | −146.6 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.88 | 1.92 | 2.768 (3) | 160 |
N2—H2A···O2ii | 0.88 | 2.08 | 2.926 (3) | 161 |
N2—H2B···O2iii | 0.88 | 2.14 | 2.898 (3) | 144 |
Symmetry codes: (i) x−1, −y+3/2, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x+1, y, z. |
C12H12N2O2 | F(000) = 456 |
Mr = 216.24 | Dx = 1.313 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2759 reflections |
a = 10.1813 (2) Å | θ = 1.0–27.5° |
b = 6.0048 (1) Å | µ = 0.09 mm−1 |
c = 18.0625 (4) Å | T = 90 K |
β = 97.7222 (8)° | Rod, colourless |
V = 1094.27 (4) Å3 | 0.65 × 0.25 × 0.15 mm |
Z = 4 |
Nonius KappaCCD area-detector diffractometer | 2515 independent reflections |
Radiation source: fine-focus sealed tube | 2031 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.033 |
Detector resolution: 18 pixels mm-1 | θmax = 27.5°, θmin = 2.0° |
ω scans at fixed χ = 55° | h = −13→13 |
Absorption correction: multi-scan SCALEPACK (Otwinowski & Minor, 1997) | k = −7→7 |
Tmin = 0.943, Tmax = 0.986 | l = −23→23 |
4780 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0561P)2 + 0.2642P] where P = (Fo2 + 2Fc2)/3 |
2515 reflections | (Δ/σ)max < 0.001 |
147 parameters | Δρmax = 0.23 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
C12H12N2O2 | V = 1094.27 (4) Å3 |
Mr = 216.24 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.1813 (2) Å | µ = 0.09 mm−1 |
b = 6.0048 (1) Å | T = 90 K |
c = 18.0625 (4) Å | 0.65 × 0.25 × 0.15 mm |
β = 97.7222 (8)° |
Nonius KappaCCD area-detector diffractometer | 2515 independent reflections |
Absorption correction: multi-scan SCALEPACK (Otwinowski & Minor, 1997) | 2031 reflections with I > 2σ(I) |
Tmin = 0.943, Tmax = 0.986 | Rint = 0.033 |
4780 measured reflections |
R[F2 > 2σ(F2)] = 0.040 | 0 restraints |
wR(F2) = 0.112 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.23 e Å−3 |
2515 reflections | Δρmin = −0.20 e Å−3 |
147 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against all reflections. The weighted R-value wR and goodness of fit S are based on F2. Conventional R-values R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-values based on F2 are statistically about twice as large as those based on F, and R-values based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.46067 (12) | 0.5029 (2) | 0.30948 (7) | 0.0250 (3) | |
H1 | 0.5263 | 0.4004 | 0.2983 | 0.030* | |
N1 | 0.32928 (10) | 0.47893 (19) | 0.28893 (6) | 0.0262 (3) | |
H1A | 0.2914 | 0.3676 | 0.2625 | 0.031* | |
N2 | 0.77326 (10) | 0.48231 (18) | 0.42133 (6) | 0.0253 (3) | |
O1 | 0.63689 (9) | 0.95880 (17) | 0.41126 (6) | 0.0341 (3) | |
O2 | 0.78438 (8) | 0.65588 (16) | 0.31061 (5) | 0.0295 (2) | |
C2 | 0.26301 (12) | 0.6570 (2) | 0.31595 (6) | 0.0229 (3) | |
C3 | 0.12758 (12) | 0.6955 (2) | 0.31215 (7) | 0.0268 (3) | |
H3 | 0.0643 | 0.5964 | 0.2866 | 0.032* | |
C4 | 0.08930 (13) | 0.8841 (3) | 0.34723 (7) | 0.0310 (3) | |
H4 | −0.0024 | 0.9150 | 0.3463 | 0.037* | |
C5 | 0.18277 (13) | 1.0309 (2) | 0.38423 (8) | 0.0317 (3) | |
H5 | 0.1530 | 1.1600 | 0.4074 | 0.038* | |
C6 | 0.31755 (12) | 0.9925 (2) | 0.38792 (7) | 0.0264 (3) | |
H6 | 0.3802 | 1.0936 | 0.4130 | 0.032* | |
C7 | 0.35877 (11) | 0.8014 (2) | 0.35382 (6) | 0.0217 (3) | |
C8 | 0.48596 (11) | 0.6990 (2) | 0.34928 (6) | 0.0218 (3) | |
C9 | 0.61495 (11) | 0.7791 (2) | 0.37998 (7) | 0.0229 (3) | |
C10 | 0.73240 (11) | 0.6301 (2) | 0.36848 (7) | 0.0224 (3) | |
C11 | 0.70814 (13) | 0.4489 (2) | 0.48773 (7) | 0.0294 (3) | |
H11A | 0.6463 | 0.5716 | 0.4923 | 0.044* | |
H11B | 0.7750 | 0.4449 | 0.5321 | 0.044* | |
H11C | 0.6594 | 0.3077 | 0.4833 | 0.044* | |
C12 | 0.88222 (13) | 0.3315 (2) | 0.41201 (8) | 0.0316 (3) | |
H12A | 0.9080 | 0.3512 | 0.3621 | 0.047* | |
H12B | 0.8538 | 0.1774 | 0.4179 | 0.047* | |
H12C | 0.9581 | 0.3648 | 0.4498 | 0.047* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0232 (6) | 0.0284 (7) | 0.0245 (6) | −0.0007 (5) | 0.0069 (5) | −0.0014 (5) |
N1 | 0.0243 (5) | 0.0296 (6) | 0.0250 (5) | −0.0045 (4) | 0.0048 (4) | −0.0056 (4) |
N2 | 0.0231 (5) | 0.0277 (6) | 0.0260 (5) | 0.0025 (4) | 0.0068 (4) | 0.0028 (4) |
O1 | 0.0264 (5) | 0.0303 (6) | 0.0454 (6) | −0.0025 (4) | 0.0043 (4) | −0.0106 (4) |
O2 | 0.0247 (5) | 0.0379 (6) | 0.0275 (5) | 0.0043 (4) | 0.0092 (4) | 0.0068 (4) |
C2 | 0.0233 (6) | 0.0271 (7) | 0.0190 (5) | −0.0009 (5) | 0.0048 (4) | 0.0014 (5) |
C3 | 0.0213 (6) | 0.0344 (7) | 0.0242 (6) | −0.0032 (5) | 0.0019 (5) | 0.0042 (5) |
C4 | 0.0210 (6) | 0.0391 (8) | 0.0332 (7) | 0.0037 (6) | 0.0048 (5) | 0.0050 (6) |
C5 | 0.0270 (7) | 0.0311 (8) | 0.0377 (7) | 0.0064 (6) | 0.0073 (5) | −0.0012 (6) |
C6 | 0.0245 (6) | 0.0261 (7) | 0.0289 (6) | 0.0002 (5) | 0.0048 (5) | −0.0009 (5) |
C7 | 0.0206 (6) | 0.0258 (6) | 0.0193 (5) | −0.0001 (5) | 0.0044 (4) | 0.0033 (5) |
C8 | 0.0200 (6) | 0.0251 (6) | 0.0211 (5) | 0.0004 (5) | 0.0058 (4) | 0.0009 (5) |
C9 | 0.0233 (6) | 0.0244 (7) | 0.0219 (5) | −0.0004 (5) | 0.0059 (4) | 0.0006 (5) |
C10 | 0.0180 (5) | 0.0249 (7) | 0.0243 (6) | −0.0019 (5) | 0.0031 (4) | −0.0005 (5) |
C11 | 0.0345 (7) | 0.0311 (7) | 0.0241 (6) | 0.0005 (6) | 0.0088 (5) | 0.0016 (5) |
C12 | 0.0255 (7) | 0.0323 (8) | 0.0378 (7) | 0.0062 (5) | 0.0074 (5) | 0.0059 (6) |
C1—N1 | 1.3471 (16) | C4—H4 | 0.9500 |
C1—C8 | 1.3858 (18) | C5—C6 | 1.3842 (17) |
C1—H1 | 0.9500 | C5—H5 | 0.9500 |
N1—C2 | 1.3874 (16) | C6—C7 | 1.3936 (18) |
N1—H1A | 0.8800 | C6—H6 | 0.9500 |
N2—C10 | 1.3287 (16) | C7—C8 | 1.4457 (16) |
N2—C12 | 1.4591 (16) | C8—C9 | 1.4380 (17) |
N2—C11 | 1.4602 (15) | C9—C10 | 1.5298 (17) |
O1—C9 | 1.2244 (16) | C11—H11A | 0.9800 |
O2—C10 | 1.2431 (15) | C11—H11B | 0.9800 |
C2—C3 | 1.3906 (17) | C11—H11C | 0.9800 |
C2—C7 | 1.4110 (17) | C12—H12A | 0.9800 |
C3—C4 | 1.380 (2) | C12—H12B | 0.9800 |
C3—H3 | 0.9500 | C12—H12C | 0.9800 |
C4—C5 | 1.399 (2) | ||
N1—C1—C8 | 110.00 (11) | C6—C7—C2 | 119.39 (11) |
N1—C1—H1 | 125.0 | C6—C7—C8 | 134.46 (12) |
C8—C1—H1 | 125.0 | C2—C7—C8 | 106.09 (11) |
C1—N1—C2 | 109.43 (10) | C1—C8—C9 | 125.50 (11) |
C1—N1—H1A | 125.3 | C1—C8—C7 | 106.58 (10) |
C2—N1—H1A | 125.3 | C9—C8—C7 | 127.92 (12) |
C10—N2—C12 | 120.07 (10) | O1—C9—C8 | 124.97 (12) |
C10—N2—C11 | 123.31 (11) | O1—C9—C10 | 118.72 (11) |
C12—N2—C11 | 116.46 (10) | C8—C9—C10 | 116.23 (11) |
N1—C2—C3 | 129.53 (12) | O2—C10—N2 | 124.03 (11) |
N1—C2—C7 | 107.88 (10) | O2—C10—C9 | 118.05 (11) |
C3—C2—C7 | 122.53 (12) | N2—C10—C9 | 117.91 (10) |
C4—C3—C2 | 116.96 (12) | N2—C11—H11A | 109.5 |
C4—C3—H3 | 121.5 | N2—C11—H11B | 109.5 |
C2—C3—H3 | 121.5 | H11A—C11—H11B | 109.5 |
C3—C4—C5 | 121.36 (12) | N2—C11—H11C | 109.5 |
C3—C4—H4 | 119.3 | H11A—C11—H11C | 109.5 |
C5—C4—H4 | 119.3 | H11B—C11—H11C | 109.5 |
C6—C5—C4 | 121.63 (13) | N2—C12—H12A | 109.5 |
C6—C5—H5 | 119.2 | N2—C12—H12B | 109.5 |
C4—C5—H5 | 119.2 | H12A—C12—H12B | 109.5 |
C5—C6—C7 | 118.12 (12) | N2—C12—H12C | 109.5 |
C5—C6—H6 | 120.9 | H12A—C12—H12C | 109.5 |
C7—C6—H6 | 120.9 | H12B—C12—H12C | 109.5 |
C8—C1—N1—C2 | −1.24 (14) | C6—C7—C8—C1 | 177.34 (13) |
C1—N1—C2—C3 | −175.89 (12) | C2—C7—C8—C1 | 0.23 (13) |
C1—N1—C2—C7 | 1.37 (13) | C6—C7—C8—C9 | −2.1 (2) |
N1—C2—C3—C4 | 177.12 (12) | C2—C7—C8—C9 | −179.18 (11) |
C7—C2—C3—C4 | 0.20 (18) | C1—C8—C9—O1 | 175.49 (12) |
C2—C3—C4—C5 | 0.64 (19) | C7—C8—C9—O1 | −5.2 (2) |
C3—C4—C5—C6 | −0.6 (2) | C1—C8—C9—C10 | −1.37 (17) |
C4—C5—C6—C7 | −0.3 (2) | C7—C8—C9—C10 | 177.94 (11) |
C5—C6—C7—C2 | 1.11 (18) | C12—N2—C10—O2 | −2.49 (19) |
C5—C6—C7—C8 | −175.71 (13) | C11—N2—C10—O2 | −177.78 (12) |
N1—C2—C7—C6 | −178.59 (11) | C12—N2—C10—C9 | 178.11 (11) |
C3—C2—C7—C6 | −1.10 (18) | C11—N2—C10—C9 | 2.82 (18) |
N1—C2—C7—C8 | −0.96 (13) | O1—C9—C10—O2 | −88.55 (15) |
C3—C2—C7—C8 | 176.54 (11) | C8—C9—C10—O2 | 88.51 (14) |
N1—C1—C8—C9 | −179.96 (11) | O1—C9—C10—N2 | 90.89 (15) |
N1—C1—C8—C7 | 0.61 (13) | C8—C9—C10—N2 | −92.05 (14) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2i | 0.88 | 1.92 | 2.7885 (14) | 170 |
Symmetry code: (i) −x+1, y−1/2, −z+1/2. |
Experimental details
(I) | (II) | |
Crystal data | ||
Chemical formula | C10H8N2O2 | C12H12N2O2 |
Mr | 188.18 | 216.24 |
Crystal system, space group | Monoclinic, P21/c | Monoclinic, P21/c |
Temperature (K) | 90 | 90 |
a, b, c (Å) | 5.1253 (4), 19.4363 (14), 8.4953 (6) | 10.1813 (2), 6.0048 (1), 18.0625 (4) |
β (°) | 93.251 (3) | 97.7222 (8) |
V (Å3) | 844.91 (11) | 1094.27 (4) |
Z | 4 | 4 |
Radiation type | Cu Kα | Mo Kα |
µ (mm−1) | 0.88 | 0.09 |
Crystal size (mm) | 0.30 × 0.08 × 0.06 | 0.65 × 0.25 × 0.15 |
Data collection | ||
Diffractometer | Bruker X8 Proteum diffractometer | Nonius KappaCCD area-detector diffractometer |
Absorption correction | Multi-scan [SADABS (Bruker, 2006) and XABS2 (Parkin et al., 1995)] | Multi-scan SCALEPACK (Otwinowski & Minor, 1997) |
Tmin, Tmax | 0.744, 0.949 | 0.943, 0.986 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10887, 1518, 1481 | 4780, 2515, 2031 |
Rint | 0.042 | 0.033 |
(sin θ/λ)max (Å−1) | 0.605 | 0.650 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.058, 0.158, 1.24 | 0.040, 0.112, 1.06 |
No. of reflections | 1518 | 2515 |
No. of parameters | 128 | 147 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.33 | 0.23, −0.20 |
Computer programs: APEX2 (Bruker, 2006), COLLECT (Nonius, 1999), SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008) and local procedures.
N2—C10 | 1.323 (4) | C8—C9 | 1.421 (4) |
O2—C10 | 1.232 (3) | C9—C10 | 1.528 (4) |
C1—C8—C9 | 126.9 (3) | O2—C10—N2 | 124.1 (3) |
O1—C9—C8 | 124.1 (3) | O2—C10—C9 | 122.3 (2) |
O1—C9—C10 | 117.1 (3) | N2—C10—C9 | 113.5 (2) |
C1—C8—C9—O1 | −178.2 (3) | O1—C9—C10—O2 | −149.3 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1i | 0.88 | 1.92 | 2.768 (3) | 160.2 |
N2—H2A···O2ii | 0.88 | 2.08 | 2.926 (3) | 160.5 |
N2—H2B···O2iii | 0.88 | 2.14 | 2.898 (3) | 144.0 |
Symmetry codes: (i) x−1, −y+3/2, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x+1, y, z. |
N2—C10 | 1.3287 (16) | C8—C9 | 1.4380 (17) |
O2—C10 | 1.2431 (15) | C9—C10 | 1.5298 (17) |
C1—C8—C9 | 125.50 (11) | O2—C10—N2 | 124.03 (11) |
O1—C9—C8 | 124.97 (12) | O2—C10—C9 | 118.05 (11) |
O1—C9—C10 | 118.72 (11) | N2—C10—C9 | 117.91 (10) |
C1—C8—C9—O1 | 175.49 (12) | O1—C9—C10—O2 | −88.55 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···O2i | 0.88 | 1.92 | 2.7885 (14) | 169.6 |
Symmetry code: (i) −x+1, y−1/2, −z+1/2. |
Subscribe to Acta Crystallographica Section C: Structural Chemistry
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- Purchase subscription
- Reduced-price subscriptions
- If you have already subscribed, you may need to register
The title compounds, 2-(1H-indol-3-yl)-2-oxoacetamide, (I), and 2-(1H-indol-3-yl)- N,N-dimethyl-2-oxoacetamide, (II), are synthetic intermediates in the preparation of tryptamine and N,N-dimethyltryptamine, and are prepared by treating indole with oxalyl chloride followed by quenching with aqueous ammonia or dimethylamine, respectively. The products were characterized by spectroscopic analysis and their X-ray crystal structure determinations were carried out to ascertain the conformations of these molecules, especially the orientations of the carbonyl groups, as 1,2-diones have been shown to be potent inhibitors of carboxylesterases (Hyatt et al., 2007). The inhibitory properties of ethane-1,2-diones toward carboxylesterases are such that, when the carbonyl O atoms are cis-coplanar, the compounds demonstrate specificity for human liver carboxylesterase. Conversely, when the dione O atoms are not planar (or are trans-coplanar), the compounds are more potent at human intestinal carboxylesterase inhibition (Hyatt et al., 2007). Thus, the title compounds and their analogs were screened for their inhibition of human carboxylesterases and it was planned to determine their conformations to compare with the observation reported for ethane-1,2-diones.
X-ray crystallography confirmed the molecular structures and atom connectivities of (I) and (II), and selected geometric parameters are listed in Tables 1 and 3. The two carbonyl groups are in a trans orientation, with torsion angle O1—C9—C10—O2 = 149.3 (3)° and O1—C10—C11—O2 = 88.55 (15)°. The deviation from 180° may be due to repulsive interactions between non-bonded electron pairs on atoms O1 and O2. However, in (I) the extensive hydrogen bonding introduces rigidity into the molecule. Since the C9═O1 and C10═O1 groups are coplanar with the indole nucleus, there is extended conjugation from atom O1 through to the indole ring. This is evident from the shortening of the C8—C9 [1.421 (4) Å] and C1—C10 [1.4380 (17) Å] bond lengths compared with the standard value for a single bond connecting a Car atom to a Csp2 atom [1.470 (15) Å; Allen et al., 1987]. Possibly due to repulsive interactions between non-bonded electron pairs, the C9—C10 and C10—C11 bonds are stretched, resulting in bond lengths of 1.528 (4) and 1.5298 (17) Å, respectively. These are longer than expected, the characteristic value for a Csp2—Csp2 bond being 1.50 Å (Zukerman-Schpector et al., 1994). The C10—N2 [1.323 (4) Å] and C11—N12 [1.3287 (16) Å] bond lengths, and the bond angles around atoms N2 and N12, suggest that the lone pairs of electrons on N2 and N12 undergo delocalization, bestowing double-bond character on the C10—N2 and C11—N12 bonds.
The packing of compounds (I) and (II), as viewed down the c axis [b axis for (II)?], are illustrated in Figs. 2 and 4, respectively. Amides undergo extensive hydrogen bonding, but in (I), in addition to primary amide functionality, there is a hydrogen-bond accepting carbonyl group and a variable glyoxylamide torsion angle. In (I), the molecules are linked by an elaborate system of N—H···O hydrogen bonds [N1—H1···O1i and N2—H2A···O2ii; symmetry codes: (i) x - 1, -y + 3/2, z + 1/2; (ii) -x + 1, -y + 1, -z + 1] which include adjacent R22(8) and R42(8) ring motifs (Bernstein et al., 1995) to form a ladder-like construct. Adjacent ladders are further linked by N—H···O hydrogen bonds [N2—H2B···O2iii; symmetry code: (iii) x + 1, y, z] to build a three-dimensional network. The hydrogen bonding in (II) is far simpler, consisting of helical chains of N—H···O [N3—H3···O2i; symmetry code: (i) -x + 1, y - 1/2, -z + 1/2] linked molecules that follow the 21 screw of the b axis.