Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Halogen bonding is a noncovalent inter­action between the electrophilic region of a halogen (σ-hole) and an electron donor. We report a crystallographic and structural analysis of halogen-bonded compounds by applying a combined X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (SSNMR) approach. Single-crystal XRD was first used to characterize the halogen-bonded cocrystals formed between two fluorinated halogen-bond donors (1,4-di­iodo­tetra­fluoro­benzene and 1,3,5-tri­fluoro-2,4,6-tri­iodo­benzene) and several nitro­gen-containing heterocycles (acridine, 1,10-phenanthroline, 2,3,5,6-tetra­methyl­pyrazine, and hexa­methyl­ene­tetra­mine). New structures are reported for the following three cocrystals, all in the P21/c space group: acridine–1,3,5-tri­fluoro-2,4,6-tri­iodo­benzene (1/1), C6F3I3·C13H9N, 1,10-phenanthroline–1,3,5-tri­fluoro-2,4,6-tri­iodo­benzene (1/1), C6F3I3·C12H8N2, and 2,3,5,6-tetra­methyl­pyrazine–1,3,5-tri­fluoro-2,4,6-tri­iodo­benzene (1/1), C6F3I3·C8H12N2. 13C and 19F solid-state magic-angle spinning (MAS) NMR is shown to be a convenient method to characterize the structural features of the halogen-bond donor and acceptor, with chemical shifts attributable to cocrystal formation observed in the spectra of both nuclides. Cross polarization (CP) from 19F to 13C results in improved spectral sensitivity in characterizing the perfluorinated halogen-bond donor when compared to conventional 1H CP. Gauge-including projector-augmented wave density functional theory (GIPAW DFT) calculations of magnetic shielding constants, along with optimization of the XRD structures, provide a final set of structures in best agreement with the experimental 13C and 19F chemical shifts. Data for carbons bonded to iodine remain outliers due to well-known relativistic effects.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229616015023/yp3130sup1.cif
Contains datablocks db146, db152, db201, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616015023/yp3130db146sup2.hkl
Contains datablock db146

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616015023/yp3130db152sup3.hkl
Contains datablock db152

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229616015023/yp3130db201sup4.hkl
Contains datablock db201

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229616015023/yp3130db146sup5.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229616015023/yp3130db152sup6.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229616015023/yp3130db201sup7.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229616015023/yp3130sup8.pdf
Additional figures and tables

CCDC references: 1505895; 1505894; 1505893

Computing details top

For all compounds, data collection: APEX2 (Bruker, 2012); cell refinement: APEX2 (Bruker, 2012); data reduction: SAINT and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b) and WinGX (Farrugia, 2012); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: CIFTAB (Sheldrick, 1997).

(db146) 2,3,5,6-Tetramethylpyrazine–1,3,5-trifluoro-2,4,6-triiodobenzene (1/1) top
Crystal data top
C6F3I3·C8H12N2Dx = 2.416 Mg m3
Mr = 645.96Melting point: 398 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 7.9818 (3) ÅCell parameters from 9977 reflections
b = 26.7046 (9) Åθ = 2.6–27.8°
c = 9.2220 (3) ŵ = 5.31 mm1
β = 115.398 (2)°T = 200 K
V = 1775.69 (11) Å3Rod, colorless
Z = 40.52 × 0.26 × 0.11 mm
F(000) = 1184
Data collection top
Bruker APEXII CCD
diffractometer
3892 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.042
φ and ω scansθmax = 27.9°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1010
Tmin = 0.443, Tmax = 0.746k = 3435
29591 measured reflectionsl = 1112
4238 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0295P)2 + 1.8982P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max = 0.003
4238 reflectionsΔρmax = 0.59 e Å3
203 parametersΔρmin = 1.64 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Data were collected on a Bruker AXS Kappa-single crystal diffractometer equipped with a sealed Mo tube source (wavelength 0.71073 Å) APEX II CCD detector. Raw data collection and processing were performed with the APEX II software package from BRUKER AXS (Bruker, 2012). Semi-empirical absorption corrections based on equivalent reflections were applied (Bruker, 2001). Systematic absences in the diffraction dataset and unit cell parameters were consistent with monoclinic P21/c (No. 14) for compounds A2, B2, and C2. The structures were solved by direct methods and refined with full-matrix least-squares procedures based on F2, procedures using SHELXL2014 (Sheldrick, 2015) and WinGX (Farrugia 1999). All non-hydrogen atoms were refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6742 (5)0.45071 (13)0.3810 (4)0.0233 (7)
C20.5309 (5)0.45006 (13)0.2272 (4)0.0236 (7)
C30.4763 (5)0.40684 (13)0.1356 (4)0.0246 (7)
C40.5684 (5)0.36328 (13)0.2032 (4)0.0247 (7)
C50.7107 (5)0.36093 (13)0.3568 (4)0.0237 (7)
C60.7595 (5)0.40557 (13)0.4397 (4)0.0246 (7)
C71.1004 (6)0.56055 (15)0.9216 (5)0.0374 (9)
H7A1.06310.53650.83300.056*
H7B1.06200.54821.00280.056*
H7C1.23540.56460.96990.056*
C81.0090 (5)0.61026 (14)0.8586 (5)0.0269 (7)
C91.0623 (5)0.65410 (13)0.9482 (4)0.0256 (7)
C101.2160 (7)0.65493 (16)1.1139 (5)0.0400 (10)
H10A1.33420.66081.10810.060*
H10B1.22080.62271.16640.060*
H10C1.19390.68181.17590.060*
C110.6320 (6)0.65340 (16)0.4831 (5)0.0354 (9)
H11A0.68010.66590.40840.053*
H11B0.52970.67480.47760.053*
H11C0.58710.61900.45370.053*
C120.7844 (5)0.65404 (13)0.6512 (4)0.0238 (7)
C130.8365 (5)0.69778 (13)0.7418 (4)0.0262 (7)
C140.7447 (6)0.74686 (15)0.6771 (6)0.0416 (10)
H14A0.79440.77250.76100.062*
H14B0.61070.74370.64250.062*
H14C0.76880.75660.58530.062*
N10.8696 (4)0.61067 (11)0.7105 (4)0.0250 (6)
N20.9762 (5)0.69739 (11)0.8890 (4)0.0266 (6)
F10.8978 (3)0.40462 (9)0.5893 (3)0.0370 (5)
F20.4432 (3)0.49317 (8)0.1650 (3)0.0356 (5)
F30.5167 (4)0.32068 (8)0.1168 (3)0.0376 (6)
I10.75461 (3)0.51659 (2)0.51617 (3)0.02766 (7)
I20.26993 (4)0.40876 (2)0.09761 (3)0.03493 (8)
I30.84031 (4)0.29339 (2)0.45734 (3)0.03048 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0234 (17)0.0213 (16)0.0227 (17)0.0031 (13)0.0076 (14)0.0036 (13)
C20.0256 (17)0.0201 (16)0.0214 (17)0.0030 (13)0.0066 (14)0.0040 (13)
C30.0248 (17)0.0271 (17)0.0164 (16)0.0029 (14)0.0035 (14)0.0011 (13)
C40.0278 (18)0.0242 (17)0.0202 (17)0.0045 (14)0.0083 (14)0.0054 (13)
C50.0256 (17)0.0209 (16)0.0221 (17)0.0030 (13)0.0078 (14)0.0037 (13)
C60.0215 (16)0.0285 (18)0.0168 (16)0.0033 (14)0.0016 (13)0.0014 (13)
C70.043 (2)0.0242 (18)0.037 (2)0.0072 (17)0.0093 (19)0.0021 (16)
C80.0286 (18)0.0246 (17)0.0266 (18)0.0004 (14)0.0110 (15)0.0026 (14)
C90.0290 (18)0.0235 (17)0.0218 (17)0.0017 (14)0.0085 (15)0.0006 (14)
C100.048 (3)0.034 (2)0.026 (2)0.0022 (19)0.0041 (19)0.0010 (17)
C110.034 (2)0.034 (2)0.027 (2)0.0010 (17)0.0024 (17)0.0043 (16)
C120.0229 (16)0.0238 (17)0.0209 (17)0.0002 (13)0.0058 (14)0.0017 (13)
C130.0286 (18)0.0218 (16)0.0243 (18)0.0011 (14)0.0076 (15)0.0010 (14)
C140.044 (2)0.0245 (19)0.040 (2)0.0053 (17)0.0019 (19)0.0006 (17)
N10.0256 (15)0.0216 (14)0.0259 (15)0.0009 (12)0.0093 (13)0.0030 (12)
N20.0320 (16)0.0212 (14)0.0222 (15)0.0017 (12)0.0075 (13)0.0022 (12)
F10.0348 (12)0.0343 (12)0.0231 (11)0.0008 (10)0.0055 (10)0.0000 (9)
F20.0386 (13)0.0240 (11)0.0330 (12)0.0079 (9)0.0047 (10)0.0040 (9)
F30.0461 (14)0.0226 (11)0.0329 (12)0.0043 (10)0.0062 (11)0.0087 (9)
I10.02873 (13)0.02442 (12)0.02914 (13)0.00499 (9)0.01176 (10)0.00770 (9)
I20.03110 (14)0.04383 (16)0.01930 (12)0.00144 (11)0.00075 (10)0.00015 (10)
I30.03278 (14)0.02334 (12)0.03413 (14)0.00554 (9)0.01321 (11)0.00662 (9)
Geometric parameters (Å, º) top
C1—C61.376 (5)C8—C91.390 (5)
C1—C21.389 (5)C9—N21.336 (5)
C1—I12.092 (3)C9—C101.495 (5)
C2—F21.342 (4)C10—H10A0.9800
C2—C31.386 (5)C10—H10B0.9800
C3—C41.375 (5)C10—H10C0.9800
C3—I22.074 (3)C11—C121.505 (5)
C4—F31.348 (4)C11—H11A0.9800
C4—C51.386 (5)C11—H11B0.9800
C5—C61.379 (5)C11—H11C0.9800
C5—I32.088 (3)C12—N11.336 (5)
C6—F11.347 (4)C12—C131.392 (5)
C7—C81.506 (5)C13—N21.337 (5)
C7—H7A0.9800C13—C141.495 (5)
C7—H7B0.9800C14—H14A0.9800
C7—H7C0.9800C14—H14B0.9800
C8—N11.342 (5)C14—H14C0.9800
C6—C1—C2116.3 (3)N2—C9—C10117.2 (3)
C6—C1—I1121.9 (3)C8—C9—C10121.9 (3)
C2—C1—I1121.8 (3)C9—C10—H10A109.5
F2—C2—C3118.9 (3)C9—C10—H10B109.5
F2—C2—C1118.4 (3)H10A—C10—H10B109.5
C3—C2—C1122.6 (3)C9—C10—H10C109.5
C4—C3—C2117.5 (3)H10A—C10—H10C109.5
C4—C3—I2121.6 (3)H10B—C10—H10C109.5
C2—C3—I2120.9 (3)C12—C11—H11A109.5
F3—C4—C3118.5 (3)C12—C11—H11B109.5
F3—C4—C5118.4 (3)H11A—C11—H11B109.5
C3—C4—C5123.1 (3)C12—C11—H11C109.5
C6—C5—C4116.1 (3)H11A—C11—H11C109.5
C6—C5—I3122.1 (3)H11B—C11—H11C109.5
C4—C5—I3121.7 (3)N1—C12—C13120.9 (3)
F1—C6—C1118.0 (3)N1—C12—C11117.2 (3)
F1—C6—C5117.6 (3)C13—C12—C11122.0 (3)
C1—C6—C5124.4 (3)N2—C13—C12120.5 (3)
C8—C7—H7A109.5N2—C13—C14117.7 (3)
C8—C7—H7B109.5C12—C13—C14121.8 (3)
H7A—C7—H7B109.5C13—C14—H14A109.5
C8—C7—H7C109.5C13—C14—H14B109.5
H7A—C7—H7C109.5H14A—C14—H14B109.5
H7B—C7—H7C109.5C13—C14—H14C109.5
N1—C8—C9120.4 (3)H14A—C14—H14C109.5
N1—C8—C7116.9 (3)H14B—C14—H14C109.5
C9—C8—C7122.6 (3)C12—N1—C8118.6 (3)
N2—C9—C8120.9 (3)C9—N2—C13118.7 (3)
C6—C1—C2—F2179.8 (3)C4—C5—C6—F1179.8 (3)
I1—C1—C2—F20.2 (5)I3—C5—C6—F11.1 (5)
C6—C1—C2—C30.6 (6)C4—C5—C6—C11.5 (6)
I1—C1—C2—C3179.7 (3)I3—C5—C6—C1177.7 (3)
F2—C2—C3—C4179.7 (3)N1—C8—C9—N20.0 (6)
C1—C2—C3—C40.7 (6)C7—C8—C9—N2179.1 (4)
F2—C2—C3—I22.6 (5)N1—C8—C9—C10179.6 (4)
C1—C2—C3—I2177.0 (3)C7—C8—C9—C100.5 (6)
C2—C3—C4—F3179.5 (3)N1—C12—C13—N21.5 (6)
I2—C3—C4—F32.8 (5)C11—C12—C13—N2178.0 (4)
C2—C3—C4—C50.3 (6)N1—C12—C13—C14179.2 (4)
I2—C3—C4—C5178.0 (3)C11—C12—C13—C140.3 (6)
F3—C4—C5—C6179.5 (3)C13—C12—N1—C81.1 (5)
C3—C4—C5—C61.4 (6)C11—C12—N1—C8178.4 (4)
F3—C4—C5—I31.4 (5)C9—C8—N1—C120.4 (6)
C3—C4—C5—I3177.8 (3)C7—C8—N1—C12179.5 (4)
C2—C1—C6—F1179.3 (3)C8—C9—N2—C130.4 (6)
I1—C1—C6—F10.4 (5)C10—C9—N2—C13179.2 (4)
C2—C1—C6—C50.5 (6)C12—C13—N2—C91.1 (6)
I1—C1—C6—C5179.1 (3)C14—C13—N2—C9178.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···I10.982.953.758 (4)140
C10—H10C···I3i0.983.193.749 (4)118
C11—H11C···I10.982.993.760 (4)136
C14—H14A···I3i0.983.013.782 (4)137
Symmetry code: (i) x+2, y+1/2, z+3/2.
(db152) Dibenzo[b,e]pyridine–1,3,5-trifluoro-2,4,6-triiodobenzene (1/1) top
Crystal data top
C6F3I3·C13H9NDx = 2.343 Mg m3
Mr = 688.97Melting point: 443 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.5079 (4) ÅCell parameters from 9922 reflections
b = 12.5632 (5) Åθ = 2.2–28.3°
c = 15.1563 (6) ŵ = 4.83 mm1
β = 102.490 (2)°T = 200 K
V = 1953.47 (13) Å3Block, yellow
Z = 40.42 × 0.24 × 0.23 mm
F(000) = 1264
Data collection top
Bruker APEX-II CCD
diffractometer
4541 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.022
φ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
SADABS, Bruker (2003)
h = 1413
Tmin = 0.500, Tmax = 0.746k = 1616
43868 measured reflectionsl = 2020
4835 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.022H-atom parameters constrained
wR(F2) = 0.054 w = 1/[σ2(Fo2) + (0.0232P)2 + 3.1972P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4835 reflectionsΔρmax = 1.10 e Å3
235 parametersΔρmin = 1.47 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Data were collected on a Bruker AXS Kappa-single crystal diffractometer equipped with a sealed Mo tube source (wavelength 0.71073 Å) APEX II CCD detector. Raw data collection and processing were performed with the APEX II software package from BRUKER AXS (Bruker, 2012). Semi-empirical absorption corrections based on equivalent reflections were applied (Bruker, 2001). Systematic absences in the diffraction dataset and unit cell parameters were consistent with monoclinic P21/c (No. 14) for compounds A2, B2, and C2. The structures were solved by direct methods and refined with full-matrix least-squares procedures based on F2, procedures using SHELXL2014 (Sheldrick, 2015) and WinGX (Farrugia 1999). All non-hydrogen atoms were refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I10.69981 (2)0.63350 (2)0.37844 (2)0.03415 (5)
I50.42931 (2)0.69475 (2)0.68888 (2)0.03950 (6)
I30.80099 (2)0.32884 (2)0.69125 (2)0.05225 (7)
F60.51611 (17)0.72439 (13)0.50306 (11)0.0408 (4)
F40.60499 (17)0.49209 (15)0.75078 (11)0.0433 (4)
F20.80976 (18)0.44332 (15)0.50880 (12)0.0464 (4)
N70.7728 (2)0.68282 (17)0.20061 (15)0.0309 (4)
C50.5559 (2)0.6094 (2)0.62765 (16)0.0285 (5)
C10.6644 (2)0.5855 (2)0.50297 (15)0.0281 (5)
C20.7260 (2)0.4975 (2)0.54717 (17)0.0306 (5)
C200.8618 (2)0.7599 (2)0.19944 (18)0.0322 (5)
C40.6218 (2)0.5212 (2)0.66889 (17)0.0305 (5)
C30.7061 (2)0.4626 (2)0.62976 (17)0.0312 (5)
C60.5793 (2)0.63910 (19)0.54474 (17)0.0282 (5)
C150.9335 (3)0.7667 (3)0.1297 (2)0.0392 (6)
C80.7511 (3)0.6105 (2)0.13388 (18)0.0348 (5)
C190.8857 (3)0.8353 (2)0.2708 (2)0.0419 (6)
H190.83740.83200.31690.050*
C90.6577 (3)0.5286 (3)0.1354 (2)0.0463 (7)
H90.61020.52790.18210.056*
C130.8199 (3)0.6111 (3)0.06216 (19)0.0442 (7)
C161.0269 (3)0.8510 (3)0.1350 (3)0.0607 (10)
H161.07430.85850.08860.073*
C140.9107 (3)0.6910 (3)0.0622 (2)0.0508 (8)
H140.95760.69380.01520.061*
C180.9777 (3)0.9123 (3)0.2734 (3)0.0564 (9)
H180.99410.96150.32210.068*
C100.6358 (4)0.4519 (3)0.0715 (2)0.0638 (10)
H100.57410.39730.07400.077*
C120.7920 (5)0.5289 (4)0.0041 (2)0.0677 (11)
H120.83620.52810.05260.081*
C171.0486 (3)0.9198 (3)0.2049 (3)0.0649 (11)
H171.11240.97400.20790.078*
C110.7045 (5)0.4525 (4)0.0007 (3)0.0768 (13)
H110.68840.39820.04390.092*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.04110 (10)0.03481 (9)0.02732 (8)0.00377 (7)0.00911 (7)0.00187 (6)
I50.03726 (10)0.03943 (10)0.04554 (10)0.00062 (7)0.01718 (8)0.00627 (7)
I30.04325 (11)0.04561 (12)0.06837 (14)0.01305 (9)0.01309 (10)0.02722 (10)
F60.0463 (9)0.0334 (8)0.0429 (8)0.0117 (7)0.0103 (7)0.0097 (7)
F40.0429 (9)0.0563 (11)0.0333 (8)0.0025 (8)0.0141 (7)0.0141 (7)
F20.0526 (10)0.0456 (10)0.0469 (9)0.0175 (8)0.0237 (8)0.0037 (8)
N70.0298 (10)0.0312 (11)0.0325 (10)0.0003 (8)0.0081 (8)0.0057 (8)
C50.0249 (11)0.0308 (12)0.0302 (11)0.0020 (9)0.0067 (9)0.0026 (9)
C10.0310 (11)0.0285 (11)0.0245 (10)0.0034 (9)0.0058 (9)0.0004 (9)
C20.0291 (12)0.0314 (12)0.0327 (12)0.0024 (10)0.0095 (9)0.0004 (10)
C200.0237 (11)0.0353 (13)0.0359 (12)0.0024 (10)0.0029 (9)0.0113 (10)
C40.0262 (11)0.0356 (13)0.0294 (11)0.0040 (10)0.0055 (9)0.0049 (10)
C30.0281 (12)0.0295 (12)0.0353 (12)0.0015 (9)0.0053 (10)0.0075 (10)
C60.0271 (11)0.0253 (11)0.0304 (11)0.0004 (9)0.0026 (9)0.0019 (9)
C150.0278 (12)0.0486 (16)0.0423 (14)0.0037 (11)0.0098 (11)0.0198 (13)
C80.0376 (13)0.0355 (13)0.0301 (12)0.0041 (11)0.0048 (10)0.0062 (10)
C190.0388 (15)0.0385 (15)0.0459 (15)0.0057 (12)0.0037 (12)0.0054 (12)
C90.0583 (19)0.0401 (16)0.0385 (15)0.0084 (14)0.0057 (13)0.0014 (12)
C130.0553 (18)0.0482 (17)0.0300 (13)0.0141 (14)0.0109 (12)0.0087 (12)
C160.0360 (16)0.076 (3)0.072 (2)0.0073 (16)0.0161 (16)0.035 (2)
C140.0508 (18)0.068 (2)0.0389 (15)0.0159 (16)0.0212 (14)0.0204 (15)
C180.0506 (19)0.0448 (18)0.065 (2)0.0151 (15)0.0066 (16)0.0080 (16)
C100.087 (3)0.048 (2)0.0497 (19)0.0125 (19)0.0011 (18)0.0065 (16)
C120.099 (3)0.072 (3)0.0354 (16)0.018 (2)0.0212 (19)0.0037 (16)
C170.0397 (17)0.064 (2)0.085 (3)0.0210 (16)0.0005 (17)0.026 (2)
C110.123 (4)0.057 (2)0.045 (2)0.005 (3)0.005 (2)0.0167 (17)
Geometric parameters (Å, º) top
I1—C12.090 (2)C8—C131.430 (4)
I5—C52.077 (2)C19—C181.362 (4)
I3—C32.070 (2)C19—H190.9500
F6—C61.344 (3)C9—C101.351 (5)
F4—C41.342 (3)C9—H90.9500
F2—C21.340 (3)C13—C141.385 (5)
N7—C81.342 (4)C13—C121.427 (5)
N7—C201.350 (3)C16—C171.347 (6)
C5—C41.382 (4)C16—H160.9500
C5—C61.383 (3)C14—H140.9500
C1—C61.378 (3)C18—C171.406 (6)
C1—C21.379 (4)C18—H180.9500
C2—C31.384 (3)C10—C111.417 (6)
C20—C191.418 (4)C10—H100.9500
C20—C151.428 (4)C12—C111.342 (7)
C4—C31.381 (4)C12—H120.9500
C15—C141.379 (5)C17—H170.9500
C15—C161.435 (5)C11—H110.9500
C8—C91.426 (4)
C8—N7—C20118.8 (2)C18—C19—H19119.9
C4—C5—C6117.2 (2)C20—C19—H19119.9
C4—C5—I5121.21 (18)C10—C9—C8120.9 (3)
C6—C5—I5121.54 (19)C10—C9—H9119.5
C6—C1—C2116.9 (2)C8—C9—H9119.5
C6—C1—I1122.25 (18)C14—C13—C12124.2 (3)
C2—C1—I1120.89 (18)C14—C13—C8117.7 (3)
F2—C2—C1118.7 (2)C12—C13—C8118.1 (3)
F2—C2—C3118.3 (2)C17—C16—C15121.0 (3)
C1—C2—C3123.1 (2)C17—C16—H16119.5
N7—C20—C19118.6 (2)C15—C16—H16119.5
N7—C20—C15122.1 (3)C15—C14—C13120.6 (3)
C19—C20—C15119.3 (3)C15—C14—H14119.7
F4—C4—C3118.5 (2)C13—C14—H14119.7
F4—C4—C5118.9 (2)C19—C18—C17120.8 (4)
C3—C4—C5122.6 (2)C19—C18—H18119.6
C4—C3—C2117.1 (2)C17—C18—H18119.6
C4—C3—I3122.07 (18)C9—C10—C11120.2 (4)
C2—C3—I3120.78 (19)C9—C10—H10119.9
F6—C6—C1118.5 (2)C11—C10—H10119.9
F6—C6—C5118.4 (2)C11—C12—C13121.2 (4)
C1—C6—C5123.1 (2)C11—C12—H12119.4
C14—C15—C20118.2 (3)C13—C12—H12119.4
C14—C15—C16123.9 (3)C16—C17—C18120.7 (3)
C20—C15—C16117.8 (3)C16—C17—H17119.6
N7—C8—C9118.8 (3)C18—C17—H17119.6
N7—C8—C13122.6 (3)C12—C11—C10120.9 (4)
C9—C8—C13118.7 (3)C12—C11—H11119.6
C18—C19—C20120.3 (3)C10—C11—H11119.6
C6—C1—C2—F2179.9 (2)C19—C20—C15—C14178.5 (3)
I1—C1—C2—F20.2 (3)N7—C20—C15—C16179.4 (3)
C6—C1—C2—C30.2 (4)C19—C20—C15—C160.4 (4)
I1—C1—C2—C3179.9 (2)C20—N7—C8—C9179.6 (2)
C8—N7—C20—C19179.1 (2)C20—N7—C8—C130.8 (4)
C8—N7—C20—C150.1 (4)N7—C20—C19—C18178.0 (3)
C6—C5—C4—F4177.8 (2)C15—C20—C19—C181.0 (4)
I5—C5—C4—F41.3 (3)N7—C8—C9—C10177.7 (3)
C6—C5—C4—C31.2 (4)C13—C8—C9—C101.1 (5)
I5—C5—C4—C3179.7 (2)N7—C8—C13—C140.9 (4)
F4—C4—C3—C2177.1 (2)C9—C8—C13—C14179.7 (3)
C5—C4—C3—C21.9 (4)N7—C8—C13—C12178.4 (3)
F4—C4—C3—I32.4 (3)C9—C8—C13—C120.4 (4)
C5—C4—C3—I3178.67 (19)C14—C15—C16—C17177.1 (3)
F2—C2—C3—C4178.5 (2)C20—C15—C16—C171.7 (5)
C1—C2—C3—C41.1 (4)C20—C15—C14—C130.3 (4)
F2—C2—C3—I31.0 (3)C16—C15—C14—C13179.2 (3)
C1—C2—C3—I3179.4 (2)C12—C13—C14—C15178.9 (3)
C2—C1—C6—F6179.1 (2)C8—C13—C14—C150.3 (4)
I1—C1—C6—F60.8 (3)C20—C19—C18—C171.2 (5)
C2—C1—C6—C51.0 (4)C8—C9—C10—C110.9 (6)
I1—C1—C6—C5179.10 (19)C14—C13—C12—C11178.8 (4)
C4—C5—C6—F6179.8 (2)C8—C13—C12—C110.5 (6)
I5—C5—C6—F61.1 (3)C15—C16—C17—C181.6 (6)
C4—C5—C6—C10.3 (4)C19—C18—C17—C160.1 (6)
I5—C5—C6—C1178.78 (19)C13—C12—C11—C100.7 (7)
N7—C20—C15—C140.5 (4)C9—C10—C11—C120.0 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···I10.953.123.779 (3)128
C9—H9···I10.953.213.846 (3)126
C19—H19···I10.953.123.779 (3)128
C9—H9···I10.953.213.846 (3)126
(db201) 1,10-Phenanthroline–1,3,5-trifluoro-2,4,6-triiodobenzene (1/1) top
Crystal data top
C6F3I3·C12H8N2Dx = 2.408 Mg m3
Mr = 689.96Melting point: 453 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 8.6445 (3) ÅCell parameters from 9717 reflections
b = 14.0472 (6) Åθ = 2.8–28.3°
c = 15.8147 (6) ŵ = 4.96 mm1
β = 97.662 (2)°T = 200 K
V = 1903.25 (13) Å3Block, colourless
Z = 40.51 × 0.37 × 0.37 mm
F(000) = 1264
Data collection top
Bruker APEXII CCD
diffractometer
4397 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.024
φ and ω scansθmax = 28.4°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1011
Tmin = 0.468, Tmax = 0.746k = 1818
28519 measured reflectionsl = 2121
4752 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + (0.0213P)2 + 4.2879P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max = 0.002
4752 reflectionsΔρmax = 1.23 e Å3
235 parametersΔρmin = 0.60 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Data were collected on a Bruker AXS Kappa-single crystal diffractometer equipped with a sealed Mo tube source (wavelength 0.71073 Å) APEX II CCD detector. Raw data collection and processing were performed with the APEX II software package from BRUKER AXS (Bruker, 2012). Semi-empirical absorption corrections based on equivalent reflections were applied (Bruker, 2001). Systematic absences in the diffraction dataset and unit cell parameters were consistent with monoclinic P21/c (No. 14) for compounds A2, B2, and C2. The structures were solved by direct methods and refined with full-matrix least-squares procedures based on F2, procedures using SHELXL2014 (Sheldrick, 2015) and WinGX (Farrugia 1999). All non-hydrogen atoms were refined anisotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7597 (3)0.4407 (2)0.64308 (18)0.0242 (6)
C20.8391 (4)0.3616 (2)0.67737 (18)0.0245 (6)
C30.9211 (4)0.3016 (2)0.62997 (19)0.0252 (6)
C40.9182 (4)0.3230 (2)0.5443 (2)0.0266 (6)
C50.8392 (4)0.3997 (2)0.50567 (18)0.0261 (6)
C60.7615 (4)0.4573 (2)0.55748 (19)0.0258 (6)
C80.2109 (5)0.4212 (3)0.8125 (2)0.0395 (8)
H80.18860.38780.76010.047*
C90.1598 (5)0.3816 (3)0.8841 (3)0.0490 (10)
H90.10620.32240.88070.059*
C100.1881 (5)0.4294 (3)0.9593 (3)0.0488 (10)
H100.15240.40461.00910.059*
C110.2708 (4)0.5157 (3)0.9628 (2)0.0368 (8)
C120.3029 (5)0.5706 (3)1.0397 (2)0.0483 (10)
H120.26730.54841.09040.058*
C130.3825 (5)0.6532 (3)1.0411 (2)0.0472 (10)
H130.40170.68851.09270.057*
C140.4385 (4)0.6881 (2)0.9659 (2)0.0320 (7)
C150.5223 (5)0.7734 (3)0.9655 (3)0.0420 (9)
H150.54500.80981.01630.050*
C160.5712 (5)0.8037 (3)0.8911 (3)0.0411 (8)
H160.62740.86160.88920.049*
C170.5367 (4)0.7478 (2)0.8183 (2)0.0356 (7)
H170.57010.77000.76700.043*
C190.4093 (3)0.6367 (2)0.88943 (19)0.0247 (6)
C200.3219 (4)0.5486 (2)0.88732 (19)0.0273 (6)
N70.2884 (3)0.5021 (2)0.81209 (17)0.0301 (6)
N180.4609 (3)0.6661 (2)0.81583 (17)0.0298 (6)
F20.8371 (2)0.34209 (15)0.76014 (12)0.0352 (4)
F40.9960 (3)0.26562 (16)0.49663 (13)0.0401 (5)
F60.6834 (3)0.53257 (16)0.52202 (13)0.0412 (5)
I10.63114 (2)0.52779 (2)0.71479 (2)0.02812 (6)
I31.04561 (3)0.18576 (2)0.68479 (2)0.03167 (6)
I50.81615 (3)0.42273 (2)0.37432 (2)0.03450 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0241 (14)0.0291 (15)0.0200 (13)0.0008 (12)0.0044 (10)0.0042 (11)
C20.0251 (14)0.0288 (15)0.0201 (12)0.0020 (12)0.0049 (10)0.0007 (11)
C30.0261 (14)0.0258 (14)0.0240 (13)0.0035 (12)0.0042 (11)0.0036 (11)
C40.0269 (15)0.0281 (15)0.0256 (14)0.0041 (12)0.0062 (11)0.0054 (12)
C50.0281 (15)0.0316 (15)0.0200 (13)0.0027 (12)0.0087 (11)0.0022 (11)
C60.0268 (15)0.0279 (15)0.0226 (13)0.0052 (12)0.0030 (11)0.0016 (11)
C80.045 (2)0.0353 (18)0.0388 (18)0.0113 (16)0.0070 (16)0.0006 (15)
C90.057 (3)0.048 (2)0.042 (2)0.023 (2)0.0054 (18)0.0117 (18)
C100.058 (3)0.057 (3)0.0326 (18)0.013 (2)0.0107 (17)0.0161 (17)
C110.0402 (19)0.047 (2)0.0240 (15)0.0001 (16)0.0064 (13)0.0055 (14)
C120.061 (3)0.065 (3)0.0196 (15)0.005 (2)0.0089 (15)0.0046 (16)
C130.063 (3)0.056 (2)0.0219 (15)0.003 (2)0.0033 (16)0.0080 (16)
C140.0360 (17)0.0318 (16)0.0272 (15)0.0068 (14)0.0006 (13)0.0039 (13)
C150.050 (2)0.0336 (18)0.0409 (19)0.0030 (16)0.0008 (16)0.0133 (15)
C160.043 (2)0.0242 (16)0.056 (2)0.0018 (14)0.0049 (17)0.0058 (15)
C170.0404 (19)0.0246 (15)0.0436 (19)0.0008 (14)0.0124 (15)0.0005 (14)
C190.0231 (14)0.0265 (14)0.0246 (13)0.0063 (11)0.0033 (11)0.0001 (11)
C200.0298 (15)0.0296 (15)0.0223 (13)0.0034 (12)0.0031 (11)0.0030 (12)
N70.0353 (15)0.0306 (14)0.0253 (12)0.0039 (12)0.0078 (11)0.0019 (11)
N180.0339 (15)0.0263 (13)0.0306 (13)0.0013 (11)0.0101 (11)0.0021 (11)
F20.0433 (11)0.0429 (11)0.0205 (8)0.0084 (9)0.0085 (8)0.0046 (8)
F40.0497 (12)0.0418 (11)0.0314 (10)0.0183 (10)0.0148 (9)0.0039 (9)
F60.0571 (14)0.0397 (12)0.0282 (10)0.0231 (10)0.0102 (9)0.0077 (8)
I10.03073 (11)0.03111 (11)0.02333 (10)0.00403 (8)0.00654 (7)0.00551 (7)
I30.03452 (12)0.02701 (11)0.03367 (11)0.00512 (8)0.00526 (8)0.00532 (8)
I50.04263 (13)0.04277 (13)0.01953 (9)0.00434 (10)0.00940 (8)0.00139 (8)
Geometric parameters (Å, º) top
C1—C61.376 (4)C10—H100.9500
C1—C21.378 (4)C11—C201.405 (4)
C1—I12.086 (3)C11—C121.435 (5)
C2—F21.340 (3)C12—C131.348 (6)
C2—C31.384 (4)C12—H120.9500
C3—C41.385 (4)C13—C141.429 (5)
C3—I32.076 (3)C13—H130.9500
C4—F41.344 (3)C14—C151.401 (5)
C4—C51.374 (4)C14—C191.403 (4)
C5—C61.388 (4)C15—C161.370 (6)
C5—I52.085 (3)C15—H150.9500
C6—F61.337 (4)C16—C171.393 (5)
C8—N71.319 (4)C16—H160.9500
C8—C91.385 (5)C17—N181.319 (4)
C8—H80.9500C17—H170.9500
C9—C101.359 (6)C19—N181.365 (4)
C9—H90.9500C19—C201.448 (5)
C10—C111.405 (6)C20—N71.354 (4)
C6—C1—C2117.0 (3)C10—C11—C12122.5 (3)
C6—C1—I1120.8 (2)C20—C11—C12119.7 (4)
C2—C1—I1122.1 (2)C13—C12—C11121.2 (3)
F2—C2—C1118.6 (3)C13—C12—H12119.4
F2—C2—C3118.6 (3)C11—C12—H12119.4
C1—C2—C3122.8 (3)C12—C13—C14120.7 (3)
C2—C3—C4117.0 (3)C12—C13—H13119.7
C2—C3—I3121.7 (2)C14—C13—H13119.7
C4—C3—I3121.3 (2)C15—C14—C19118.0 (3)
F4—C4—C5118.5 (3)C15—C14—C13122.0 (3)
F4—C4—C3118.3 (3)C19—C14—C13119.9 (3)
C5—C4—C3123.2 (3)C16—C15—C14119.3 (3)
C4—C5—C6116.5 (3)C16—C15—H15120.4
C4—C5—I5122.7 (2)C14—C15—H15120.4
C6—C5—I5120.5 (2)C15—C16—C17118.5 (3)
F6—C6—C1118.4 (3)C15—C16—H16120.7
F6—C6—C5118.1 (3)C17—C16—H16120.7
C1—C6—C5123.5 (3)N18—C17—C16124.5 (3)
N7—C8—C9124.6 (4)N18—C17—H17117.8
N7—C8—H8117.7C16—C17—H17117.8
C9—C8—H8117.7N18—C19—C14122.5 (3)
C10—C9—C8118.5 (4)N18—C19—C20117.9 (3)
C10—C9—H9120.8C14—C19—C20119.5 (3)
C8—C9—H9120.8N7—C20—C11122.2 (3)
C9—C10—C11119.5 (3)N7—C20—C19118.8 (3)
C9—C10—H10120.3C11—C20—C19118.9 (3)
C11—C10—H10120.3C8—N7—C20117.4 (3)
C10—C11—C20117.8 (3)C17—N18—C19117.1 (3)
C6—C1—C2—F2178.6 (3)C10—C11—C12—C13179.9 (4)
I1—C1—C2—F22.1 (4)C20—C11—C12—C130.5 (6)
C6—C1—C2—C31.5 (5)C11—C12—C13—C140.5 (7)
I1—C1—C2—C3178.1 (2)C12—C13—C14—C15179.7 (4)
F2—C2—C3—C4178.8 (3)C12—C13—C14—C190.6 (6)
C1—C2—C3—C41.3 (5)C19—C14—C15—C160.5 (5)
F2—C2—C3—I32.0 (4)C13—C14—C15—C16179.2 (4)
C1—C2—C3—I3177.9 (2)C14—C15—C16—C170.5 (6)
C2—C3—C4—F4179.6 (3)C15—C16—C17—N180.8 (6)
I3—C3—C4—F41.1 (4)C15—C14—C19—N180.9 (5)
C2—C3—C4—C50.2 (5)C13—C14—C19—N18179.4 (3)
I3—C3—C4—C5179.0 (3)C15—C14—C19—C20179.5 (3)
F4—C4—C5—C6179.5 (3)C13—C14—C19—C200.2 (5)
C3—C4—C5—C60.7 (5)C10—C11—C20—N72.8 (5)
F4—C4—C5—I56.5 (4)C12—C11—C20—N7176.8 (4)
C3—C4—C5—I5173.3 (3)C10—C11—C20—C19179.1 (3)
C2—C1—C6—F6178.9 (3)C12—C11—C20—C191.3 (5)
I1—C1—C6—F62.3 (4)N18—C19—C20—N73.3 (4)
C2—C1—C6—C50.6 (5)C14—C19—C20—N7177.0 (3)
I1—C1—C6—C5177.2 (3)N18—C19—C20—C11178.5 (3)
C4—C5—C6—F6180.0 (3)C14—C19—C20—C111.2 (5)
I5—C5—C6—F65.9 (4)C9—C8—N7—C200.9 (6)
C4—C5—C6—C10.4 (5)C11—C20—N7—C83.0 (5)
I5—C5—C6—C1173.7 (2)C19—C20—N7—C8178.9 (3)
N7—C8—C9—C101.3 (7)C16—C17—N18—C192.1 (5)
C8—C9—C10—C111.4 (7)C14—C19—N18—C172.1 (5)
C9—C10—C11—C200.5 (6)C20—C19—N18—C17178.2 (3)
C9—C10—C11—C12179.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···I3i0.953.264.037 (4)141
C9—H9···F4ii0.952.503.182 (4)128
C16—H16···F6iii0.952.573.159 (4)121
C8—H8···I3i0.953.264.037 (4)141
C9—H9···F4ii0.952.503.182 (4)128
C16—H16···F6iii0.952.573.159 (4)121
Symmetry codes: (i) x1, y, z; (ii) x1, y+1/2, z+1/2; (iii) x, y+3/2, z+1/2.
Halogen-bond geometrical parameters, including the halogen-bond length (dI···N), halogen-bond angle (θC—I···N) and reduced distance parameter (RXB) top
CompounddI···N (Å)θC—I···N (°)RXB
A1(ACD)(p-DITFB)2.971176.550.842
A2(ACD)(sym-TFTIB)3.022173.600.856
B1(PHN)(p-DITFB)3.010159.030.853
3.274149.760.927
B2(PHN)(sym-TFTIB)3.020175.680.856
3.148164.180.892
C1(TMP)(p-DITFB)3.067177.150.869
C2(TMP)(sym-TFTIB)2.991178.090.847
2.993179.810.848
D1(HMT)(p-DITFB)2.845169.050.806
D2(HMT)(sym-DITFB)2.864171.720.811
2.879170.530.816
13C chemical shifts of the carbons covalently bonded to nitrogen on the halogen-bond acceptors, obtained from 1H13C cross polarization experiments top
XB acceptorδiso(13C)/ppma XB acceptorδiso(13C)/ppma cocrystal with 1δiso(13C)/ppma cocrystal with 2
AACD148.7±1.6148.7±0.2149.6±0.3
147.7±0.2
BPHN150.7±0.3150.0±0.2151.4±0.2
145.0±0.2148.4±0.2149.4±0.2
144.0±0.3145.3±0.5
CTMP149.7±0.1149.4±0.2149.7±0.3
149.0±0.1
DHMT73.4±0.171.8±0.271.8±0.2
73.2±0.171.8±0.271.8±0.2
The peak positions reported may not correspond exactly to the true chemical shifts as a result of peak overlap, and possibly due to residual 14N dipolar coupling; however, the effect of the latter is expected to be negligible under the experimental conditions used.
13C chemical shifts of the halogen-bond donor obtained from 19F–13C cross polarization, and the calculated dipolar coupling second moments between the 19F of the halogen-bond donor and the 13C of the halogen-bond acceptor top
CompoundExperimental δiso(13C)/ppmAsignmentsAverage calculated dipolar coupling second moment (s-2)b
1147.6±0.4C—F
76.8±1.4C—I
2162.6±0.89C–F
67.6±2.4C—I
A1146.5±0.4C—F1.41 × 105
79.2±2.3C—I
A2160.8±0.8C—F1.55 × 105
66.1±4.7C—I
B1147.67±0.5C—F2.02 × 105
145.9±0.4C—F
79.1±1.9C—I
76.7±1.8C—I
B2162.3±1.34C—F1.94 × 105
68.5±3.3C—I
C1147.4±0.4C—F2.15 × 105
80.3±2.4C—I
C2162.3±0.8C—F1.91 × 105
71.5±11.0aC—I
D1147.1±0.4C—F2.20 × 105
80.8±2.7C—I
D2162.8±0.9C—F1.03 × 105
71.8±7.9aC—I
Notes: (a) the large uncertainty in the chemical shift reflects the fact that there are multiple unresolved carbon–iodine sites. (b) The second moment was calculated using equation 3, using the fluorine–carbon distances between the halogen-bond donor and the halogen-bond acceptor, with a cut-off distance of 10 Å.
Experimental δiso(19F) chemical shifts of the halogen-bond donor top
XB Acceptorδiso(19F)/ppm cocrystal with 1δiso(19F)/ppm cocrystal with 2
None (pure 1 or 2)-112.5±0.4-61.9±0.2
-115.6±0.3-64.2±0.3
-66.5±0.3
AACD-114.1±0.7-68.2±0.3
-70.8±0.3
-72.3±0.4
BPHN-114.9±0.3-71.6±0.3
-118.3±0.4
CTMP-119.2±0.5-68.5±0.3
-72.3±0.4
DHMT-117.4±0.3-70.4±0.4
-120.4±0.3-72.4±0.4
-77.4±0.3
 

Subscribe to Acta Crystallographica Section C: Structural Chemistry

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds