Download citation
Download citation
link to html
In the centrosymmetric title compound, [Cu(C10H7N2O2)2(H2O)2], the CuII ion occupies an inversion centre and exhibits a distorted octa­hedral geometry. The phenyl and pyrazole rings of the ligand are twisted by an angle of 11.36 (8)°. In the crystal structure, mol­ecules are linked into a two-dimensional network parallel to the (010) plane by O—H...O and N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808000810/ci2551sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808000810/ci2551Isup2.hkl
Contains datablock I

CCDC reference: 677455

Key indicators

  • Single-crystal X-ray study
  • T = 292 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.037
  • wR factor = 0.084
  • Data-to-parameter ratio = 15.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu1 - O3 .. 5.16 su PLAT731_ALERT_1_C Bond Calc 0.83(3), Rep 0.827(10) ...... 3.00 su-Ra O3 -H1W 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.83(3), Rep 0.825(10) ...... 3.00 su-Ra O3 -H2W 1.555 1.555
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Nicotinic acid as a hypolipidemic agent appears to have good potential to increase HDL cholesterol levels to a greater extent (Knopp, 1999). However, it has severe skin flushing side effect. In the search for novel agonists for nicotinic acid receptor, substituted pyrazole-3-carboxylic acids were found have substantial affinity for cloned G protein-coupled nicotinic acid receptor (van Herk et al., 2003). We report here the crystal structure of the title CuII complex with 5-phenyl-1H-pyrazole-3-carboxylic acid.

The asymmetric unit contains one-half of a formula unit (Fig. 1). The CuII ion occupies an inversion centre and exhibits a distorted octahedral geometry. The phenyl (C5—C10) and pyrazole (N1/N2/C2/C3/C4) rings form a dihedral angle of 11.36 (8)°. The dihedral angle between the Cu1/O1/C1/C2/N1 and N1/N2/C2/C3/C4 planes is 3.8 (1)°.

The molecules are linked into a two-dimensional network parallel to the (0 1 0) plane by O—H···O and N—H···O hydrogen bonds (Table 2).

Related literature top

For ligand preparation, see: Crane et al. (1999); Gharbaoui et al. (2007). For general background, see: van Herk et al. (2003); Knopp (1999).

Experimental top

5-Phenyl-1H-pyrazole-3-carboxylic acid was synthesized according to the reported procedure (Gharbaoui et al., 2007;Crane et al., 1999). 5-Phenyl-1H-pyrazole-3-carboxylic acid (1.0 g, 5.3 mmol) and Cu(OAc)2.2H2O (0.75 g, 2.7 mmol) were heated in H2O (200 ml) for 4 h with stirring. The resulting precipitate was filtered off to obtain the title compound (1.0 g, 80%). Single crystals suitable for X-ray diffraction were obtained by recrystallization from dimethylformamide-water (1:1 v/v) solution.

Refinement top

The water H atoms were located and isotropically refined, with the O—H and H···H distances restrained to 0.84 (1) and 1.37 (2) Å, respectively. The remaining H atoms were positioned geometrically (N—H = 0.86 Å and C—H = 0.93 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering. Atoms labelled with the suffix A are generated by the symmetry operation (-x + 1, -y, -z).
Diaquabis(5-phenyl-1H-pyrazole-3-carboxylato)copper(II) top
Crystal data top
[Cu(C10H7N2O2)2(H2O)2]F(000) = 486
Mr = 473.92Dx = 1.599 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2772 reflections
a = 5.0443 (6) Åθ = 2.5–26.6°
b = 32.161 (4) ŵ = 1.16 mm1
c = 6.3234 (8) ÅT = 292 K
β = 106.293 (1)°Block, blue
V = 984.6 (2) Å30.35 × 0.25 × 0.17 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
2254 independent reflections
Radiation source: fine-focus sealed tube1907 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ϕ and ω scansθmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 66
Tmin = 0.690, Tmax = 0.829k = 4139
8611 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0302P)2 + 0.72P]
where P = (Fo2 + 2Fc2)/3
2254 reflections(Δ/σ)max = 0.001
150 parametersΔρmax = 0.34 e Å3
3 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cu(C10H7N2O2)2(H2O)2]V = 984.6 (2) Å3
Mr = 473.92Z = 2
Monoclinic, P21/nMo Kα radiation
a = 5.0443 (6) ŵ = 1.16 mm1
b = 32.161 (4) ÅT = 292 K
c = 6.3234 (8) Å0.35 × 0.25 × 0.17 mm
β = 106.293 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2254 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1907 reflections with I > 2σ(I)
Tmin = 0.690, Tmax = 0.829Rint = 0.027
8611 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0373 restraints
wR(F2) = 0.084H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.34 e Å3
2254 reflectionsΔρmin = 0.32 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.00000.00000.03166 (13)
O10.3462 (3)0.01796 (5)0.2440 (2)0.0325 (3)
O20.3301 (4)0.07235 (5)0.4604 (3)0.0404 (4)
O30.0850 (4)0.03336 (6)0.2706 (3)0.0380 (4)
N10.6670 (4)0.05536 (5)0.0513 (3)0.0294 (4)
N20.8212 (4)0.08034 (5)0.0348 (3)0.0301 (4)
H20.89560.07300.13590.036*
C10.4084 (4)0.05525 (7)0.3144 (3)0.0288 (5)
C20.5895 (4)0.07783 (7)0.2015 (3)0.0277 (4)
C30.6964 (4)0.11779 (7)0.2111 (4)0.0302 (5)
H30.67320.13950.30170.036*
C40.8454 (4)0.11852 (6)0.0569 (4)0.0282 (4)
C51.0091 (5)0.15138 (7)0.0085 (4)0.0328 (5)
C61.0740 (6)0.18727 (8)0.1155 (5)0.0473 (6)
H61.00670.19110.23680.057*
C71.2389 (7)0.21770 (9)0.0605 (6)0.0641 (9)
H71.28210.24170.14540.077*
C81.3376 (6)0.21240 (9)0.1183 (6)0.0642 (9)
H81.44820.23280.15430.077*
C91.2744 (6)0.17720 (10)0.2448 (5)0.0565 (8)
H91.34190.17380.36630.068*
C101.1097 (5)0.14664 (8)0.1918 (4)0.0438 (6)
H101.06620.12290.27860.053*
H1W0.138 (6)0.0417 (9)0.376 (4)0.069 (10)*
H2W0.041 (5)0.0163 (8)0.312 (5)0.075 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0386 (2)0.0297 (2)0.0341 (2)0.00911 (17)0.02227 (17)0.00583 (17)
O10.0365 (9)0.0338 (8)0.0339 (8)0.0071 (7)0.0207 (7)0.0019 (7)
O20.0523 (11)0.0407 (9)0.0388 (9)0.0031 (8)0.0301 (8)0.0036 (7)
O30.0416 (10)0.0443 (10)0.0361 (9)0.0093 (8)0.0239 (8)0.0051 (8)
N10.0332 (10)0.0304 (10)0.0301 (9)0.0060 (7)0.0177 (8)0.0028 (7)
N20.0334 (10)0.0325 (10)0.0311 (10)0.0064 (8)0.0203 (8)0.0029 (8)
C10.0276 (11)0.0349 (12)0.0264 (11)0.0006 (9)0.0115 (9)0.0032 (9)
C20.0286 (11)0.0311 (11)0.0260 (10)0.0004 (8)0.0119 (9)0.0003 (8)
C30.0315 (11)0.0298 (11)0.0320 (12)0.0002 (9)0.0133 (9)0.0033 (9)
C40.0282 (10)0.0277 (11)0.0296 (11)0.0005 (8)0.0094 (9)0.0016 (9)
C50.0285 (11)0.0303 (11)0.0402 (12)0.0008 (9)0.0108 (9)0.0071 (10)
C60.0478 (15)0.0366 (14)0.0641 (18)0.0063 (11)0.0264 (13)0.0051 (12)
C70.0610 (19)0.0357 (15)0.104 (3)0.0135 (13)0.0363 (19)0.0046 (15)
C80.0521 (18)0.0476 (17)0.101 (3)0.0060 (14)0.0345 (18)0.0248 (17)
C90.0530 (17)0.0655 (19)0.0588 (18)0.0018 (14)0.0287 (14)0.0232 (15)
C100.0481 (15)0.0462 (15)0.0411 (14)0.0060 (11)0.0189 (12)0.0055 (11)
Geometric parameters (Å, º) top
Cu1—N11.9572 (17)C3—C41.388 (3)
Cu1—N1i1.9573 (17)C3—H30.93
Cu1—O1i1.9968 (14)C4—C51.470 (3)
Cu1—O11.9968 (14)C5—C61.382 (3)
Cu1—O32.5400 (19)C5—C101.398 (3)
O1—C11.287 (3)C6—C71.390 (4)
O2—C11.231 (3)C6—H60.93
O3—H1W0.827 (10)C7—C81.368 (5)
O3—H2W0.825 (10)C7—H70.93
N1—C21.336 (3)C8—C91.371 (5)
N1—N21.336 (2)C8—H80.93
N2—C41.349 (3)C9—C101.387 (3)
N2—H20.86C9—H90.93
C1—C21.496 (3)C10—H100.93
C2—C31.388 (3)
N1—Cu1—N1i180C3—C2—C1135.23 (19)
N1—Cu1—O1i98.56 (6)C4—C3—C2105.36 (19)
N1i—Cu1—O1i81.44 (6)C4—C3—H3127.3
N1—Cu1—O181.44 (6)C2—C3—H3127.3
N1i—Cu1—O198.56 (6)N2—C4—C3106.56 (18)
O1i—Cu1—O1180N2—C4—C5121.60 (19)
N1—Cu1—O387.85 (7)C3—C4—C5131.8 (2)
N1i—Cu1—O392.15 (7)C6—C5—C10118.6 (2)
O1i—Cu1—O391.56 (6)C6—C5—C4120.2 (2)
O1—Cu1—O388.44 (6)C10—C5—C4121.2 (2)
C1—O1—Cu1115.29 (13)C5—C6—C7120.6 (3)
Cu1—O3—H1W107 (2)C5—C6—H6119.7
Cu1—O3—H2W110 (2)C7—C6—H6119.7
H1W—O3—H2W111 (2)C8—C7—C6120.1 (3)
C2—N1—N2106.51 (17)C8—C7—H7120.0
C2—N1—Cu1114.33 (14)C6—C7—H7120.0
N2—N1—Cu1138.77 (14)C7—C8—C9120.4 (3)
N1—N2—C4111.41 (17)C7—C8—H8119.8
N1—N2—H2124.3C9—C8—H8119.8
C4—N2—H2124.3C8—C9—C10120.1 (3)
O2—C1—O1125.27 (19)C8—C9—H9120.0
O2—C1—C2120.58 (19)C10—C9—H9120.0
O1—C1—C2114.14 (18)C9—C10—C5120.3 (3)
N1—C2—C3110.16 (18)C9—C10—H10119.9
N1—C2—C1114.60 (18)C5—C10—H10119.9
N1—Cu1—O1—C12.75 (15)O1—C1—C2—C3176.1 (2)
N1i—Cu1—O1—C1177.25 (15)N1—C2—C3—C40.0 (2)
O3—Cu1—O1—C185.31 (15)C1—C2—C3—C4178.6 (2)
O1i—Cu1—N1—C2175.94 (15)N1—N2—C4—C30.1 (2)
O1—Cu1—N1—C24.06 (15)N1—N2—C4—C5179.06 (19)
O3—Cu1—N1—C284.69 (16)C2—C3—C4—N20.1 (2)
O1i—Cu1—N1—N24.4 (2)C2—C3—C4—C5179.0 (2)
O1—Cu1—N1—N2175.6 (2)N2—C4—C5—C6167.6 (2)
O3—Cu1—N1—N286.8 (2)C3—C4—C5—C611.3 (4)
C2—N1—N2—C40.1 (2)N2—C4—C5—C1010.3 (3)
Cu1—N1—N2—C4172.02 (17)C3—C4—C5—C10170.8 (2)
Cu1—O1—C1—O2178.61 (18)C10—C5—C6—C70.8 (4)
Cu1—O1—C1—C21.0 (2)C4—C5—C6—C7177.2 (3)
N2—N1—C2—C30.0 (2)C5—C6—C7—C80.3 (5)
Cu1—N1—C2—C3174.22 (15)C6—C7—C8—C90.2 (5)
N2—N1—C2—C1178.84 (17)C7—C8—C9—C100.1 (5)
Cu1—N1—C2—C14.7 (2)C8—C9—C10—C50.5 (4)
O2—C1—C2—N1178.0 (2)C6—C5—C10—C90.9 (4)
O1—C1—C2—N12.4 (3)C4—C5—C10—C9177.1 (2)
O2—C1—C2—C33.5 (4)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1W···O2ii0.83 (3)1.88 (3)2.679 (3)161 (3)
N2—H2···O3iii0.861.932.719 (3)152
O3—H2W···O1iv0.83 (3)2.04 (3)2.773 (3)149 (3)
Symmetry codes: (ii) x, y, z1; (iii) x+1, y, z; (iv) x, y, z.

Experimental details

Crystal data
Chemical formula[Cu(C10H7N2O2)2(H2O)2]
Mr473.92
Crystal system, space groupMonoclinic, P21/n
Temperature (K)292
a, b, c (Å)5.0443 (6), 32.161 (4), 6.3234 (8)
β (°) 106.293 (1)
V3)984.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.35 × 0.25 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.690, 0.829
No. of measured, independent and
observed [I > 2σ(I)] reflections
8611, 2254, 1907
Rint0.027
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.084, 1.08
No. of reflections2254
No. of parameters150
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.34, 0.32

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Cu1—N11.9572 (17)Cu1—O32.5400 (19)
Cu1—O11.9968 (14)
N1—Cu1—N1i180N1—Cu1—O387.85 (7)
N1—Cu1—O1i98.56 (6)N1i—Cu1—O392.15 (7)
N1—Cu1—O181.44 (6)O1i—Cu1—O391.56 (6)
O1i—Cu1—O1180O1—Cu1—O388.44 (6)
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1W···O2ii0.83 (3)1.88 (3)2.679 (3)161 (3)
N2—H2···O3iii0.861.932.719 (3)152
O3—H2W···O1iv0.83 (3)2.04 (3)2.773 (3)149 (3)
Symmetry codes: (ii) x, y, z1; (iii) x+1, y, z; (iv) x, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds