Download citation
Download citation
link to html
In the title compound, C13H9N5O7, one of the nitro groups is twisted away from the attached benzene ring by 16.21 (8)°. The dihedral angle between the two benzene rings is 4.63 (1)°. The mol­ecular structure is stabilized by intra­molecular N—H...O and O—H...N hydrogen bonds which generate an S(6) ring motif. The mol­ecules pack as layers parallel to the ab plane; mol­ecules of adjacent layers are linked into chains along the [101] direction through N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808005825/ci2567sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808005825/ci2567Isup2.hkl
Contains datablock I

CCDC reference: 684483

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.051
  • wR factor = 0.146
  • Data-to-parameter ratio = 22.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.72 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for O1 - N3 .. 5.23 su PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Phenylhydrazone derivatives have been synthesized in order to investigate their structures and analytical applications. 2,4-Dinitrophenylhydrazones play an important role as stabilizers for the detection, characterization and protection of the carbonyl group of compounds than phenylhydrazones (Niknam et al., 2005). 2,4-Dinitrophenylhydrazone derivatives are widely used in various forms of analytical chemistry (Lamberton et al., 1974; Zegota, 1999; Cordis et al., 1998; Zlotorzynska & Lai, 1999) and are also used as dyes (Guillaumont & Nakamura, 2000). They are also found to have versatile coordinating abilities towards different metal ions (Raj et al., 2006). In addition, they are used to determine airborne aldehydes and ketones (Vogel et al., 2000) and as detectors of formaldehyde (Hanoune et al., 2006). These compounds can exist as E and Z stereoisomers (Uchiyama et al., 2003). Their existence as a keto tautomer in the solid state with an E configuration across the C—N bond have been reported (Fun et al., 1996). The title compound, whose structure is reported here, is one of the series of phenylhydrazone derivatives that we have prepared; the crystal structures of some of these compounds have been studied previously (Tameem et al., 2007; Salhin et al., 2007).

The bond lengths and angles in the title compound (Fig.1) have normal values. The molecule is nealy planar, with a maximum deviation from the mean plane of 0.487 (1) Å for atom O1. The dihedral angle between the two benzene rings is 4.63 (1)°. The C—N bond lengths in the hydrazone moiety agree well with those reported earlier (Shan, Xu et al., 2003; Shan, Yu et al., 2003). The asymmetry of the exocyclic angles at C7 [C7—C8—C13 = 118.2 (2)° and C7—C8—C9 = 123.3 (2)°] is more pronounced than that at C6 [N1—C6—C1 = 122.7 (1)° and N1—C6—C5 = 120.5 (1)°]. One of the hydrazone N atoms is involved in an O—H···N intramolecular hydrogen bond with the hydroxy group, while the other is involved in an N—H···O intramolecular hydrogen bond with the nitro group. Each of these hydrogen bonds generate an S(6) ring motif (Bernstein et al.,1995).

The molecules are linked into a chain along the [1 0 1] direction through N—H—O hydrogen bonds. The molecules pack as layers parallel to the ab plane. Within the layer, weak π-π interactions are observed between the C1—C6 and C8—C13 benzene rings, with a centroid-centroid distance of 3.7457 (8) Å.

Related literature top

For related literature, see: Cordis et al. (1998); Fun et al. (1996); Guillaumont & Nakamura (2000); Hanoune et al. (2006); Lamberton et al. (1974); Niknam et al. (2005); Raj & Kurup (2007); Salhin et al. (2007); Shan, Xu et al. (2003); Shan, Yu et al. (2003); Tameem et al. (2007); Uchiyama et al. (2003); Vogel et al. (2000); Zegota (1999); Zlotorzynska & Lai (1999). For ring motifs, see: Bernstein et al. (1995).

Experimental top

2,4-Dinitrophenylhydrazine (400 mg, 2 mmol) in concentrated sulfuric acid (5 ml) was slowly added to a solution of 2-hydroxy-5-nitrobenzaldehyde (337 mg, 2 mmol) in ethanol (95%, 20 ml). The mixture was stirred for 15 min, and was left to stand at room temperature for 30 min. The resulting product was filtered and washed with 95% ethanol (20 ml) and the orange powder product was collected. Crystals suitable for X-ray diffraction analysis were grown by slow evaporation of a saturated solution of the resulted compound in ethanol.

Refinement top

O– and N-bound H atoms were located in a difference map and refined isotropically. The remaining H atoms were placed in calculated positions (C—H = 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atomic numbering scheme. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. Hydrogen bonds are shown as dashed lines.
2-Hydroxy-5-nitrobenzaldehyde 2,4-dinitrophenylhydrazone top
Crystal data top
C13H9N5O7F(000) = 712
Mr = 347.25Dx = 1.726 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3255 reflections
a = 12.7543 (5) Åθ = 2.8–33.1°
b = 8.1898 (3) ŵ = 0.14 mm1
c = 13.8618 (5) ÅT = 100 K
β = 112.683 (2)°Block, orange
V = 1335.94 (9) Å30.29 × 0.27 × 0.11 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3513 reflections with I > 2σ(I)
Detector resolution: 8.33 pixels mm-1Rint = 0.056
ω scansθmax = 33.4°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1919
Tmin = 0.960, Tmax = 0.985k = 1012
24539 measured reflectionsl = 2120
5195 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.050 w = 1/[σ2(Fo2) + (0.0708P)2 + 0.0132P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.145(Δ/σ)max = 0.001
S = 1.09Δρmax = 0.47 e Å3
5195 reflectionsΔρmin = 0.33 e Å3
234 parameters
Crystal data top
C13H9N5O7V = 1335.94 (9) Å3
Mr = 347.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.7543 (5) ŵ = 0.14 mm1
b = 8.1898 (3) ÅT = 100 K
c = 13.8618 (5) Å0.29 × 0.27 × 0.11 mm
β = 112.683 (2)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5195 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3513 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.985Rint = 0.056
24539 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.47 e Å3
5195 reflectionsΔρmin = 0.33 e Å3
234 parameters
Special details top

Geometry. Experimental. The low-temperature data was collected with the Oxford Crysosystem Cobra low-temperature attachement.

All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.71240 (8)0.91583 (13)0.22343 (8)0.0228 (2)
O20.61439 (9)1.12841 (14)0.22968 (8)0.0282 (2)
O30.39947 (10)1.41385 (15)0.08171 (9)0.0340 (3)
O40.45224 (10)1.41148 (14)0.21219 (8)0.0307 (3)
O50.94762 (8)0.81549 (12)0.11896 (7)0.0189 (2)
O61.34597 (9)0.33913 (14)0.11735 (8)0.0300 (3)
O71.29887 (9)0.41281 (13)0.24496 (8)0.0259 (2)
N10.80661 (9)0.91651 (14)0.08340 (9)0.0164 (2)
N20.87737 (9)0.86266 (13)0.03680 (8)0.0157 (2)
N30.66026 (9)1.04241 (14)0.18460 (8)0.0187 (2)
N40.46053 (10)1.36459 (15)0.12555 (9)0.0208 (2)
N51.28791 (9)0.41996 (14)0.15301 (9)0.0184 (2)
C10.64902 (11)1.08800 (16)0.07968 (9)0.0160 (2)
C20.56488 (11)1.20121 (16)0.02874 (10)0.0179 (2)
H2A0.52091.24650.0620.021*
C30.54779 (10)1.24505 (16)0.07199 (10)0.0172 (2)
C40.61284 (11)1.17695 (16)0.12363 (10)0.0171 (2)
H4A0.59931.20670.19210.02*
C50.69644 (11)1.06624 (16)0.07233 (10)0.0165 (2)
H5A0.73921.02110.10690.02*
C60.71925 (10)1.01896 (15)0.03210 (9)0.0150 (2)
C70.96469 (10)0.78013 (15)0.09632 (9)0.0151 (2)
H7A0.97820.76780.16680.018*
C81.04195 (10)0.70636 (15)0.05474 (9)0.0142 (2)
C91.03109 (10)0.72528 (15)0.05001 (9)0.0151 (2)
C101.10725 (11)0.64726 (16)0.08556 (10)0.0168 (2)
H10A1.10090.66340.1540.02*
C111.19152 (10)0.54678 (16)0.02006 (10)0.0169 (2)
H11A1.24120.49330.0440.02*
C121.20051 (10)0.52732 (15)0.08265 (10)0.0159 (2)
C131.12875 (10)0.60635 (15)0.12052 (10)0.0153 (2)
H13A1.13820.5930.190.018*
H1N10.8262 (16)0.891 (2)0.1508 (16)0.038 (5)*
H1O50.905 (2)0.854 (3)0.082 (2)0.067 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0238 (5)0.0253 (5)0.0220 (5)0.0056 (4)0.0118 (4)0.0049 (4)
O20.0377 (6)0.0307 (6)0.0253 (5)0.0079 (5)0.0222 (5)0.0004 (4)
O30.0317 (6)0.0461 (7)0.0298 (6)0.0207 (5)0.0181 (5)0.0077 (5)
O40.0379 (6)0.0342 (6)0.0228 (5)0.0153 (5)0.0150 (5)0.0087 (4)
O50.0201 (4)0.0210 (5)0.0162 (4)0.0047 (4)0.0076 (3)0.0023 (3)
O60.0284 (5)0.0335 (6)0.0285 (5)0.0145 (5)0.0114 (4)0.0014 (4)
O70.0269 (5)0.0307 (6)0.0197 (5)0.0070 (4)0.0086 (4)0.0059 (4)
N10.0163 (5)0.0196 (5)0.0155 (5)0.0030 (4)0.0085 (4)0.0005 (4)
N20.0158 (5)0.0157 (5)0.0177 (5)0.0000 (4)0.0089 (4)0.0017 (4)
N30.0193 (5)0.0220 (6)0.0183 (5)0.0015 (4)0.0112 (4)0.0006 (4)
N40.0209 (5)0.0224 (6)0.0204 (5)0.0049 (4)0.0097 (4)0.0004 (4)
N50.0170 (5)0.0177 (5)0.0203 (5)0.0010 (4)0.0070 (4)0.0005 (4)
C10.0177 (5)0.0183 (6)0.0144 (5)0.0009 (4)0.0088 (4)0.0011 (4)
C20.0176 (5)0.0191 (6)0.0195 (6)0.0006 (5)0.0099 (5)0.0033 (5)
C30.0161 (5)0.0174 (6)0.0194 (6)0.0029 (5)0.0081 (5)0.0005 (4)
C40.0194 (6)0.0174 (6)0.0158 (5)0.0005 (5)0.0085 (4)0.0005 (4)
C50.0169 (5)0.0185 (6)0.0160 (5)0.0001 (5)0.0085 (4)0.0023 (4)
C60.0147 (5)0.0150 (6)0.0163 (5)0.0019 (4)0.0070 (4)0.0017 (4)
C70.0161 (5)0.0151 (6)0.0158 (5)0.0009 (4)0.0081 (4)0.0004 (4)
C80.0151 (5)0.0143 (5)0.0142 (5)0.0009 (4)0.0068 (4)0.0013 (4)
C90.0156 (5)0.0142 (6)0.0156 (5)0.0007 (4)0.0062 (4)0.0002 (4)
C100.0190 (6)0.0181 (6)0.0156 (5)0.0011 (5)0.0093 (4)0.0010 (4)
C110.0159 (5)0.0174 (6)0.0200 (6)0.0012 (4)0.0096 (5)0.0024 (4)
C120.0134 (5)0.0140 (6)0.0190 (6)0.0010 (4)0.0048 (4)0.0005 (4)
C130.0160 (5)0.0147 (6)0.0161 (5)0.0009 (4)0.0072 (4)0.0000 (4)
Geometric parameters (Å, º) top
O1—N31.2372 (15)C2—H2A0.93
O2—N31.2291 (15)C3—C41.4035 (18)
O3—N41.2262 (15)C4—C51.3711 (18)
O4—N41.2259 (15)C4—H4A0.93
O5—C91.3446 (15)C5—C61.4159 (17)
O5—H1O50.92 (3)C5—H5A0.93
O6—N51.2302 (15)C7—C81.4514 (17)
O7—N51.2288 (14)C7—H7A0.93
N1—C61.3565 (16)C8—C131.3962 (17)
N1—N21.3697 (15)C8—C91.4128 (16)
N1—H1N10.89 (2)C9—C101.4014 (18)
N2—C71.2920 (16)C10—C111.3799 (18)
N3—C11.4541 (16)C10—H10A0.93
N4—C31.4530 (17)C11—C121.3927 (17)
N5—C121.4589 (16)C11—H11A0.93
C1—C21.3876 (18)C12—C131.3795 (17)
C1—C61.4187 (17)C13—H13A0.93
C2—C31.3753 (17)
C9—O5—H1O5105.4 (15)C4—C5—H5A119.2
C6—N1—N2120.62 (11)C6—C5—H5A119.2
C6—N1—H1N1122.4 (13)N1—C6—C5120.57 (11)
N2—N1—H1N1116.6 (13)N1—C6—C1122.75 (11)
C7—N2—N1115.45 (10)C5—C6—C1116.66 (11)
O2—N3—O1122.71 (11)N2—C7—C8120.94 (11)
O2—N3—C1118.60 (11)N2—C7—H7A119.5
O1—N3—C1118.64 (11)C8—C7—H7A119.5
O4—N4—O3123.45 (12)C13—C8—C9118.32 (11)
O4—N4—C3118.12 (11)C13—C8—C7118.27 (11)
O3—N4—C3118.43 (11)C9—C8—C7123.37 (11)
O7—N5—O6123.08 (11)O5—C9—C10117.82 (11)
O7—N5—C12118.31 (11)O5—C9—C8121.85 (11)
O6—N5—C12118.60 (11)C10—C9—C8120.32 (11)
C2—C1—C6122.19 (11)C11—C10—C9120.67 (11)
C2—C1—N3116.05 (11)C11—C10—H10A119.7
C6—C1—N3121.76 (11)C9—C10—H10A119.7
C3—C2—C1118.67 (12)C10—C11—C12118.49 (12)
C3—C2—H2A120.7C10—C11—H11A120.8
C1—C2—H2A120.7C12—C11—H11A120.8
C2—C3—C4121.38 (12)C13—C12—C11122.02 (11)
C2—C3—N4119.01 (11)C13—C12—N5118.45 (11)
C4—C3—N4119.61 (11)C11—C12—N5119.53 (11)
C5—C4—C3119.51 (12)C12—C13—C8120.14 (11)
C5—C4—H4A120.2C12—C13—H13A119.9
C3—C4—H4A120.2C8—C13—H13A119.9
C4—C5—C6121.55 (12)
C6—N1—N2—C7172.84 (11)C2—C1—C6—C52.48 (18)
O2—N3—C1—C215.33 (17)N3—C1—C6—C5176.74 (11)
O1—N3—C1—C2162.33 (11)N1—N2—C7—C8175.64 (11)
O2—N3—C1—C6165.40 (12)N2—C7—C8—C13174.24 (11)
O1—N3—C1—C616.94 (18)N2—C7—C8—C93.12 (19)
C6—C1—C2—C31.35 (19)C13—C8—C9—O5177.95 (11)
N3—C1—C2—C3177.92 (11)C7—C8—C9—O50.58 (19)
C1—C2—C3—C40.5 (2)C13—C8—C9—C101.09 (18)
C1—C2—C3—N4179.46 (11)C7—C8—C9—C10178.46 (11)
O4—N4—C3—C2174.55 (13)O5—C9—C10—C11176.95 (11)
O3—N4—C3—C25.12 (19)C8—C9—C10—C112.12 (19)
O4—N4—C3—C45.37 (19)C9—C10—C11—C121.25 (19)
O3—N4—C3—C4174.96 (13)C10—C11—C12—C130.63 (19)
C2—C3—C4—C51.0 (2)C10—C11—C12—N5179.16 (11)
N4—C3—C4—C5178.90 (11)O7—N5—C12—C134.77 (17)
C3—C4—C5—C60.22 (19)O6—N5—C12—C13174.17 (12)
N2—N1—C6—C52.89 (18)O7—N5—C12—C11175.44 (12)
N2—N1—C6—C1175.04 (11)O6—N5—C12—C115.62 (18)
C4—C5—C6—N1176.16 (12)C11—C12—C13—C81.65 (19)
C4—C5—C6—C11.89 (18)N5—C12—C13—C8178.14 (11)
C2—C1—C6—N1175.52 (12)C9—C8—C13—C120.75 (18)
N3—C1—C6—N15.25 (19)C7—C8—C13—C12176.75 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O4i0.89 (2)2.54 (2)3.0666 (15)118 (2)
N1—H1N1···O10.89 (2)2.07 (2)2.6477 (15)121 (2)
O5—H1O5···N20.92 (3)1.82 (3)2.6656 (14)150 (2)
Symmetry code: (i) x+1/2, y+5/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC13H9N5O7
Mr347.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)12.7543 (5), 8.1898 (3), 13.8618 (5)
β (°) 112.683 (2)
V3)1335.94 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.14
Crystal size (mm)0.29 × 0.27 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.960, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
24539, 5195, 3513
Rint0.056
(sin θ/λ)max1)0.775
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.145, 1.09
No. of reflections5195
No. of parameters234
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.33

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O4i0.89 (2)2.54 (2)3.0666 (15)118 (2)
N1—H1N1···O10.89 (2)2.07 (2)2.6477 (15)121 (2)
O5—H1O5···N20.92 (3)1.82 (3)2.6656 (14)150 (2)
Symmetry code: (i) x+1/2, y+5/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds