Download citation
Download citation
link to html
The mol­ecule of the title Schiff base compound, C19H18Cl4N2, has crystallographic twofold rotation symmetry, with one C atom lying on the rotation axis. The dihedral angle between the two symmetry-related benzene rings is 84.70 (2)°. The plane of the –C=N—C– group is twisted away from the benzene ring by 7.5 (1)°. In the crystal structure, weak inter­molecular Cl...Cl [3.4851 (3) Å] contacts link neighbouring mol­ecules into a two-dimensional network parallel to the bc plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808035745/ci2702sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808035745/ci2702Isup2.hkl
Contains datablock I

CCDC reference: 712398

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.001 Å
  • R factor = 0.030
  • wR factor = 0.099
  • Data-to-parameter ratio = 43.4

checkCIF/PLATON results

No syntax errors found



Alert level C Value of measurement temperature given = 100.000 Value of melting point given = 0.000 PLAT143_ALERT_4_C su on c - Axis Small or Missing (x 100000) ..... 10 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Schiff bases are one of most prevalent mixed-donor ligands in the field of coordination chemistry. They play an important role in the development of coordination chemistry related to catalysis and enzymatic reactions, magnetism, and supramolecular architectures. Crystal structures of Schiff bases derived from substituted benzaldehydes and closely related to the title compound have been reported earlier (Li et al., 2005; Bomfim et al., 2005; Glidewell et al., 2005, 2006; Sun et al., 2004; Fun et al., 2008).

The molecule of the title Schiff base compound has crystallographic twofold rotation symmetry (Fig. 1). Bond lengths are within normal ranges (Allen et al., 1987). The plane of the –CN—C– group is twisted away from the benzene ring by 7.5 (1)°.

In the crystal structure, weak intermolecular Cl···Cl contacts [Cl1···Cl2(x,1 - y,-1/2 + z) = 3.4851 (3) Å] link neighbouring molecules into a two-dimensional network parallel to the bc plane (Fig.2).

Related literature top

For bond-length data, see: Allen et al. (1987). For related structures, see: Li et al. (2005); Bomfim et al. (2005); Glidewell et al. (2005, 2006); Sun et al. (2004); Fun et al. (2008).

Experimental top

The synthetic method has been described earlier (Fun et al., 2008). Single crystals suitable for X-ray diffraction were obtained by evaporation of an ethanol solution at room temperature.

Refinement top

H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å for aromatic and 0.97 Å for methylene and 0.96 Å for methyl H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability ellipsoids for non-H atoms. Atoms labelled with the suffix A are generated by the symmetry operation (1/2 - x, 2 - y, z).
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, viewed down the b-axis. Dashed lines indicate intermolecular Cl···Cl interactions.
N,N'-Bis-(2,4-dichlorobenzylidene)-2,2-dimethylpropane-1,3-diamine top
Crystal data top
C19H18Cl4N2F(000) = 856
Mr = 416.15Dx = 1.452 Mg m3
Orthorhombic, PccaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2a 2acCell parameters from 9929 reflections
a = 30.7633 (4) Åθ = 3.6–41.1°
b = 5.4012 (1) ŵ = 0.63 mm1
c = 11.4532 (1) ÅT = 100 K
V = 1903.05 (5) Å3Block, colourless
Z = 40.43 × 0.25 × 0.23 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6565 independent reflections
Radiation source: fine-focus sealed tube5678 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 42.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 5257
Tmin = 0.774, Tmax = 0.872k = 910
86683 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0454P)2 + 0.5965P]
where P = (Fo2 + 2Fc2)/3
4992 reflections(Δ/σ)max = 0.001
115 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C19H18Cl4N2V = 1903.05 (5) Å3
Mr = 416.15Z = 4
Orthorhombic, PccaMo Kα radiation
a = 30.7633 (4) ŵ = 0.63 mm1
b = 5.4012 (1) ÅT = 100 K
c = 11.4532 (1) Å0.43 × 0.25 × 0.23 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
6565 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
5678 reflections with I > 2σ(I)
Tmin = 0.774, Tmax = 0.872Rint = 0.028
86683 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.19Δρmax = 0.51 e Å3
4992 reflectionsΔρmin = 0.30 e Å3
115 parameters
Special details top

Experimental. The low-temperature data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.053693 (7)1.12278 (4)0.346996 (17)0.01671 (5)
Cl20.046757 (8)0.37440 (4)0.653936 (18)0.02040 (6)
N10.19231 (2)0.96758 (14)0.31674 (6)0.01660 (12)
C10.08049 (2)0.88739 (14)0.42126 (6)0.01301 (12)
C20.05625 (3)0.74765 (14)0.49989 (6)0.01467 (12)
H2A0.02700.78220.51270.018*
C30.07667 (3)0.55568 (15)0.55865 (7)0.01504 (12)
C40.12041 (3)0.50138 (16)0.54095 (7)0.01807 (13)
H4A0.13360.37130.58070.022*
C50.14395 (3)0.64492 (16)0.46298 (8)0.01748 (13)
H5A0.17320.60980.45100.021*
C60.12480 (2)0.84188 (14)0.40166 (7)0.01397 (12)
C70.15133 (2)0.99635 (15)0.32244 (7)0.01527 (12)
H7A0.13791.11570.27630.018*
C80.21668 (3)1.13674 (14)0.24238 (7)0.01553 (13)
H8A0.23171.25660.29090.019*
H8B0.19661.22620.19250.019*
C90.25001.00000.16598 (9)0.01351 (16)
C180.22667 (3)0.81059 (16)0.08866 (7)0.01774 (13)
H18A0.20440.89220.04430.027*
H18B0.21380.68500.13680.027*
H18C0.24720.73580.03640.027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01438 (9)0.01789 (9)0.01786 (9)0.00404 (6)0.00073 (5)0.00121 (5)
Cl20.02045 (10)0.02338 (10)0.01738 (9)0.00623 (7)0.00240 (6)0.00349 (6)
N10.0117 (3)0.0205 (3)0.0176 (3)0.0015 (2)0.0016 (2)0.0025 (2)
C10.0116 (3)0.0143 (3)0.0131 (3)0.0006 (2)0.0001 (2)0.0008 (2)
C20.0117 (3)0.0175 (3)0.0149 (3)0.0002 (2)0.0016 (2)0.0010 (2)
C30.0143 (3)0.0170 (3)0.0139 (3)0.0031 (2)0.0004 (2)0.0006 (2)
C40.0136 (3)0.0197 (3)0.0209 (3)0.0004 (2)0.0016 (2)0.0046 (3)
C50.0108 (3)0.0207 (3)0.0209 (3)0.0005 (2)0.0002 (2)0.0044 (3)
C60.0102 (3)0.0168 (3)0.0149 (3)0.0004 (2)0.0005 (2)0.0009 (2)
C70.0120 (3)0.0178 (3)0.0160 (3)0.0004 (2)0.0010 (2)0.0015 (2)
C80.0120 (3)0.0163 (3)0.0183 (3)0.0012 (2)0.0021 (2)0.0009 (2)
C90.0113 (4)0.0144 (4)0.0148 (4)0.0023 (3)0.0000.000
C180.0169 (3)0.0176 (3)0.0187 (3)0.0033 (3)0.0036 (2)0.0008 (2)
Geometric parameters (Å, º) top
Cl1—C11.7376 (8)C5—H5A0.93
Cl2—C31.7311 (8)C6—C71.4783 (11)
N1—C71.2720 (10)C7—H7A0.93
N1—C81.4566 (10)C8—C91.5369 (10)
C1—C21.3917 (11)C8—H8A0.97
C1—C61.4033 (11)C8—H8B0.97
C2—C31.3866 (11)C9—C181.5316 (10)
C2—H2A0.93C9—C18i1.5316 (10)
C3—C41.3917 (11)C9—C8i1.5369 (10)
C4—C51.3869 (12)C18—H18A0.96
C4—H4A0.93C18—H18B0.96
C5—C61.4043 (11)C18—H18C0.96
C7—N1—C8117.61 (7)N1—C7—H7A119.7
C2—C1—C6121.94 (7)C6—C7—H7A119.7
C2—C1—Cl1117.35 (6)N1—C8—C9112.00 (6)
C6—C1—Cl1120.71 (6)N1—C8—H8A109.2
C3—C2—C1118.49 (7)C9—C8—H8A109.2
C3—C2—H2A120.8N1—C8—H8B109.2
C1—C2—H2A120.8C9—C8—H8B109.2
C2—C3—C4121.66 (7)H8A—C8—H8B107.9
C2—C3—Cl2119.21 (6)C18—C9—C18i109.36 (9)
C4—C3—Cl2119.12 (6)C18—C9—C8i108.71 (4)
C5—C4—C3118.74 (8)C18i—C9—C8i109.73 (4)
C5—C4—H4A120.6C18—C9—C8109.73 (4)
C3—C4—H4A120.6C18i—C9—C8108.71 (4)
C4—C5—C6121.76 (7)C8i—C9—C8110.59 (9)
C4—C5—H5A119.1C9—C18—H18A109.5
C6—C5—H5A119.1C9—C18—H18B109.5
C1—C6—C5117.40 (7)H18A—C18—H18B109.5
C1—C6—C7122.39 (7)C9—C18—H18C109.5
C5—C6—C7120.19 (7)H18A—C18—H18C109.5
N1—C7—C6120.65 (7)H18B—C18—H18C109.5
C6—C1—C2—C31.08 (11)Cl1—C1—C6—C72.99 (11)
Cl1—C1—C2—C3178.81 (6)C4—C5—C6—C10.64 (13)
C1—C2—C3—C40.20 (12)C4—C5—C6—C7177.81 (8)
C1—C2—C3—Cl2178.30 (6)C8—N1—C7—C6176.18 (7)
C2—C3—C4—C50.42 (13)C1—C6—C7—N1172.02 (8)
Cl2—C3—C4—C5178.92 (7)C5—C6—C7—N16.36 (12)
C3—C4—C5—C60.19 (13)C7—N1—C8—C9134.46 (8)
C2—C1—C6—C51.29 (11)N1—C8—C9—C1859.07 (9)
Cl1—C1—C6—C5178.59 (6)N1—C8—C9—C18i178.63 (7)
C2—C1—C6—C7177.13 (7)N1—C8—C9—C8i60.85 (5)
Symmetry code: (i) x+1/2, y+2, z.

Experimental details

Crystal data
Chemical formulaC19H18Cl4N2
Mr416.15
Crystal system, space groupOrthorhombic, Pcca
Temperature (K)100
a, b, c (Å)30.7633 (4), 5.4012 (1), 11.4532 (1)
V3)1903.05 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.63
Crystal size (mm)0.43 × 0.25 × 0.23
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.774, 0.872
No. of measured, independent and
observed [I > 2σ(I)] reflections
86683, 6565, 5678
Rint0.028
(sin θ/λ)max1)0.950
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.099, 1.19
No. of reflections4992
No. of parameters115
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.30

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2003).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds