Download citation
Download citation
link to html
In the title azide-bridged dinuclear centrosymmetric nickel(II) complex, [Ni2(N3)4(C12H12N2)2], the NiII atom is five-coordinated by two N atoms of the 5,5′-dimethyl-2,2′-bipyridine ligand and three N atoms from three azide ligands in a distorted trigonal–bipyramidal geometry. The Ni...Ni distance is 3.2398 (12) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808037902/ci2712sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808037902/ci2712Isup2.hkl
Contains datablock I

CCDC reference: 712318

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.056
  • wR factor = 0.149
  • Data-to-parameter ratio = 15.9

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for N3 -- N4 .. 21.42 su
Alert level C Value of measurement temperature given = 298.000 Value of melting point given = 0.000 PLAT220_ALERT_2_C Large Non-Solvent N Ueq(max)/Ueq(min) ... 3.45 Ratio PLAT230_ALERT_2_C Hirshfeld Test Diff for N4 -- N5 .. 5.32 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N3 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N7 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 8 PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT234_ALERT_4_C Large Hirshfeld Difference N6 -- N7 .. 0.12 Ang. PLAT234_ALERT_4_C Large Hirshfeld Difference C3 -- C4 .. 0.12 Ang.
Alert level G FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C24 H24 N16 Ni2 Atom count from _chemical_formula_moiety: PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 14
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Polynuclear complexes play an important role in many fields, such as catalysis and magnetism (Dey et al., 2007; Jiang et al., 2005; Abramo et al., 2002). The main strategy for the design of the polynuclear complexes is to use suitable bridging ligands. In this paper, we report the synthesis and molecular structure of the title azide-bridged dinuclear nickel(II) complex derived from 5,5'-dimethyl-[2,2']bipyridine.

The molecule of the title complex is located on a crystallographic centre of inversion (Fig. 1). The complex contains two NiL (L is 5,5'-dimethyl-[2,2']bipyridine) units connected to each other by two bridging azide ligands. The NiII atom in the complex is five-coordinated by two N atoms of 5,5'-dimethyl-[2,2']bipyridine ligand and by three N atoms from three azide ligands in a trigonal-bipyramidal geometry. The bond lengths subtended at the metal center are within normal ranges (Song et al., 2007; Fu et al., 2005). The Ni···Ni distance is 3.2398 (12) Å.

Related literature top

For general background, see: Abramo et al. (2002); Dey et al. (2007); Jiang et al. (2005). For related structures, see: Fu et al. (2005); Song et al. (2007).

Experimental top

5,5'-Dimethyl-[2,2']bipyridine (2 mmol, 368.3 mg), sodium azide (4 mmol, 261.2 mg) and nickel acetate tetrahydrate (2 mmol, 497.8 mg) were dissolved in methanol (100 ml). The mixture was stirred for 30 min at room temperature to give a green solution. The solution was kept still in air for a week, green block-shaped crystals of the title complex were formed.

Refinement top

H atoms were positioned geometrically (C–H = 0.93-0.96 Å) and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl). The displacement ellipsoids of atoms N4 and N5 are extremely elongated and hence the Uij parameters of these atoms were restrained to an approximate isotropic behaviour. The distance between atoms N3 and N4 was restrained to 1.23 (1) Å and that between atoms N4 and N5 was restrained to 1.13 (1) Å.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
Di-µ1,1-azido-bis[azido(5,5'-dimethyl-2,2'-bipyridine)nickel(II)] top
Crystal data top
[Ni2(N3)4(C12H12N2)2]F(000) = 672
Mr = 654.01Dx = 1.546 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1576 reflections
a = 7.938 (2) Åθ = 2.3–25.1°
b = 15.067 (3) ŵ = 1.39 mm1
c = 11.755 (2) ÅT = 298 K
β = 91.650 (2)°Block, green
V = 1405.3 (5) Å30.13 × 0.10 × 0.08 mm
Z = 2
Data collection top
Bruker SMART CCD area-detector
diffractometer
3060 independent reflections
Radiation source: fine-focus sealed tube2165 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.063
ϕ and ω scanθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1010
Tmin = 0.840, Tmax = 0.897k = 1919
11588 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0643P)2 + 1.1062P]
where P = (Fo2 + 2Fc2)/3
3060 reflections(Δ/σ)max = 0.001
192 parametersΔρmax = 0.67 e Å3
14 restraintsΔρmin = 0.77 e Å3
Crystal data top
[Ni2(N3)4(C12H12N2)2]V = 1405.3 (5) Å3
Mr = 654.01Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.938 (2) ŵ = 1.39 mm1
b = 15.067 (3) ÅT = 298 K
c = 11.755 (2) Å0.13 × 0.10 × 0.08 mm
β = 91.650 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3060 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2165 reflections with I > 2σ(I)
Tmin = 0.840, Tmax = 0.897Rint = 0.063
11588 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05614 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.03Δρmax = 0.67 e Å3
3060 reflectionsΔρmin = 0.77 e Å3
192 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.03235 (7)0.44079 (4)0.11356 (5)0.0386 (2)
N10.2280 (5)0.3549 (3)0.1785 (4)0.0491 (10)
N20.0777 (5)0.3158 (3)0.0994 (3)0.0416 (9)
N30.0029 (5)0.5108 (3)0.2626 (4)0.0459 (11)
N40.0958 (8)0.5106 (4)0.3252 (5)0.0857 (18)
N50.1983 (12)0.5160 (6)0.4040 (7)0.144 (3)
N60.1668 (5)0.4913 (3)0.0170 (4)0.0583 (12)
N70.2901 (6)0.4579 (3)0.0571 (4)0.0594 (12)
N80.4096 (8)0.4282 (4)0.0950 (6)0.094 (2)
C10.1794 (6)0.2706 (3)0.1926 (4)0.0445 (11)
C20.2820 (7)0.2113 (4)0.2525 (5)0.0573 (14)
H20.24750.15290.26280.069*
C30.4356 (7)0.2398 (4)0.2967 (5)0.0632 (16)
H30.50570.20000.33570.076*
C40.4857 (6)0.3259 (4)0.2836 (5)0.0575 (14)
C50.3771 (6)0.3811 (4)0.2219 (5)0.0570 (14)
H50.41000.43960.21020.068*
C60.6485 (7)0.3623 (5)0.3348 (5)0.085 (2)
H6A0.62890.38470.40970.128*
H6B0.68860.40950.28780.128*
H6C0.73120.31590.33930.128*
C70.0139 (6)0.2474 (3)0.1428 (4)0.0442 (12)
C80.0506 (7)0.1625 (4)0.1383 (5)0.0626 (15)
H80.01270.11550.16800.075*
C90.2070 (8)0.1468 (4)0.0904 (5)0.0652 (16)
H90.25010.08940.08930.078*
C100.3023 (6)0.2160 (4)0.0433 (5)0.0530 (13)
C110.2308 (6)0.2993 (3)0.0520 (4)0.0477 (12)
H110.29250.34720.02330.057*
C120.4711 (7)0.2026 (4)0.0126 (5)0.0657 (16)
H12A0.54900.18240.04270.098*
H12B0.46290.15910.07190.098*
H12C0.51030.25770.04480.098*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0339 (3)0.0328 (3)0.0487 (4)0.0009 (3)0.0026 (2)0.0057 (3)
N10.039 (2)0.048 (3)0.060 (3)0.0018 (19)0.003 (2)0.004 (2)
N20.039 (2)0.040 (2)0.046 (2)0.0000 (17)0.0016 (18)0.0013 (17)
N30.035 (2)0.036 (2)0.067 (3)0.0025 (18)0.006 (2)0.012 (2)
N40.119 (5)0.043 (3)0.097 (5)0.001 (4)0.045 (4)0.006 (3)
N50.165 (7)0.149 (6)0.115 (6)0.004 (6)0.029 (5)0.002 (5)
N60.038 (2)0.066 (3)0.072 (3)0.010 (2)0.005 (2)0.021 (2)
N70.051 (3)0.056 (3)0.070 (3)0.005 (2)0.002 (2)0.016 (2)
N80.071 (4)0.105 (5)0.108 (5)0.037 (3)0.020 (3)0.011 (4)
C10.048 (3)0.043 (3)0.043 (3)0.009 (2)0.004 (2)0.001 (2)
C20.065 (4)0.048 (3)0.058 (3)0.010 (3)0.002 (3)0.002 (3)
C30.058 (4)0.084 (4)0.047 (3)0.025 (3)0.009 (3)0.004 (3)
C40.041 (3)0.080 (4)0.051 (3)0.008 (3)0.001 (2)0.001 (3)
C50.044 (3)0.064 (4)0.063 (4)0.003 (3)0.001 (3)0.002 (3)
C60.049 (3)0.131 (7)0.074 (4)0.001 (4)0.014 (3)0.003 (4)
C70.049 (3)0.038 (3)0.046 (3)0.003 (2)0.004 (2)0.001 (2)
C80.060 (4)0.047 (3)0.080 (4)0.003 (3)0.002 (3)0.013 (3)
C90.067 (4)0.047 (3)0.081 (4)0.016 (3)0.001 (3)0.004 (3)
C100.049 (3)0.056 (3)0.054 (3)0.008 (3)0.006 (2)0.004 (3)
C110.045 (3)0.047 (3)0.050 (3)0.001 (2)0.001 (2)0.002 (2)
C120.054 (3)0.075 (4)0.068 (4)0.020 (3)0.002 (3)0.009 (3)
Geometric parameters (Å, º) top
Ni1—N12.145 (4)C3—H30.93
Ni1—N22.081 (4)C4—C51.387 (7)
Ni1—N32.064 (5)C4—C61.512 (8)
Ni1—N62.041 (4)C5—H50.93
Ni1—N6i2.175 (4)C6—H6A0.96
N1—C51.336 (6)C6—H6B0.96
N1—C11.339 (6)C6—H6C0.96
N2—C111.345 (6)C7—C81.379 (7)
N2—C71.352 (6)C8—C91.369 (8)
N3—N41.027 (6)C8—H80.93
N4—N51.217 (7)C9—C101.394 (8)
N6—N71.209 (6)C9—H90.93
N6—Ni1i2.175 (4)C10—C111.380 (7)
N7—N81.149 (7)C10—C121.489 (7)
C1—C21.387 (7)C11—H110.93
C1—C71.465 (7)C12—H12A0.96
C2—C31.380 (8)C12—H12B0.96
C2—H20.93C12—H12C0.96
C3—C41.367 (8)
N6—Ni1—N3121.5 (2)C3—C4—C6123.2 (5)
N6—Ni1—N2120.32 (18)C5—C4—C6120.1 (6)
N3—Ni1—N2118.23 (17)N1—C5—C4123.5 (5)
N6—Ni1—N195.97 (17)N1—C5—H5118.2
N3—Ni1—N196.02 (17)C4—C5—H5118.2
N2—Ni1—N177.30 (15)C4—C6—H6A109.5
N6—Ni1—N6i79.63 (18)C4—C6—H6B109.5
N3—Ni1—N6i95.99 (18)H6A—C6—H6B109.5
N2—Ni1—N6i94.98 (16)C4—C6—H6C109.5
N1—Ni1—N6i167.78 (18)H6A—C6—H6C109.5
C5—N1—C1119.3 (5)H6B—C6—H6C109.5
C5—N1—Ni1125.6 (4)N2—C7—C8119.8 (5)
C1—N1—Ni1114.1 (3)N2—C7—C1115.8 (4)
C11—N2—C7119.0 (4)C8—C7—C1124.3 (5)
C11—N2—Ni1124.9 (3)C9—C8—C7120.5 (5)
C7—N2—Ni1116.1 (3)C9—C8—H8119.8
N4—N3—Ni1120.7 (5)C7—C8—H8119.8
N3—N4—N5174.4 (8)C8—C9—C10120.6 (5)
N7—N6—Ni1125.8 (4)C8—C9—H9119.7
N7—N6—Ni1i125.2 (4)C10—C9—H9119.7
Ni1—N6—Ni1i100.37 (18)C11—C10—C9115.7 (5)
N8—N7—N6178.1 (6)C11—C10—C12121.3 (5)
N1—C1—C2120.5 (5)C9—C10—C12123.0 (5)
N1—C1—C7115.8 (4)N2—C11—C10124.3 (5)
C2—C1—C7123.8 (5)N2—C11—H11117.8
C3—C2—C1119.3 (5)C10—C11—H11117.8
C3—C2—H2120.3C10—C12—H12A109.5
C1—C2—H2120.3C10—C12—H12B109.5
C4—C3—C2120.7 (5)H12A—C12—H12B109.5
C4—C3—H3119.7C10—C12—H12C109.5
C2—C3—H3119.7H12A—C12—H12C109.5
C3—C4—C5116.7 (5)H12B—C12—H12C109.5
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni2(N3)4(C12H12N2)2]
Mr654.01
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.938 (2), 15.067 (3), 11.755 (2)
β (°) 91.650 (2)
V3)1405.3 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.39
Crystal size (mm)0.13 × 0.10 × 0.08
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.840, 0.897
No. of measured, independent and
observed [I > 2σ(I)] reflections
11588, 3060, 2165
Rint0.063
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.149, 1.03
No. of reflections3060
No. of parameters192
No. of restraints14
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.67, 0.77

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—N12.145 (4)Ni1—N62.041 (4)
Ni1—N22.081 (4)Ni1—N6i2.175 (4)
Ni1—N32.064 (5)
Symmetry code: (i) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds