Download citation
Download citation
link to html
In the title compound, C31H24F4N2O, the bicyclo­[3.3.1]nonane ring exists in a chair-boat conformation. Two of the four fluorine-substituted rings adopt equatorial dispositions with the piperidin-4-one rings. Mol­ecules are linked into a two-dimensional network parallel to (\overline{1}01) by N—H...O, C—H...F and C—H...O hydrogen bonds. Inter­molecular N—H...π and C—H...π inter­actions are also observed.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808039135/ci2727sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808039135/ci2727Isup2.hkl
Contains datablock I

CCDC reference: 712578

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.039
  • wR factor = 0.112
  • Data-to-parameter ratio = 12.7

checkCIF/PLATON results

No syntax errors found



Alert level C Value of measurement temperature given = 293.000 Value of melting point given = 0.000 PLAT420_ALERT_2_C D-H Without Acceptor N1 - H2A ... ? PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ?
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT793_ALERT_4_G The Model has Chirality at C1 (Verify) .... S PLAT793_ALERT_4_G The Model has Chirality at C3 (Verify) .... S PLAT793_ALERT_4_G The Model has Chirality at C4 (Verify) .... R PLAT793_ALERT_4_G The Model has Chirality at C6 (Verify) .... R
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check
checkCIF publication errors
Alert level A PUBL024_ALERT_1_A The number of authors is greater than 5. Please specify the role of each of the co-authors for your paper.
Author Response: The work described in this contribution is a collaborative work. The synthesis and characterization was done by V. Sudhapriya and N. Shoba under the supervision of V. Vijayakumar. The crystallographic data collection and analysis was performed by S. Natarajan, J. Suresh and P.L. Nilantha Lakshman.

1 ALERT level A = Data missing that is essential or data in wrong format 0 ALERT level G = General alerts. Data that may be required is missing

Comment top

Azabicyclononane and their derivatives are studied intensively because of their pharmaceutical use and their application as an important structure in the field of molecular recognition. The 3-azabicyclo[3.3.1] nonane skeletal system easily constructed via a double Mannich reaction (Jeyaraman & Avila, 1981), has been known for some time. The bicyclo[3.3.1]nonane carbon framework is frequently encountered in natural products, in particular in alkaloids and terpenoids, e.g. trifarienols (Asakawa, 1995). Further, the study of conformation of the bicyclic ring helps in the understanding of interactions that are possible between the substituted aryl rings.

The molecular structure of the title compound is shown in Fig.1. The bicyclic [3.3.1]nonane ring can exist in chair-chair, chair-boat and boat-boat conformations. Among these, the chair-chair conformation is the most favourable. In the title compound, the bicyclic ring system adopts a chair-boat conformation. In the N1-piperidine ring of the compound, atoms N1 and C7 deviate from the C1/C2/C5/C6 plane by 0.652 (3) and 0.685 (3) Å, respectively, indicating a nearly ideal boat conformation. The phenyl rings substituted at C1 and C6 positions are oriented at an angle of 28.2 (1)° to each other. The phenyl rings substituted at C3 and C4 are oriented with an angle of 28.6 (1)° between them and they are equatorially disposed with respect to the piperidine ring, with torsion angles C7—C5—C4—C41 = -175.1 (2)° and C7—C2—C3—C31 = 173.3 (2)°.

Fig. 2 shows the packing viewed down the c axis. Pairs of intermolecular C—H···F (Table 1) hydrogen bonds form centrosymmetric R22(24) dimers. The moelcules are linked into a two-dimensional network parallel to the (101) by N—H···O, C—H···F and C—H···O hydrogen bonds. In addition, some C—H···π interactions (Table 1 ; Cg1, Cg2 and Cg3 refer to centroids of C31-C36, C41-C46 and C61-C66 rings, respectively).

Related literature top

For general background, see: Asakawa (1995); Jeyaraman & Avila (1981). Cg1, Cg2 and Cg3 are the centroids of the C31–C36, C41–C46 and C61–C66 rings, respectively.

Experimental top

A mixture of 0.73 ml of dry acetone (0.01 mol), 4.96 ml of 4-fluorobenzaldehyde (0.04 mol), 1.54 g dry ammonium acetate (0.02 mol) were taken in a flask with ethanol as solvent. Contents were heated with constant shaking until it becomes pale orange in colour. Then the contents were kept aside for 24 h and the title compound was filtered through the Buchner funnel, washed with 1:1 ethanol-ether mixture until the yellow colour disappeared and dried (yield 45%, m.p. 484 K).

Refinement top

Atoms H1A and H2A were located in a difference Fourier map and their positional and isotropic displacement parameters were refined. The remaining H atoms were placed in calculated positions and allowed to ride on their carrier atoms with C-H = 0.93–0.98 Å and Uiso = 1.2Ueq(C) for CH group.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Packing diagram viewed down the c axis.
2,4,6,8-Tetrakis(4-fluorophenyl)-3,7-diazabicyclo[3.3.1]nonan-9-one top
Crystal data top
C31H24F4N2OF(000) = 2144
Mr = 516.52Dx = 1.353 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 37.1521 (9) Åθ = 2–25°
b = 7.1458 (5) ŵ = 0.10 mm1
c = 26.2165 (7) ÅT = 293 K
β = 133.249 (4)°Block, colourless
V = 5069.5 (4) Å30.19 × 0.16 × 0.11 mm
Z = 8
Data collection top
Nonius MACH-3
diffractometer
2735 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ω–2θ scansh = 044
Absorption correction: ψ scan
(North et al., 1968)
k = 18
Tmin = 0.986, Tmax = 0.991l = 3122
5315 measured reflections2 standard reflections every 60 min
4465 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0552P)2 + 1.3466P]
where P = (Fo2 + 2Fc2)/3
4465 reflections(Δ/σ)max = 0.001
351 parametersΔρmax = 0.14 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C31H24F4N2OV = 5069.5 (4) Å3
Mr = 516.52Z = 8
Monoclinic, C2/cMo Kα radiation
a = 37.1521 (9) ŵ = 0.10 mm1
b = 7.1458 (5) ÅT = 293 K
c = 26.2165 (7) Å0.19 × 0.16 × 0.11 mm
β = 133.249 (4)°
Data collection top
Nonius MACH-3
diffractometer
2735 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.024
Tmin = 0.986, Tmax = 0.9912 standard reflections every 60 min
5315 measured reflections intensity decay: none
4465 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.14 e Å3
4465 reflectionsΔρmin = 0.23 e Å3
351 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.11845 (6)0.4616 (3)0.20424 (9)0.0401 (5)
H10.11510.32510.20020.048*
C20.17256 (7)0.5147 (3)0.24318 (10)0.0385 (4)
H20.18710.58850.28500.046*
C30.20558 (6)0.3394 (3)0.26425 (9)0.0378 (5)
H30.23790.38380.28380.045*
C40.18263 (7)0.3426 (3)0.15308 (9)0.0377 (4)
H40.21660.38480.17980.045*
C50.14991 (6)0.5202 (3)0.12939 (9)0.0371 (4)
H50.15080.59740.09940.044*
C60.09512 (6)0.4758 (3)0.09015 (9)0.0398 (5)
H60.08970.34030.08360.048*
C70.17300 (7)0.6262 (3)0.19522 (10)0.0386 (5)
C110.10312 (7)0.5332 (3)0.24153 (10)0.0430 (5)
C120.11071 (9)0.4228 (4)0.29154 (12)0.0621 (6)
H120.12580.30670.30250.074*
C130.09628 (10)0.4816 (4)0.32551 (13)0.0711 (7)
H130.10170.40680.35930.085*
C140.07391 (8)0.6514 (4)0.30841 (12)0.0571 (6)
C150.06615 (8)0.7656 (3)0.26035 (12)0.0564 (6)
H150.05120.88170.25000.068*
C160.08102 (8)0.7055 (3)0.22704 (11)0.0504 (5)
H160.07600.78290.19410.060*
C310.21368 (7)0.2239 (3)0.31941 (9)0.0394 (5)
C320.18761 (7)0.0614 (3)0.30531 (11)0.0476 (5)
H320.16460.01580.25970.057*
C330.19552 (8)0.0333 (3)0.35830 (12)0.0531 (6)
H330.17780.14130.34860.064*
C340.22973 (8)0.0344 (3)0.42487 (11)0.0520 (6)
C350.25679 (8)0.1928 (3)0.44138 (11)0.0526 (6)
H350.28010.23610.48730.063*
C360.24843 (7)0.2856 (3)0.38825 (10)0.0462 (5)
H360.26660.39290.39870.055*
C410.16646 (6)0.2296 (3)0.09174 (9)0.0377 (4)
C420.17840 (7)0.2953 (3)0.05514 (10)0.0486 (5)
H420.19640.40560.06970.058*
C430.16441 (8)0.2022 (3)0.00210 (11)0.0572 (6)
H430.17250.24830.02630.069*
C440.13822 (8)0.0401 (3)0.02224 (11)0.0552 (6)
C450.12559 (8)0.0312 (3)0.01184 (11)0.0550 (6)
H450.10780.14230.00310.066*
C460.13961 (7)0.0644 (3)0.06916 (10)0.0476 (5)
H460.13100.01760.09270.057*
C610.06009 (7)0.5723 (3)0.01948 (10)0.0406 (5)
C620.03742 (8)0.7397 (3)0.00973 (12)0.0590 (6)
H620.04200.79040.04650.071*
C630.00812 (9)0.8329 (4)0.05342 (13)0.0697 (7)
H630.00710.94500.05950.084*
C640.00196 (8)0.7583 (4)0.10652 (11)0.0596 (6)
C650.02287 (8)0.5928 (3)0.10022 (11)0.0546 (6)
H650.01770.54350.13760.066*
C660.05205 (7)0.4997 (3)0.03665 (10)0.0469 (5)
H660.06650.38630.03150.056*
N10.08615 (6)0.5436 (3)0.13358 (8)0.0448 (4)
N20.18264 (6)0.2354 (2)0.20033 (8)0.0396 (4)
O10.19350 (5)0.7766 (2)0.21027 (7)0.0521 (4)
F10.05822 (5)0.7074 (2)0.34005 (7)0.0799 (4)
F20.23818 (6)0.0598 (2)0.47714 (7)0.0775 (4)
F30.12520 (6)0.0562 (2)0.07769 (7)0.0844 (5)
F40.02642 (6)0.8518 (2)0.16843 (7)0.0923 (5)
H1A0.1975 (8)0.130 (3)0.2109 (11)0.057 (7)*
H2A0.0545 (8)0.522 (3)0.1100 (10)0.052 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0412 (10)0.0390 (12)0.0455 (11)0.0006 (9)0.0318 (9)0.0010 (9)
C20.0420 (10)0.0344 (11)0.0438 (10)0.0014 (9)0.0313 (9)0.0037 (9)
C30.0366 (10)0.0367 (11)0.0427 (11)0.0005 (9)0.0282 (9)0.0008 (9)
C40.0358 (9)0.0366 (11)0.0442 (11)0.0001 (9)0.0288 (9)0.0007 (9)
C50.0401 (10)0.0341 (11)0.0429 (10)0.0006 (8)0.0308 (9)0.0023 (9)
C60.0395 (10)0.0392 (12)0.0443 (10)0.0017 (9)0.0302 (9)0.0026 (9)
C70.0359 (10)0.0317 (11)0.0527 (12)0.0042 (9)0.0321 (9)0.0020 (9)
C110.0399 (10)0.0480 (13)0.0455 (11)0.0007 (10)0.0309 (9)0.0007 (10)
C120.0749 (15)0.0619 (16)0.0706 (15)0.0213 (13)0.0580 (14)0.0195 (13)
C130.0894 (18)0.083 (2)0.0738 (16)0.0217 (16)0.0686 (15)0.0244 (15)
C140.0563 (13)0.0735 (17)0.0589 (14)0.0002 (12)0.0463 (12)0.0053 (13)
C150.0618 (13)0.0542 (15)0.0660 (14)0.0085 (12)0.0487 (12)0.0040 (12)
C160.0588 (13)0.0490 (13)0.0573 (12)0.0035 (11)0.0452 (11)0.0051 (11)
C310.0411 (10)0.0378 (11)0.0454 (11)0.0036 (9)0.0320 (9)0.0010 (9)
C320.0539 (12)0.0384 (12)0.0529 (12)0.0034 (10)0.0374 (11)0.0054 (10)
C330.0688 (14)0.0370 (12)0.0703 (15)0.0002 (11)0.0541 (13)0.0017 (11)
C340.0722 (15)0.0462 (14)0.0604 (14)0.0155 (12)0.0543 (13)0.0130 (12)
C350.0642 (14)0.0536 (14)0.0472 (12)0.0036 (12)0.0410 (12)0.0026 (11)
C360.0526 (11)0.0424 (12)0.0481 (11)0.0034 (10)0.0362 (10)0.0050 (10)
C410.0370 (9)0.0359 (11)0.0425 (10)0.0037 (9)0.0282 (9)0.0026 (9)
C420.0570 (12)0.0449 (12)0.0589 (13)0.0065 (10)0.0455 (11)0.0042 (11)
C430.0716 (14)0.0621 (16)0.0597 (13)0.0006 (13)0.0535 (13)0.0007 (12)
C440.0622 (13)0.0568 (15)0.0434 (11)0.0048 (12)0.0350 (11)0.0062 (11)
C450.0626 (13)0.0443 (13)0.0531 (12)0.0088 (11)0.0378 (11)0.0084 (11)
C460.0554 (12)0.0427 (13)0.0520 (12)0.0045 (11)0.0397 (11)0.0012 (10)
C610.0379 (10)0.0403 (12)0.0447 (11)0.0010 (9)0.0288 (9)0.0001 (9)
C620.0704 (15)0.0555 (15)0.0572 (13)0.0157 (13)0.0462 (13)0.0046 (12)
C630.0783 (17)0.0603 (17)0.0675 (16)0.0270 (14)0.0488 (14)0.0153 (14)
C640.0550 (13)0.0605 (16)0.0488 (13)0.0061 (12)0.0300 (11)0.0138 (12)
C650.0497 (12)0.0654 (16)0.0438 (12)0.0071 (12)0.0301 (11)0.0051 (12)
C660.0432 (11)0.0477 (13)0.0474 (12)0.0013 (10)0.0301 (10)0.0027 (10)
N10.0374 (9)0.0567 (12)0.0455 (9)0.0043 (9)0.0303 (8)0.0037 (9)
N20.0479 (9)0.0329 (10)0.0443 (9)0.0049 (8)0.0340 (8)0.0024 (8)
O10.0620 (9)0.0362 (8)0.0657 (9)0.0095 (7)0.0467 (8)0.0059 (7)
F10.0926 (10)0.1006 (12)0.0882 (10)0.0073 (9)0.0781 (9)0.0025 (9)
F20.1203 (12)0.0641 (9)0.0821 (9)0.0118 (8)0.0825 (10)0.0192 (8)
F30.1090 (11)0.0841 (11)0.0633 (8)0.0052 (9)0.0602 (9)0.0224 (8)
F40.0987 (11)0.0894 (12)0.0591 (8)0.0184 (9)0.0426 (9)0.0273 (8)
Geometric parameters (Å, º) top
C1—N11.473 (2)C32—C331.384 (3)
C1—C111.518 (3)C32—H320.93
C1—C21.554 (2)C33—C341.362 (3)
C1—H10.98C33—H330.93
C2—C71.498 (3)C34—F21.356 (2)
C2—C31.566 (3)C34—C351.372 (3)
C2—H20.98C35—C361.372 (3)
C3—N21.459 (2)C35—H350.93
C3—C311.505 (3)C36—H360.93
C3—H30.98C41—C421.386 (3)
C4—N21.456 (2)C41—C461.389 (3)
C4—C411.508 (3)C42—C431.377 (3)
C4—C51.562 (3)C42—H420.93
C4—H40.98C43—C441.365 (3)
C5—C71.503 (3)C43—H430.93
C5—C61.559 (2)C44—C451.361 (3)
C5—H50.98C44—F31.363 (2)
C6—N11.470 (2)C45—C461.387 (3)
C6—C611.516 (3)C45—H450.93
C6—H60.98C46—H460.93
C7—O11.216 (2)C61—C621.382 (3)
C11—C161.381 (3)C61—C661.386 (3)
C11—C121.383 (3)C62—C631.379 (3)
C12—C131.383 (3)C62—H620.93
C12—H120.93C63—C641.356 (3)
C13—C141.361 (3)C63—H630.93
C13—H130.93C64—F41.359 (2)
C14—C151.356 (3)C64—C651.361 (3)
C14—F11.360 (2)C65—C661.386 (3)
C15—C161.383 (3)C65—H650.93
C15—H150.93C66—H660.93
C16—H160.93N1—H2A0.89 (2)
C31—C361.388 (3)N2—H1A0.86 (2)
C31—C321.390 (3)
N1—C1—C11109.51 (15)C32—C31—C3123.93 (17)
N1—C1—C2107.55 (15)C33—C32—C31120.76 (19)
C11—C1—C2112.45 (15)C33—C32—H32119.6
N1—C1—H1109.1C31—C32—H32119.6
C11—C1—H1109.1C34—C33—C32118.8 (2)
C2—C1—H1109.1C34—C33—H33120.6
C7—C2—C1109.37 (15)C32—C33—H33120.6
C7—C2—C3105.39 (14)F2—C34—C33119.0 (2)
C1—C2—C3112.61 (15)F2—C34—C35118.6 (2)
C7—C2—H2109.8C33—C34—C35122.42 (19)
C1—C2—H2109.8C34—C35—C36118.1 (2)
C3—C2—H2109.8C34—C35—H35121.0
N2—C3—C31113.52 (16)C36—C35—H35121.0
N2—C3—C2107.60 (14)C35—C36—C31121.9 (2)
C31—C3—C2111.73 (14)C35—C36—H36119.0
N2—C3—H3107.9C31—C36—H36119.0
C31—C3—H3107.9C42—C41—C46118.01 (18)
C2—C3—H3107.9C42—C41—C4118.32 (17)
N2—C4—C41113.15 (16)C46—C41—C4123.66 (16)
N2—C4—C5108.19 (14)C43—C42—C41122.0 (2)
C41—C4—C5112.21 (15)C43—C42—H42119.0
N2—C4—H4107.7C41—C42—H42119.0
C41—C4—H4107.7C44—C43—C42117.9 (2)
C5—C4—H4107.7C44—C43—H43121.0
C7—C5—C6108.66 (14)C42—C43—H43121.0
C7—C5—C4106.05 (14)C45—C44—F3118.8 (2)
C6—C5—C4113.94 (15)C45—C44—C43122.6 (2)
C7—C5—H5109.4F3—C44—C43118.6 (2)
C6—C5—H5109.4C44—C45—C46119.0 (2)
C4—C5—H5109.4C44—C45—H45120.5
N1—C6—C61109.65 (16)C46—C45—H45120.5
N1—C6—C5107.95 (15)C45—C46—C41120.48 (19)
C61—C6—C5110.70 (15)C45—C46—H46119.8
N1—C6—H6109.5C41—C46—H46119.8
C61—C6—H6109.5C62—C61—C66117.84 (19)
C5—C6—H6109.5C62—C61—C6121.58 (18)
O1—C7—C2124.21 (18)C66—C61—C6120.48 (18)
O1—C7—C5123.78 (18)C63—C62—C61121.3 (2)
C2—C7—C5111.69 (17)C63—C62—H62119.3
C16—C11—C12117.76 (18)C61—C62—H62119.3
C16—C11—C1122.54 (18)C64—C63—C62118.8 (2)
C12—C11—C1119.69 (19)C64—C63—H63120.6
C13—C12—C11121.3 (2)C62—C63—H63120.6
C13—C12—H12119.3C63—C64—F4118.7 (2)
C11—C12—H12119.3C63—C64—C65122.4 (2)
C14—C13—C12118.5 (2)F4—C64—C65118.9 (2)
C14—C13—H13120.7C64—C65—C66118.3 (2)
C12—C13—H13120.7C64—C65—H65120.8
C15—C14—F1118.8 (2)C66—C65—H65120.8
C15—C14—C13122.4 (2)C65—C66—C61121.2 (2)
F1—C14—C13118.8 (2)C65—C66—H66119.4
C14—C15—C16118.5 (2)C61—C66—H66119.4
C14—C15—H15120.8C6—N1—C1114.91 (15)
C16—C15—H15120.8C6—N1—H2A107.3 (13)
C11—C16—C15121.5 (2)C1—N1—H2A110.8 (13)
C11—C16—H16119.2C4—N2—C3111.62 (15)
C15—C16—H16119.2C4—N2—H1A111.2 (14)
C36—C31—C32117.96 (18)C3—N2—H1A109.6 (14)
C36—C31—C3118.09 (18)
N1—C1—C2—C71.1 (2)C31—C32—C33—C340.6 (3)
C11—C1—C2—C7121.79 (18)C32—C33—C34—F2178.90 (18)
N1—C1—C2—C3117.95 (17)C32—C33—C34—C350.2 (3)
C11—C1—C2—C3121.40 (17)F2—C34—C35—C36179.10 (18)
C7—C2—C3—N261.43 (18)C33—C34—C35—C360.4 (3)
C1—C2—C3—N257.74 (18)C34—C35—C36—C310.3 (3)
C7—C2—C3—C31173.32 (15)C32—C31—C36—C351.1 (3)
C1—C2—C3—C3167.52 (19)C3—C31—C36—C35177.44 (18)
N2—C4—C5—C759.39 (18)N2—C4—C41—C42161.32 (17)
C41—C4—C5—C7175.09 (15)C5—C4—C41—C4275.9 (2)
N2—C4—C5—C660.09 (19)N2—C4—C41—C4619.6 (2)
C41—C4—C5—C665.43 (19)C5—C4—C41—C46103.2 (2)
C7—C5—C6—N13.4 (2)C46—C41—C42—C430.1 (3)
C4—C5—C6—N1114.62 (17)C4—C41—C42—C43179.00 (19)
C7—C5—C6—C61116.65 (18)C41—C42—C43—C440.3 (3)
C4—C5—C6—C61125.36 (17)C42—C43—C44—C450.1 (3)
C1—C2—C7—O1128.28 (19)C42—C43—C44—F3178.32 (19)
C3—C2—C7—O1110.4 (2)F3—C44—C45—C46178.73 (19)
C1—C2—C7—C558.06 (19)C43—C44—C45—C460.3 (3)
C3—C2—C7—C563.24 (18)C44—C45—C46—C410.5 (3)
C6—C5—C7—O1125.73 (19)C42—C41—C46—C450.3 (3)
C4—C5—C7—O1111.4 (2)C4—C41—C46—C45179.37 (19)
C6—C5—C7—C260.57 (19)N1—C6—C61—C6220.6 (3)
C4—C5—C7—C262.32 (17)C5—C6—C61—C6298.4 (2)
N1—C1—C11—C1628.4 (3)N1—C6—C61—C66163.06 (17)
C2—C1—C11—C1691.1 (2)C5—C6—C61—C6677.9 (2)
N1—C1—C11—C12150.81 (19)C66—C61—C62—C630.6 (3)
C2—C1—C11—C1289.7 (2)C6—C61—C62—C63175.7 (2)
C16—C11—C12—C130.6 (3)C61—C62—C63—C640.4 (4)
C1—C11—C12—C13178.6 (2)C62—C63—C64—F4179.1 (2)
C11—C12—C13—C140.4 (4)C62—C63—C64—C651.3 (4)
C12—C13—C14—C151.2 (4)C63—C64—C65—C661.0 (3)
C12—C13—C14—F1178.0 (2)F4—C64—C65—C66179.5 (2)
F1—C14—C15—C16178.3 (2)C64—C65—C66—C610.2 (3)
C13—C14—C15—C160.8 (4)C62—C61—C66—C651.0 (3)
C12—C11—C16—C151.0 (3)C6—C61—C66—C65175.47 (18)
C1—C11—C16—C15178.22 (19)C61—C6—N1—C1179.30 (16)
C14—C15—C16—C110.3 (3)C5—C6—N1—C158.6 (2)
N2—C3—C31—C36159.61 (16)C11—C1—N1—C6176.23 (16)
C2—C3—C31—C3678.5 (2)C2—C1—N1—C661.3 (2)
N2—C3—C31—C3221.9 (2)C41—C4—N2—C3171.16 (15)
C2—C3—C31—C32100.0 (2)C5—C4—N2—C363.87 (18)
C36—C31—C32—C331.3 (3)C31—C3—N2—C4170.94 (14)
C3—C31—C32—C33177.17 (18)C2—C3—N2—C464.88 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···F4i0.932.523.254 (3)136
C3—H3···O1ii0.982.563.358 (2)138
N2—H1A···O1iii0.86 (2)2.53 (2)3.292 (2)148 (3)
N1—H2A···Cg3iv0.89 (2)2.70 (3)3.549 (3)160 (2)
C36—H36···Cg2v0.932.813.696 (3)160
C42—H42···Cg1v0.932.783.651 (3)157
C45—H45···Cg3iii0.932.653.494 (3)151
Symmetry codes: (i) x, y+2, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z; (iv) x, y+1, z; (v) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC31H24F4N2O
Mr516.52
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)37.1521 (9), 7.1458 (5), 26.2165 (7)
β (°) 133.249 (4)
V3)5069.5 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.19 × 0.16 × 0.11
Data collection
DiffractometerNonius MACH-3
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.986, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
5315, 4465, 2735
Rint0.024
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.112, 1.02
No. of reflections4465
No. of parameters351
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.14, 0.23

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), XCAD4 (Harms & Wocadlo, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2003).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···F4i0.932.523.254 (3)136
C3—H3···O1ii0.982.563.358 (2)138
N2—H1A···O1iii0.86 (2)2.53 (2)3.292 (2)148 (3)
N1—H2A···Cg3iv0.89 (2)2.70 (3)3.549 (3)160 (2)
C36—H36···Cg2v0.932.813.696 (3)160
C42—H42···Cg1v0.932.783.651 (3)157
C45—H45···Cg3iii0.932.653.494 (3)151
Symmetry codes: (i) x, y+2, z; (ii) x+1/2, y1/2, z+1/2; (iii) x, y1, z; (iv) x, y+1, z; (v) x+1/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds