Download citation
Download citation
link to html
The asymmetric unit of the title mononuclear NiII compound, [Ni(NCS)2(C8H12N2)2], contains two independent half-mol­ecules, the Ni atoms of which lie on crystallographic inversion centres. Each NiII ion is chelated by two N atoms from two N-phenyl­ethane-1,2-diamine ligands and is also coordinated by two N atoms from two thio­cyanate ligands, giving a distorted octa­hedral geometry. In the crystal, mol­ecules are linked into a two-dimensional network parallel to (100) by N—H...S inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536809055792/ci5008sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536809055792/ci5008Isup2.hkl
Contains datablock I

CCDC reference: 764981

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.037
  • wR factor = 0.080
  • Data-to-parameter ratio = 17.1

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full Low ....... 0.96 PLAT230_ALERT_2_B Hirshfeld Test Diff for S1 -- C17 .. 7.81 su
Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for S2 -- C18 .. 6.36 su PLAT420_ALERT_2_C D-H Without Acceptor N1 - H1A ... ? PLAT420_ALERT_2_C D-H Without Acceptor N1 - H1B ... ? PLAT420_ALERT_2_C D-H Without Acceptor N3 - H3A ... ? PLAT420_ALERT_2_C D-H Without Acceptor N3 - H3B ... ? PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 41 PLAT731_ALERT_1_C Bond Calc 0.89(3), Rep 0.889(10) ...... 3.00 su-Ra N4 -H4A 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.89(3), Rep 0.890(10) ...... 3.00 su-Ra N4 -H4A 1.555 1.555 PLAT736_ALERT_1_C H...A Calc 2.52(3), Rep 2.520(10) ...... 3.00 su-Ra H4A -S1 1.555 1.645 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 115
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2 PLAT154_ALERT_1_G The su's on the Cell Angles are Equal (x 10000) 100 Deg. PLAT793_ALERT_4_G The Model has Chirality at N2 (Verify) .... R PLAT793_ALERT_4_G The Model has Chirality at N4 (Verify) .... S
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 10 ALERT level C = Check and explain 4 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

As part of our investigations into novel urease inhibitors, we have synthesized the title compound, a new NiII complex. There are two independent half-molecules in the asymmetric unit. Each Ni atom lies on an inversion centre and is chelated by two N atoms from two N-phenylethane-1,2-diamine ligands, and coordinated by two N atoms from two thiocyanate ligands (Fig. 1). While the three trans angles at each Ni centre are 180° by symmetry, the other angles are close to 90° [81.54 (8)°–98.46 (8)°], indicating a slightly distorted octahedral coordination. The Ni—N bond lengths (Table 1) are typical and are comparable with those observed in other similar nickel(II) complexes (Lever et al., 1983; Brown & Lingafelter, 1963; Sanni et al., 1987).

Related literature top

For related structures, see: Lever et al. (1983); Brown & Lingafelter (1963); Sanni et al. (1987).

Experimental top

N-Phenylethane-1,2-diamine (0.2 mmol, 27.2 mg), ammonium thiocyanate (0.2 mmol, 15.2 mg), and Ni(CH3COO)2.4H2O (0.1 mmol, 24.9 mg) were mixed in a MeOH solution with stirring for 30 min at room temperature. After keeping the filtrate in air for five days, green block-shaped crystals were formed at the bottom of the vessel.

Refinement top

Atoms H2 and H4A were located in a difference Fourier map and refined isotropically, with N-H distances restrained to 0.90 (1) Å. Other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H distances in the range 0.93–0.97 Å, N–H distances of 0.90 Å, and with Uiso(H) set at 1.2Ueq(C,N).

Structure description top

As part of our investigations into novel urease inhibitors, we have synthesized the title compound, a new NiII complex. There are two independent half-molecules in the asymmetric unit. Each Ni atom lies on an inversion centre and is chelated by two N atoms from two N-phenylethane-1,2-diamine ligands, and coordinated by two N atoms from two thiocyanate ligands (Fig. 1). While the three trans angles at each Ni centre are 180° by symmetry, the other angles are close to 90° [81.54 (8)°–98.46 (8)°], indicating a slightly distorted octahedral coordination. The Ni—N bond lengths (Table 1) are typical and are comparable with those observed in other similar nickel(II) complexes (Lever et al., 1983; Brown & Lingafelter, 1963; Sanni et al., 1987).

For related structures, see: Lever et al. (1983); Brown & Lingafelter (1963); Sanni et al. (1987).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the two independent half-molecules in the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Unlabelled atoms in the molecule containing Ni1 are at the symmetry position (-x, 2 - y, -z) and those in the other molecule are at (2 -x, 1 - y, 1 -z).
Bis(N-phenylethane-1,2-diamine)dithiocyanatonickel(II) top
Crystal data top
[Ni(NCS)2(C8H12N2)2]Z = 2
Mr = 447.26F(000) = 468
Triclinic, P1Dx = 1.438 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9947 (2) ÅCell parameters from 1847 reflections
b = 9.4708 (3) Åθ = 2.5–25.0°
c = 13.8044 (3) ŵ = 1.16 mm1
α = 93.045 (1)°T = 298 K
β = 98.258 (1)°Block, green
γ = 90.934 (1)°0.18 × 0.17 × 0.17 mm
V = 1032.62 (5) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4314 independent reflections
Radiation source: fine-focus sealed tube3284 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scanθmax = 27.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.819, Tmax = 0.828k = 128
6197 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0256P)2 + 0.3717P]
where P = (Fo2 + 2Fc2)/3
4314 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.31 e Å3
2 restraintsΔρmin = 0.26 e Å3
Crystal data top
[Ni(NCS)2(C8H12N2)2]γ = 90.934 (1)°
Mr = 447.26V = 1032.62 (5) Å3
Triclinic, P1Z = 2
a = 7.9947 (2) ÅMo Kα radiation
b = 9.4708 (3) ŵ = 1.16 mm1
c = 13.8044 (3) ÅT = 298 K
α = 93.045 (1)°0.18 × 0.17 × 0.17 mm
β = 98.258 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4314 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3284 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 0.828Rint = 0.018
6197 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.080H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.31 e Å3
4314 reflectionsΔρmin = 0.26 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.00001.00000.00000.03175 (12)
Ni21.00000.50000.50000.03243 (12)
S10.21085 (10)1.40198 (7)0.20456 (5)0.0487 (2)
S21.28479 (10)0.83224 (9)0.32626 (6)0.0600 (2)
N10.2337 (3)0.9430 (2)0.04011 (16)0.0424 (5)
H1A0.21880.90220.10120.051*
H1B0.30091.02040.03920.051*
N20.0504 (3)0.8295 (2)0.09707 (15)0.0348 (5)
N31.2463 (3)0.4484 (2)0.56125 (16)0.0444 (6)
H3A1.31390.52630.56820.053*
H3B1.24480.41470.62090.053*
N41.0325 (3)0.3174 (2)0.40317 (16)0.0372 (5)
N50.1256 (3)1.1389 (2)0.10846 (17)0.0460 (6)
N61.1013 (3)0.6271 (2)0.40688 (16)0.0435 (6)
C10.3124 (3)0.8433 (3)0.0301 (2)0.0452 (7)
H1C0.36640.89470.08930.054*
H1D0.39790.79020.00170.054*
C20.1773 (3)0.7435 (3)0.0544 (2)0.0411 (6)
H2A0.12470.69040.00440.049*
H2B0.22650.67720.10100.049*
C30.0938 (3)0.7571 (2)0.12332 (18)0.0345 (6)
C40.1649 (3)0.6357 (3)0.0722 (2)0.0419 (6)
H40.11590.59530.02050.050*
C50.3091 (4)0.5748 (3)0.0985 (2)0.0514 (8)
H50.35630.49330.06400.062*
C60.3842 (4)0.6325 (3)0.1746 (2)0.0541 (8)
H60.48110.59060.19160.065*
C70.3129 (4)0.7538 (3)0.2254 (2)0.0498 (7)
H70.36270.79410.27680.060*
C80.1695 (3)0.8152 (3)0.2006 (2)0.0427 (6)
H80.12240.89630.23560.051*
C91.3121 (3)0.3404 (3)0.4961 (2)0.0501 (7)
H9A1.40420.29120.53250.060*
H9B1.35460.38510.44260.060*
C101.1697 (3)0.2371 (3)0.4563 (2)0.0486 (7)
H10A1.20890.16570.41240.058*
H10B1.12930.19020.50960.058*
C110.8788 (3)0.2437 (3)0.36351 (19)0.0369 (6)
C120.8105 (4)0.1359 (3)0.4109 (2)0.0448 (7)
H120.87160.10110.46670.054*
C130.6509 (4)0.0801 (3)0.3749 (2)0.0532 (8)
H130.60590.00800.40710.064*
C140.5582 (4)0.1295 (3)0.2925 (2)0.0551 (8)
H140.45050.09230.26970.066*
C150.6271 (4)0.2353 (3)0.2438 (2)0.0492 (7)
H150.56630.26860.18740.059*
C160.7864 (3)0.2914 (3)0.2791 (2)0.0428 (6)
H160.83210.36210.24590.051*
C170.1622 (3)1.2472 (3)0.14957 (18)0.0353 (6)
C181.1772 (3)0.7109 (3)0.37193 (18)0.0372 (6)
H20.104 (4)0.874 (3)0.1524 (14)0.080*
H4A1.076 (4)0.353 (3)0.3537 (17)0.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0354 (3)0.0256 (2)0.0348 (3)0.00085 (18)0.00618 (19)0.00362 (18)
Ni20.0350 (3)0.0293 (2)0.0333 (3)0.00465 (19)0.00483 (19)0.00667 (19)
S10.0621 (5)0.0367 (4)0.0477 (4)0.0126 (3)0.0130 (4)0.0036 (3)
S20.0544 (5)0.0756 (6)0.0502 (5)0.0305 (4)0.0059 (4)0.0199 (4)
N10.0442 (13)0.0376 (12)0.0484 (14)0.0029 (10)0.0135 (11)0.0114 (10)
N20.0373 (12)0.0311 (11)0.0371 (13)0.0011 (9)0.0079 (10)0.0054 (9)
N30.0426 (13)0.0445 (13)0.0439 (14)0.0035 (10)0.0003 (10)0.0028 (11)
N40.0372 (12)0.0370 (12)0.0374 (13)0.0042 (10)0.0050 (10)0.0053 (10)
N50.0558 (15)0.0365 (13)0.0436 (14)0.0056 (11)0.0019 (11)0.0002 (11)
N60.0518 (15)0.0391 (13)0.0415 (13)0.0066 (11)0.0126 (11)0.0075 (10)
C10.0382 (16)0.0445 (16)0.0552 (18)0.0092 (12)0.0096 (13)0.0145 (13)
C20.0434 (16)0.0325 (14)0.0494 (17)0.0092 (12)0.0090 (13)0.0120 (12)
C30.0353 (14)0.0312 (13)0.0375 (14)0.0001 (11)0.0026 (11)0.0132 (11)
C40.0494 (17)0.0345 (14)0.0419 (16)0.0006 (12)0.0049 (13)0.0080 (12)
C50.0481 (18)0.0373 (16)0.067 (2)0.0073 (13)0.0003 (15)0.0110 (14)
C60.0368 (16)0.0563 (19)0.071 (2)0.0027 (14)0.0066 (15)0.0288 (17)
C70.0505 (18)0.0519 (18)0.0511 (18)0.0062 (14)0.0161 (14)0.0153 (14)
C80.0485 (17)0.0408 (15)0.0411 (16)0.0003 (12)0.0124 (13)0.0089 (12)
C90.0384 (16)0.0549 (18)0.0569 (19)0.0059 (13)0.0047 (14)0.0046 (15)
C100.0473 (17)0.0423 (16)0.0556 (19)0.0067 (13)0.0061 (14)0.0004 (14)
C110.0413 (15)0.0308 (13)0.0386 (15)0.0011 (11)0.0084 (12)0.0030 (11)
C120.0545 (18)0.0361 (15)0.0440 (16)0.0061 (13)0.0080 (13)0.0040 (12)
C130.061 (2)0.0409 (16)0.059 (2)0.0167 (14)0.0143 (16)0.0009 (14)
C140.0462 (18)0.0518 (18)0.065 (2)0.0127 (14)0.0053 (15)0.0053 (16)
C150.0478 (18)0.0529 (18)0.0453 (17)0.0017 (14)0.0027 (13)0.0008 (14)
C160.0440 (16)0.0426 (15)0.0422 (16)0.0039 (12)0.0070 (13)0.0059 (12)
C170.0330 (14)0.0420 (15)0.0318 (14)0.0013 (11)0.0054 (11)0.0091 (12)
C180.0376 (15)0.0402 (15)0.0335 (14)0.0013 (12)0.0048 (11)0.0014 (11)
Geometric parameters (Å, º) top
Ni1—N52.073 (2)C1—H1D0.97
Ni1—N5i2.073 (2)C2—H2A0.97
Ni1—N1i2.094 (2)C2—H2B0.97
Ni1—N12.094 (2)C3—C41.386 (3)
Ni1—N2i2.159 (2)C3—C81.393 (4)
Ni1—N22.159 (2)C4—C51.384 (4)
Ni2—N6ii2.047 (2)C4—H40.93
Ni2—N62.047 (2)C5—C61.376 (4)
Ni2—N3ii2.104 (2)C5—H50.93
Ni2—N32.104 (2)C6—C71.384 (4)
Ni2—N4ii2.171 (2)C6—H60.93
Ni2—N42.171 (2)C7—C81.372 (4)
S1—C171.629 (3)C7—H70.93
S2—C181.630 (3)C8—H80.93
N1—C11.473 (3)C9—C101.511 (4)
N1—H1A0.90C9—H9A0.97
N1—H1B0.90C9—H9B0.97
N2—C31.432 (3)C10—H10A0.97
N2—C21.479 (3)C10—H10B0.97
N2—H20.898 (10)C11—C121.387 (3)
N3—C91.479 (3)C11—C161.388 (4)
N3—H3A0.90C12—C131.386 (4)
N3—H3B0.90C12—H120.93
N4—C111.426 (3)C13—C141.374 (4)
N4—C101.475 (3)C13—H130.93
N4—H4A0.889 (10)C14—C151.386 (4)
N5—C171.158 (3)C14—H140.93
N6—C181.158 (3)C15—C161.383 (4)
C1—C21.508 (3)C15—H150.93
C1—H1C0.97C16—H160.93
N5—Ni1—N5i180N1—C1—H1D109.9
N5—Ni1—N1i90.87 (9)C2—C1—H1D109.9
N5i—Ni1—N1i89.13 (9)H1C—C1—H1D108.3
N5—Ni1—N189.13 (9)N2—C2—C1107.7 (2)
N5i—Ni1—N190.87 (9)N2—C2—H2A110.2
N1i—Ni1—N1180C1—C2—H2A110.2
N5—Ni1—N2i90.77 (8)N2—C2—H2B110.2
N5i—Ni1—N2i89.23 (8)C1—C2—H2B110.2
N1i—Ni1—N2i82.40 (8)H2A—C2—H2B108.5
N1—Ni1—N2i97.60 (8)C4—C3—C8119.0 (2)
N5—Ni1—N289.23 (8)C4—C3—N2122.6 (2)
N5i—Ni1—N290.77 (8)C8—C3—N2118.3 (2)
N1i—Ni1—N297.60 (8)C5—C4—C3119.6 (3)
N1—Ni1—N282.40 (8)C5—C4—H4120.2
N2i—Ni1—N2180C3—C4—H4120.2
N6ii—Ni2—N6180C6—C5—C4121.3 (3)
N6ii—Ni2—N3ii89.13 (9)C6—C5—H5119.3
N6—Ni2—N3ii90.87 (9)C4—C5—H5119.3
N6ii—Ni2—N390.87 (9)C5—C6—C7118.8 (3)
N6—Ni2—N389.13 (9)C5—C6—H6120.6
N3ii—Ni2—N3180C7—C6—H6120.6
N6ii—Ni2—N4ii89.54 (8)C8—C7—C6120.6 (3)
N6—Ni2—N4ii90.46 (8)C8—C7—H7119.7
N3ii—Ni2—N4ii81.54 (8)C6—C7—H7119.7
N3—Ni2—N4ii98.46 (8)C7—C8—C3120.6 (3)
N6ii—Ni2—N490.46 (8)C7—C8—H8119.7
N6—Ni2—N489.54 (8)C3—C8—H8119.7
N3ii—Ni2—N498.46 (8)N3—C9—C10108.3 (2)
N3—Ni2—N481.54 (8)N3—C9—H9A110.0
N4ii—Ni2—N4180C10—C9—H9A110.0
C1—N1—Ni1108.38 (16)N3—C9—H9B110.0
C1—N1—H1A110.0C10—C9—H9B110.0
Ni1—N1—H1A110.0H9A—C9—H9B108.4
C1—N1—H1B110.0N4—C10—C9107.8 (2)
Ni1—N1—H1B110.0N4—C10—H10A110.1
H1A—N1—H1B108.4C9—C10—H10A110.1
C3—N2—C2117.70 (19)N4—C10—H10B110.1
C3—N2—Ni1116.59 (15)C9—C10—H10B110.1
C2—N2—Ni1104.74 (15)H10A—C10—H10B108.5
C3—N2—H2107 (2)C12—C11—C16118.8 (2)
C2—N2—H2107 (2)C12—C11—N4122.6 (2)
Ni1—N2—H2103 (2)C16—C11—N4118.2 (2)
C9—N3—Ni2109.24 (16)C13—C12—C11119.9 (3)
C9—N3—H3A109.8C13—C12—H12120.1
Ni2—N3—H3A109.8C11—C12—H12120.1
C9—N3—H3B109.8C14—C13—C12121.2 (3)
Ni2—N3—H3B109.8C14—C13—H13119.4
H3A—N3—H3B108.3C12—C13—H13119.4
C11—N4—C10118.3 (2)C13—C14—C15119.2 (3)
C11—N4—Ni2114.31 (16)C13—C14—H14120.4
C10—N4—Ni2105.40 (16)C15—C14—H14120.4
C11—N4—H4A108 (2)C16—C15—C14120.0 (3)
C10—N4—H4A105 (2)C16—C15—H15120.0
Ni2—N4—H4A104 (2)C14—C15—H15120.0
C17—N5—Ni1156.7 (2)C15—C16—C11120.9 (3)
C18—N6—Ni2165.9 (2)C15—C16—H16119.6
N1—C1—C2108.8 (2)C11—C16—H16119.6
N1—C1—H1C109.9N5—C17—S1178.3 (3)
C2—C1—H1C109.9N6—C18—S2178.0 (2)
Symmetry codes: (i) x, y+2, z; (ii) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···S1iii0.89 (1)2.52 (1)3.393 (2)168 (3)
N2—H2···S2iv0.90 (1)2.67 (2)3.436 (2)144 (3)
Symmetry codes: (iii) x+1, y1, z; (iv) x1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(NCS)2(C8H12N2)2]
Mr447.26
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)7.9947 (2), 9.4708 (3), 13.8044 (3)
α, β, γ (°)93.045 (1), 98.258 (1), 90.934 (1)
V3)1032.62 (5)
Z2
Radiation typeMo Kα
µ (mm1)1.16
Crystal size (mm)0.18 × 0.17 × 0.17
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.819, 0.828
No. of measured, independent and
observed [I > 2σ(I)] reflections
6197, 4314, 3284
Rint0.018
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.080, 1.03
No. of reflections4314
No. of parameters253
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.31, 0.26

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Ni1—N52.073 (2)Ni2—N62.047 (2)
Ni1—N12.094 (2)Ni2—N32.104 (2)
Ni1—N22.159 (2)Ni2—N42.171 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4A···S1i0.89 (1)2.52 (1)3.393 (2)168 (3)
N2—H2···S2ii0.90 (1)2.67 (2)3.436 (2)144 (3)
Symmetry codes: (i) x+1, y1, z; (ii) x1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds