Download citation
Download citation
link to html
In the centrosymmetric mononuclear title complex, [Co(C8H7O2)2(C10H14N2O)2(H2O)2], the CoII ion is located on an inversion center. The asymmetric unit contains one 4-methyl­benzoate (PMB) anion, one N,N-diethyl­nicotinamide (DENA) ligand and one coordinated water mol­ecule. The four O atoms in the equatorial plane around the CoII ion form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination is completed by the two pyridine N atoms of the DENA ligands in the axial positions. The dihedral angle between the carboxyl­ate group and the attached benzene ring is 3.73 (14)°, while the pyridine and benzene rings are oriented at a dihedral angle of 77.28 (6)°. In the crystal structure, inter­molecular O—H...O and C—H...O hydrogen bonds link the mol­ecules into a two-dimensional network parallel to (001). The structure is further stabilized by π–π contacts between the pyridine rings [centroid–centroid distance = 3.544 (1) Å] and weak C—H...π inter­actions involving the benzene ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810013954/ci5076sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536810013954/ci5076Isup2.hkl
Contains datablock I

CCDC reference: 777878

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.038
  • wR factor = 0.090
  • Data-to-parameter ratio = 19.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT222_ALERT_3_C Large Non-Solvent H Ueq(max)/Ueq(min) ... 3.33 Ratio PLAT432_ALERT_2_C Short Inter X...Y Contact O3 .. C9 .. 2.99 Ang. PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 3 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 81
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title complex, (I), is a crystallographically centrosymmetric mononuclear complex, consisting of two N,N-diethylnicotinamide (DENA) and two 4-methylbenzoate (PMB) ligands and two coordinated water molecules; the CoII ion lies on the centre of inversion (Fig. 1). The crystal structures of similar complexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H5O2)2(C10H14N2O)2], (II) (Hökelek et al., 1996), [Co(C6H6N2O)2(C7H4NO4)2(H2O)2], (III) (Hökelek & Necefoğlu, 1998), [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2], (IV) (Hökelek et al., 2009a), [Ni(C8H7O2)2(C6H6N2O)2(H2O)2], (V) (Necefoğlu et al., 2010), [Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2], (VI) (Hökelek et al., 2009b) and [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2], (VII) (Hökelek et al., 2009c) have also been reported. In (II), the two benzoate ions are coordinated to the CuII atom as bidentate ligands, while in the other structures all ligands are monodentate.

All ligands are monodentate in (I). The four O atoms (O2, O4, and the symmetry-related atoms O2', O4') in the equatorial plane around the CoII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the pyridine N atoms of two DENA ligands (N1, N1') in the axial positions (Fig. 1). The near equality of the C1—O1 [1.257 (2) Å] and C1—O2 [1.266 (2) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds. The average Co—O bond length is 2.1047 (12) Å (Table 1), and the Co1 atom is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by 0.8823 (1) Å. The dihedral angle between the planar carboxylate group and the benzene ring A (C2—C7) is 3.73 (14)°, while that between rings A and B (N1/C9—C13) is 77.28 (6)°.

In the crystal structure, intermolecular O—H···O and C—H···O hydrogen bonds (Table 2) link the molecules into a two-dimensional network parallel to the (001). The ππ contact between the pyridine rings (N1/C9—C13) at (x, y, z) and (1-x, -1-y, -z) [centroid-centroid distance = 3.544 (1) Å] further stabilize the structure. A weak C—H···π interaction involving the benzene ring is also observed (Table 2).

Related literature top

For niacin, see: Krishnamachari (1974), and for the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (1996, 2009a,b,c); Hökelek & Necefoğlu (1998); Necefoğlu et al. (2010).

Experimental top

The title compound was prepared by the reaction of CoSO4.7H2O (1.41 g, 5 mmol) in H2O (40 ml) and DENA (1.78 g, 10 mmol) in H2O (10 ml) with sodium 4-methylbenzoate (1.58 g, 10 mmol) in H2O (300 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving pink single crystals.

Refinement top

Water H atoms (H41 and H42) were located in a difference Fourier map and refined with O–H and H···H distance restraints of 0.95 (2) Å and 1.46 (4) Å, respectively. The remaining H atoms were positioned geometrically with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Structure description top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title complex, (I), is a crystallographically centrosymmetric mononuclear complex, consisting of two N,N-diethylnicotinamide (DENA) and two 4-methylbenzoate (PMB) ligands and two coordinated water molecules; the CoII ion lies on the centre of inversion (Fig. 1). The crystal structures of similar complexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H5O2)2(C10H14N2O)2], (II) (Hökelek et al., 1996), [Co(C6H6N2O)2(C7H4NO4)2(H2O)2], (III) (Hökelek & Necefoğlu, 1998), [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2], (IV) (Hökelek et al., 2009a), [Ni(C8H7O2)2(C6H6N2O)2(H2O)2], (V) (Necefoğlu et al., 2010), [Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2], (VI) (Hökelek et al., 2009b) and [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2], (VII) (Hökelek et al., 2009c) have also been reported. In (II), the two benzoate ions are coordinated to the CuII atom as bidentate ligands, while in the other structures all ligands are monodentate.

All ligands are monodentate in (I). The four O atoms (O2, O4, and the symmetry-related atoms O2', O4') in the equatorial plane around the CoII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the pyridine N atoms of two DENA ligands (N1, N1') in the axial positions (Fig. 1). The near equality of the C1—O1 [1.257 (2) Å] and C1—O2 [1.266 (2) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds. The average Co—O bond length is 2.1047 (12) Å (Table 1), and the Co1 atom is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by 0.8823 (1) Å. The dihedral angle between the planar carboxylate group and the benzene ring A (C2—C7) is 3.73 (14)°, while that between rings A and B (N1/C9—C13) is 77.28 (6)°.

In the crystal structure, intermolecular O—H···O and C—H···O hydrogen bonds (Table 2) link the molecules into a two-dimensional network parallel to the (001). The ππ contact between the pyridine rings (N1/C9—C13) at (x, y, z) and (1-x, -1-y, -z) [centroid-centroid distance = 3.544 (1) Å] further stabilize the structure. A weak C—H···π interaction involving the benzene ring is also observed (Table 2).

For niacin, see: Krishnamachari (1974), and for the nicotinic acid derivative N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (1996, 2009a,b,c); Hökelek & Necefoğlu (1998); Necefoğlu et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Primed atoms are generated by the symmetry operator:(') -x, -y, -z.
Diaquabis(N,N-diethylnicotinamide-κN1)bis(4- methylbenzoato-κO)cobalt(II) top
Crystal data top
[Co(C8H7O2)2(C10H14N2O)2(H2O)2]Z = 1
Mr = 721.70F(000) = 381
Triclinic, P1Dx = 1.334 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2791 (2) ÅCell parameters from 7347 reflections
b = 8.5453 (2) Åθ = 2.6–28.3°
c = 16.0438 (4) ŵ = 0.53 mm1
α = 84.090 (3)°T = 100 K
β = 77.583 (3)°Block, pink
γ = 67.271 (2)°0.35 × 0.25 × 0.15 mm
V = 898.71 (4) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4484 independent reflections
Radiation source: fine-focus sealed tube3821 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
φ and ω scansθmax = 28.5°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.852, Tmax = 0.922k = 1111
15243 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0314P)2 + 0.8168P]
where P = (Fo2 + 2Fc2)/3
4484 reflections(Δ/σ)max = 0.001
234 parametersΔρmax = 0.86 e Å3
3 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Co(C8H7O2)2(C10H14N2O)2(H2O)2]γ = 67.271 (2)°
Mr = 721.70V = 898.71 (4) Å3
Triclinic, P1Z = 1
a = 7.2791 (2) ÅMo Kα radiation
b = 8.5453 (2) ŵ = 0.53 mm1
c = 16.0438 (4) ÅT = 100 K
α = 84.090 (3)°0.35 × 0.25 × 0.15 mm
β = 77.583 (3)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
4484 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3821 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 0.922Rint = 0.025
15243 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0383 restraints
wR(F2) = 0.090H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.86 e Å3
4484 reflectionsΔρmin = 0.55 e Å3
234 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.00000.00000.00000.01216 (9)
O10.07573 (18)0.12790 (16)0.20025 (8)0.0182 (3)
O20.11412 (18)0.12158 (15)0.10611 (7)0.0152 (2)
O30.84302 (19)0.32653 (16)0.12244 (8)0.0190 (3)
O40.22201 (18)0.01547 (16)0.06192 (8)0.0164 (3)
H410.191 (4)0.036 (3)0.1190 (12)0.058 (9)*
H420.211 (4)0.117 (2)0.0762 (16)0.046 (8)*
N10.2241 (2)0.23699 (18)0.04865 (9)0.0138 (3)
N20.8480 (2)0.42543 (18)0.24793 (9)0.0170 (3)
C10.0833 (3)0.1274 (2)0.18126 (11)0.0142 (3)
C20.2508 (3)0.1341 (2)0.25355 (11)0.0148 (3)
C30.2310 (3)0.1313 (2)0.33787 (11)0.0168 (3)
H30.11610.12120.34920.020*
C40.3813 (3)0.1434 (2)0.40496 (11)0.0189 (4)
H40.36550.14250.46090.023*
C50.5557 (3)0.1569 (2)0.38953 (11)0.0191 (4)
C60.5781 (3)0.1543 (2)0.30536 (12)0.0192 (4)
H60.69520.16030.29400.023*
C70.4276 (3)0.1429 (2)0.23807 (11)0.0165 (3)
H70.44500.14110.18220.020*
C80.7177 (3)0.1732 (3)0.46257 (13)0.0298 (5)
H8A0.72310.11170.51040.045*
H8B0.84680.12750.44510.045*
H8C0.68610.29070.47860.045*
C90.1932 (3)0.3834 (2)0.03785 (11)0.0146 (3)
H90.07000.38310.00630.018*
C100.3371 (3)0.5349 (2)0.07173 (11)0.0162 (3)
H100.31020.63390.06310.019*
C110.5216 (3)0.5369 (2)0.11857 (11)0.0157 (3)
H110.62000.63660.14260.019*
C120.5562 (3)0.3860 (2)0.12890 (10)0.0138 (3)
C130.4048 (3)0.2405 (2)0.09221 (11)0.0146 (3)
H130.42970.14070.09810.018*
C140.7599 (3)0.3773 (2)0.16750 (11)0.0147 (3)
C150.7528 (3)0.4745 (2)0.30709 (11)0.0203 (4)
H15A0.62290.47620.27690.024*
H15B0.83770.58860.32610.024*
C160.7198 (4)0.3567 (3)0.38450 (15)0.0397 (6)
H16A0.65550.39430.42030.060*
H16B0.84820.35750.41600.060*
H16C0.63480.24350.36630.060*
C171.0549 (3)0.4277 (2)0.27880 (12)0.0211 (4)
H17A1.11830.50040.32780.025*
H17B1.13370.47690.23440.025*
C181.0623 (3)0.2529 (3)0.30397 (14)0.0289 (5)
H18A1.20090.26340.32260.043*
H18B1.00140.18030.25560.043*
H18C0.98910.20500.34950.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01068 (16)0.01085 (16)0.01383 (17)0.00297 (12)0.00131 (12)0.00186 (12)
O10.0155 (6)0.0201 (6)0.0191 (6)0.0067 (5)0.0040 (5)0.0007 (5)
O20.0162 (6)0.0136 (6)0.0154 (6)0.0054 (5)0.0021 (5)0.0013 (4)
O30.0168 (6)0.0199 (6)0.0224 (7)0.0086 (5)0.0028 (5)0.0044 (5)
O40.0148 (6)0.0155 (6)0.0200 (6)0.0065 (5)0.0032 (5)0.0023 (5)
N10.0125 (7)0.0129 (7)0.0156 (7)0.0041 (6)0.0029 (5)0.0011 (5)
N20.0163 (7)0.0158 (7)0.0183 (7)0.0067 (6)0.0004 (6)0.0028 (6)
C10.0150 (8)0.0073 (7)0.0173 (8)0.0013 (6)0.0024 (7)0.0008 (6)
C20.0158 (8)0.0100 (8)0.0166 (8)0.0030 (6)0.0023 (7)0.0013 (6)
C30.0160 (8)0.0154 (8)0.0181 (8)0.0046 (7)0.0036 (7)0.0013 (6)
C40.0208 (9)0.0194 (9)0.0149 (8)0.0056 (7)0.0030 (7)0.0016 (7)
C50.0181 (9)0.0192 (9)0.0182 (9)0.0071 (7)0.0008 (7)0.0014 (7)
C60.0170 (8)0.0195 (9)0.0219 (9)0.0076 (7)0.0029 (7)0.0023 (7)
C70.0171 (8)0.0150 (8)0.0164 (8)0.0045 (7)0.0041 (7)0.0013 (6)
C80.0252 (10)0.0423 (13)0.0219 (10)0.0159 (10)0.0025 (8)0.0027 (9)
C90.0125 (8)0.0154 (8)0.0161 (8)0.0056 (7)0.0025 (6)0.0001 (6)
C100.0172 (8)0.0125 (8)0.0203 (9)0.0065 (7)0.0041 (7)0.0010 (6)
C110.0153 (8)0.0125 (8)0.0172 (8)0.0028 (7)0.0025 (7)0.0024 (6)
C120.0134 (8)0.0145 (8)0.0137 (8)0.0054 (7)0.0028 (6)0.0001 (6)
C130.0147 (8)0.0128 (8)0.0171 (8)0.0058 (7)0.0032 (7)0.0002 (6)
C140.0139 (8)0.0095 (7)0.0194 (8)0.0031 (6)0.0027 (7)0.0001 (6)
C150.0228 (9)0.0198 (9)0.0177 (9)0.0075 (8)0.0019 (7)0.0034 (7)
C160.0536 (15)0.0448 (14)0.0296 (12)0.0251 (12)0.0195 (11)0.0120 (10)
C170.0173 (9)0.0182 (9)0.0242 (9)0.0063 (7)0.0048 (7)0.0047 (7)
C180.0288 (11)0.0219 (10)0.0342 (11)0.0136 (9)0.0065 (9)0.0028 (8)
Geometric parameters (Å, º) top
Co1—O22.0885 (12)C7—C61.388 (2)
Co1—O2i2.0885 (12)C7—H70.93
Co1—O42.1209 (12)C8—H8A0.96
Co1—O4i2.1209 (12)C8—H8B0.96
Co1—N12.1439 (14)C8—H8C0.96
Co1—N1i2.1439 (14)C9—C101.386 (2)
O1—C11.257 (2)C9—H90.93
O2—C11.266 (2)C10—H100.93
O3—C141.238 (2)C11—C101.385 (2)
O4—H410.996 (15)C11—H110.93
O4—H420.889 (16)C12—C111.394 (2)
N1—C91.342 (2)C12—C131.385 (2)
N1—C131.341 (2)C12—C141.506 (2)
N2—C141.340 (2)C13—H130.93
N2—C151.465 (2)C15—C161.516 (3)
N2—C171.474 (2)C15—H15A0.97
C1—C21.505 (2)C15—H15B0.97
C2—C31.394 (2)C16—H16A0.96
C3—H30.93C16—H16B0.96
C4—C31.387 (2)C16—H16C0.96
C4—C51.393 (3)C17—C181.525 (3)
C4—H40.93C17—H17A0.97
C5—C81.511 (3)C17—H17B0.97
C6—C51.392 (3)C18—H18A0.96
C6—H60.93C18—H18B0.96
C7—C21.393 (2)C18—H18C0.96
O2i—Co1—O2180.00 (5)C5—C8—H8B109.5
O2—Co1—O488.07 (5)C5—C8—H8C109.5
O2i—Co1—O491.93 (5)H8A—C8—H8B109.5
O2—Co1—O4i91.93 (5)H8A—C8—H8C109.5
O2i—Co1—O4i88.07 (5)H8B—C8—H8C109.5
O2—Co1—N188.47 (5)N1—C9—C10122.83 (15)
O2i—Co1—N191.53 (5)N1—C9—H9118.6
O2—Co1—N1i91.53 (5)C10—C9—H9118.6
O2i—Co1—N1i88.47 (5)C9—C10—H10120.5
O4—Co1—O4i180.00 (8)C11—C10—C9119.08 (16)
O4—Co1—N186.58 (5)C11—C10—H10120.5
O4i—Co1—N193.42 (5)C10—C11—C12118.47 (15)
O4—Co1—N1i93.42 (5)C10—C11—H11120.8
O4i—Co1—N1i86.58 (5)C12—C11—H11120.8
N1i—Co1—N1180.00 (8)C11—C12—C14123.16 (15)
C1—O2—Co1126.53 (11)C13—C12—C11118.72 (15)
Co1—O4—H41101.8 (17)C13—C12—C14117.57 (15)
Co1—O4—H42118.7 (18)N1—C13—C12123.04 (16)
H41—O4—H42101 (2)N1—C13—H13118.5
C9—N1—Co1123.36 (11)C12—C13—H13118.5
C13—N1—Co1118.83 (11)O3—C14—N2121.55 (16)
C13—N1—C9117.81 (14)O3—C14—C12118.01 (15)
C14—N2—C15124.66 (15)N2—C14—C12120.44 (15)
C14—N2—C17117.31 (15)N2—C15—C16113.39 (16)
C15—N2—C17118.03 (14)N2—C15—H15A108.9
O1—C1—O2125.19 (16)N2—C15—H15B108.9
O1—C1—C2117.52 (15)C16—C15—H15A108.9
O2—C1—C2117.30 (15)C16—C15—H15B108.9
C3—C2—C1120.15 (16)H15A—C15—H15B107.7
C7—C2—C1121.17 (15)C15—C16—H16A109.5
C7—C2—C3118.67 (16)C15—C16—H16B109.5
C2—C3—H3119.7C15—C16—H16C109.5
C4—C3—C2120.57 (17)H16A—C16—H16B109.5
C4—C3—H3119.7H16A—C16—H16C109.5
C3—C4—C5120.76 (17)H16B—C16—H16C109.5
C3—C4—H4119.6N2—C17—C18113.83 (15)
C5—C4—H4119.6N2—C17—H17A108.8
C4—C5—C8120.76 (17)N2—C17—H17B108.8
C6—C5—C4118.59 (16)C18—C17—H17A108.8
C6—C5—C8120.65 (17)C18—C17—H17B108.8
C5—C6—H6119.6H17A—C17—H17B107.7
C7—C6—C5120.79 (17)C17—C18—H18A109.5
C7—C6—H6119.6C17—C18—H18B109.5
C2—C7—H7119.7C17—C18—H18C109.5
C6—C7—C2120.57 (16)H18A—C18—H18B109.5
C6—C7—H7119.7H18A—C18—H18C109.5
C5—C8—H8A109.5H18B—C18—H18C109.5
O4—Co1—O2—C1163.36 (13)C15—N2—C17—C18100.98 (19)
O4i—Co1—O2—C116.64 (13)O1—C1—C2—C7176.64 (15)
N1—Co1—O2—C176.73 (13)O2—C1—C2—C73.4 (2)
N1i—Co1—O2—C1103.27 (13)O1—C1—C2—C33.4 (2)
O2—Co1—N1—C9147.01 (13)O2—C1—C2—C3176.48 (15)
O2i—Co1—N1—C932.99 (13)C1—C2—C3—C4177.72 (15)
O4—Co1—N1—C9124.83 (13)C7—C2—C3—C42.4 (3)
O4i—Co1—N1—C955.17 (13)C5—C4—C3—C20.6 (3)
O2—Co1—N1—C1332.98 (13)C3—C4—C5—C61.3 (3)
O2i—Co1—N1—C13147.02 (13)C3—C4—C5—C8178.90 (18)
O4—Co1—N1—C1355.18 (13)C7—C6—C5—C41.6 (3)
O4i—Co1—N1—C13124.82 (13)C7—C6—C5—C8178.64 (18)
Co1—O2—C1—O131.7 (2)C6—C7—C2—C1177.98 (16)
Co1—O2—C1—C2148.20 (11)C6—C7—C2—C32.1 (2)
Co1—N1—C9—C10178.06 (12)C2—C7—C6—C50.1 (3)
C13—N1—C9—C101.9 (2)N1—C9—C10—C110.3 (3)
Co1—N1—C13—C12177.42 (13)C12—C11—C10—C90.8 (3)
C9—N1—C13—C122.6 (2)C13—C12—C11—C100.2 (2)
C15—N2—C14—O3175.13 (16)C14—C12—C11—C10171.09 (16)
C15—N2—C14—C125.7 (2)C11—C12—C13—N11.5 (3)
C17—N2—C14—O34.4 (2)C14—C12—C13—N1173.31 (15)
C17—N2—C14—C12174.73 (15)C11—C12—C14—O3118.02 (19)
C14—N2—C15—C16116.2 (2)C11—C12—C14—N261.2 (2)
C17—N2—C15—C1663.3 (2)C13—C12—C14—O353.4 (2)
C14—N2—C17—C1878.6 (2)C13—C12—C14—N2127.43 (17)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O4—H41···O1i1.00 (2)1.69 (2)2.6443 (18)160 (3)
O4—H42···O3ii0.89 (2)1.88 (2)2.7557 (18)170 (2)
C6—H6···O10.932.403.249 (3)152
C11—H11···O10.932.423.339 (2)168
C17—H17A···Cg1iii0.972.953.594 (2)125
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[Co(C8H7O2)2(C10H14N2O)2(H2O)2]
Mr721.70
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.2791 (2), 8.5453 (2), 16.0438 (4)
α, β, γ (°)84.090 (3), 77.583 (3), 67.271 (2)
V3)898.71 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.53
Crystal size (mm)0.35 × 0.25 × 0.15
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.852, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
15243, 4484, 3821
Rint0.025
(sin θ/λ)max1)0.671
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.090, 1.04
No. of reflections4484
No. of parameters234
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.86, 0.55

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Co1—O22.0885 (12)Co1—N12.1439 (14)
Co1—O42.1209 (12)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C2–C7 ring.
D—H···AD—HH···AD···AD—H···A
O4—H41···O1i1.00 (2)1.69 (2)2.6443 (18)160 (3)
O4—H42···O3ii0.89 (2)1.88 (2)2.7557 (18)170 (2)
C6—H6···O10.932.403.249 (3)152
C11—H11···O10.932.423.339 (2)168
C17—H17A···Cg1iii0.972.953.594 (2)125
Symmetry codes: (i) x, y, z; (ii) x+1, y, z; (iii) x1, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds