Download citation
Download citation
link to html
In the mononuclear title compound, [Ni(C8H7O3)2(C6H6N2O)2(H2O)2]·2H2O, the NiII ion is located on a crystallographic inversion center. The asymmetric unit further contains one 4-meth­oxy­benzoate anion, one nicotinamide (NA) ligand and one coordinated and one uncoordinated water mol­ecule; all ligands are monodentate. The four O atoms in the equatorial plane around the NiII ion form a slightly distorted square-planar arrangement, while the slightly distorted octa­hedral coordination is completed by the two pyridine N atoms of the NA ligands in the axial positions. The dihedral angle between the carboxyl­ate group and the attached benzene ring is 7.2 (1)°, while the pyridine and benzene rings are oriented at a dihedral angle of 72.80 (4)°. An intra­molecular O—H...O hydrogen bond links the uncoordinated water mol­ecule to one of the carboxyl­ate groups. In the crystal structure, inter­molecular O—H...O, N—H...O and C—H...O hydrogen bonds link the mol­ecules into a three-dimensional network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810025985/ci5126sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536810025985/ci5126Isup2.hkl
Contains datablock I

CCDC reference: 788197

Key indicators

  • Single-crystal X-ray study
  • T = 100 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.026
  • wR factor = 0.067
  • Data-to-parameter ratio = 16.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ni1 -- O5 .. 8.41 su PLAT420_ALERT_2_C D-H Without Acceptor N2 - H21 ... ? PLAT042_ALERT_1_C Calc. and Reported MoietyFormula Strings Differ ? PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 18
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound, (I), is a mononuclear complex, where the NiII ion is located on a crystallographic inversion center. The asymmetric unit contains one 4-methoxybenzoate (PMOB) anion, one nicotinamide (NA) ligand and one coordinated and one uncoordinated water molecules, all ligands are monodentate (Fig. 1). The crystal structures of some NA and/or DENA complexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H5O2)2(C10H14N2O)2], (II) (Hökelek et al., 1996), [Co(C6H6N2O)2(C7H4NO4)2(H2O)2], (III) (Hökelek & Necefoğlu, 1998), [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2], (IV) (Hökelek et al., 2009a), [Ni(C8H7O2)2(C6H6N2O)2(H2O)2], (V) (Necefoğlu et al., 2010), [Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2], (VI) (Hökelek et al., 2009b) and [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2], (VII) (Hökelek et al., 2009c) have also been reported. In (II), two benzoate ions are coordinated to the Cu atom as bidentate ligands, while in other structures all ligands being monodentate.

The four O atoms (O1, O5, and the symmetry-related atoms, O1', O5') in the equatorial plane around the NiII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the NA ligands (N1, N1') in the axial positions (Fig. 1). The near equality of the C1—O1 [1.2681 (15) Å] and C1—O2 [1.2644 (16) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds. The average Ni—O bond length is 2.0633 (9) Å (Table 1), and the NiII ion is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by 0.7794 (1) Å. The dihedral angle between the planar carboxylate group and the benzene ring A (C2—C7) is 7.2 (1)°, while that between rings A and B (N1/C9—C13) is 72.80 (4)°. An intramolecular O—H···O hydrogen bond (Table 2) links the uncoordinated water molecule to one of the carboxylate groups (Fig. 1).

In the crystal structure, intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network.

Related literature top

For niacin, see: Krishnamachari (1974). For N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (1996,2009a,b,c); Hökelek & Necefoğlu (1998); Necefoğlu et al. (2010).

Experimental top

The title compound was prepared by the reaction of NiSO4.6H2O (2.63 g, 10 mmol) in H2O (50 ml) and nicotinamide (2.44 g, 20 mmol) in H2O (50 ml) with sodium 4-methoybenzoate (3.48 g, 20 mmol) in H2O (100 ml). The mixture was filtered and set aside to crystallize at ambient temperature for one week, giving blue single crystals.

Refinement top

Atoms H21, H22 (for NH2) and H51, H52, H61, H62 (for H2O) were located in a difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically with C—H = 0.95 and 0.98 Å for aromatic and methyl H atoms and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.

Structure description top

As a part of our ongoing investigation on transition metal complexes of nicotinamide (NA), one form of niacin (Krishnamachari, 1974), and/or the nicotinic acid derivative N,N-diethylnicotinamide (DENA), an important respiratory stimulant (Bigoli et al., 1972), the title compound was synthesized and its crystal structure is reported herein.

The title compound, (I), is a mononuclear complex, where the NiII ion is located on a crystallographic inversion center. The asymmetric unit contains one 4-methoxybenzoate (PMOB) anion, one nicotinamide (NA) ligand and one coordinated and one uncoordinated water molecules, all ligands are monodentate (Fig. 1). The crystal structures of some NA and/or DENA complexes of CuII, CoII, NiII, MnII and ZnII ions, [Cu(C7H5O2)2(C10H14N2O)2], (II) (Hökelek et al., 1996), [Co(C6H6N2O)2(C7H4NO4)2(H2O)2], (III) (Hökelek & Necefoğlu, 1998), [Ni(C7H4ClO2)2(C6H6N2O)2(H2O)2], (IV) (Hökelek et al., 2009a), [Ni(C8H7O2)2(C6H6N2O)2(H2O)2], (V) (Necefoğlu et al., 2010), [Mn(C7H4ClO2)2(C10H14N2O)2(H2O)2], (VI) (Hökelek et al., 2009b) and [Zn(C7H4BrO2)2(C6H6N2O)2(H2O)2], (VII) (Hökelek et al., 2009c) have also been reported. In (II), two benzoate ions are coordinated to the Cu atom as bidentate ligands, while in other structures all ligands being monodentate.

The four O atoms (O1, O5, and the symmetry-related atoms, O1', O5') in the equatorial plane around the NiII ion form a slightly distorted square-planar arrangement, while the slightly distorted octahedral coordination is completed by the two N atoms of the NA ligands (N1, N1') in the axial positions (Fig. 1). The near equality of the C1—O1 [1.2681 (15) Å] and C1—O2 [1.2644 (16) Å] bonds in the carboxylate group indicates a delocalized bonding arrangement, rather than localized single and double bonds. The average Ni—O bond length is 2.0633 (9) Å (Table 1), and the NiII ion is displaced out of the least-squares plane of the carboxylate group (O1/C1/O2) by 0.7794 (1) Å. The dihedral angle between the planar carboxylate group and the benzene ring A (C2—C7) is 7.2 (1)°, while that between rings A and B (N1/C9—C13) is 72.80 (4)°. An intramolecular O—H···O hydrogen bond (Table 2) links the uncoordinated water molecule to one of the carboxylate groups (Fig. 1).

In the crystal structure, intermolecular O—H···O, N—H···O and C—H···O hydrogen bonds (Table 2) link the molecules into a three-dimensional network.

For niacin, see: Krishnamachari (1974). For N,N-diethylnicotinamide, see: Bigoli et al. (1972). For related structures, see: Hökelek et al. (1996,2009a,b,c); Hökelek & Necefoğlu (1998); Necefoğlu et al. (2010).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Primed atoms are generated by the symmetry operator: (') 2 - x, 1 - y, 1 -z. Dashed lines indicate the hydrogen-bonding.
Diaquabis(4-methoxybenzoato-κO)bis(nicotinamide-κN1)nickel(II) dihydrate top
Crystal data top
[Ni(C8H7O3)2(C6H6N2O)2(H2O)2]·2H2OZ = 1
Mr = 677.28F(000) = 354
Triclinic, P1Dx = 1.505 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.1279 (2) ÅCell parameters from 7665 reflections
b = 9.7006 (2) Åθ = 2.2–28.4°
c = 10.0636 (3) ŵ = 0.72 mm1
α = 101.637 (3)°T = 100 K
β = 91.634 (2)°Block, blue
γ = 105.137 (3)°0.35 × 0.26 × 0.19 mm
V = 747.42 (4) Å3
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3740 independent reflections
Radiation source: fine-focus sealed tube3454 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
φ and ω scansθmax = 28.4°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1010
Tmin = 0.797, Tmax = 0.871k = 1212
13749 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0304P)2 + 0.3607P]
where P = (Fo2 + 2Fc2)/3
3740 reflections(Δ/σ)max = 0.001
228 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Ni(C8H7O3)2(C6H6N2O)2(H2O)2]·2H2Oγ = 105.137 (3)°
Mr = 677.28V = 747.42 (4) Å3
Triclinic, P1Z = 1
a = 8.1279 (2) ÅMo Kα radiation
b = 9.7006 (2) ŵ = 0.72 mm1
c = 10.0636 (3) ÅT = 100 K
α = 101.637 (3)°0.35 × 0.26 × 0.19 mm
β = 91.634 (2)°
Data collection top
Bruker Kappa APEXII CCD area-detector
diffractometer
3740 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3454 reflections with I > 2σ(I)
Tmin = 0.797, Tmax = 0.871Rint = 0.024
13749 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.41 e Å3
3740 reflectionsΔρmin = 0.32 e Å3
228 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.50000.50000.01031 (7)
O10.84093 (11)0.34709 (9)0.34598 (9)0.01344 (18)
O20.97158 (13)0.37223 (10)0.15603 (9)0.0186 (2)
O30.51173 (13)0.29261 (10)0.00777 (10)0.0227 (2)
O41.23447 (12)0.12322 (10)0.38559 (10)0.01808 (19)
O50.84001 (12)0.41637 (10)0.63798 (10)0.01381 (18)
H510.824 (2)0.328 (2)0.6383 (18)0.026 (5)*
H520.880 (3)0.466 (2)0.710 (2)0.033 (5)*
O61.09929 (14)0.36688 (11)0.10135 (11)0.0217 (2)
H611.060 (2)0.3618 (18)0.0275 (19)0.020*
H621.093 (2)0.444 (2)0.1194 (17)0.020*
N11.15013 (13)0.35208 (11)0.50331 (10)0.0123 (2)
N21.00731 (15)0.08680 (12)0.27740 (11)0.0164 (2)
H210.955 (2)0.027 (2)0.2615 (17)0.021 (4)*
H220.976 (2)0.178 (2)0.2312 (19)0.028 (5)*
C10.86838 (16)0.29893 (13)0.22424 (12)0.0132 (2)
C20.77440 (16)0.14302 (13)0.16204 (12)0.0136 (2)
C30.65161 (17)0.06356 (14)0.23287 (13)0.0166 (3)
H30.62700.10960.31970.020*
C40.56565 (17)0.08093 (14)0.17828 (14)0.0186 (3)
H40.48110.13300.22680.022*
C50.60317 (17)0.15037 (14)0.05176 (13)0.0166 (3)
C60.72616 (18)0.07365 (14)0.01936 (13)0.0193 (3)
H60.75310.12070.10490.023*
C70.80961 (18)0.07279 (14)0.03580 (13)0.0178 (3)
H70.89200.12560.01380.021*
C80.5467 (2)0.37024 (15)0.11975 (15)0.0267 (3)
H8A0.47400.47120.13860.040*
H8B0.66720.37050.11610.040*
H8C0.52290.32230.19220.040*
C91.30962 (17)0.40473 (14)0.56440 (13)0.0165 (3)
H91.34740.50530.60800.020*
C101.42177 (17)0.31926 (14)0.56686 (14)0.0191 (3)
H101.53280.36000.61300.023*
C111.36869 (17)0.17315 (14)0.50057 (13)0.0156 (2)
H111.44280.11190.50070.019*
C121.20523 (16)0.11758 (13)0.43385 (12)0.0124 (2)
C131.09960 (16)0.21032 (13)0.43965 (12)0.0124 (2)
H130.98670.17170.39670.015*
C141.14890 (16)0.04076 (13)0.36228 (12)0.0132 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01171 (11)0.00792 (11)0.01082 (11)0.00341 (8)0.00027 (8)0.00012 (8)
O10.0145 (4)0.0117 (4)0.0131 (4)0.0045 (3)0.0005 (3)0.0006 (3)
O20.0262 (5)0.0119 (4)0.0144 (4)0.0005 (4)0.0021 (4)0.0015 (3)
O30.0265 (5)0.0112 (4)0.0244 (5)0.0007 (4)0.0025 (4)0.0016 (4)
O40.0195 (5)0.0117 (4)0.0246 (5)0.0068 (4)0.0026 (4)0.0039 (4)
O50.0164 (4)0.0100 (4)0.0140 (4)0.0034 (3)0.0002 (3)0.0007 (3)
O60.0344 (6)0.0147 (5)0.0164 (5)0.0076 (4)0.0037 (4)0.0025 (4)
N10.0140 (5)0.0108 (5)0.0123 (5)0.0044 (4)0.0013 (4)0.0018 (4)
N20.0217 (6)0.0112 (5)0.0167 (5)0.0071 (4)0.0002 (4)0.0010 (4)
C10.0146 (6)0.0117 (5)0.0137 (6)0.0052 (4)0.0024 (4)0.0017 (4)
C20.0151 (6)0.0112 (5)0.0135 (6)0.0039 (4)0.0024 (5)0.0007 (4)
C30.0175 (6)0.0152 (6)0.0157 (6)0.0043 (5)0.0021 (5)0.0006 (5)
C40.0174 (6)0.0152 (6)0.0211 (6)0.0011 (5)0.0022 (5)0.0033 (5)
C50.0173 (6)0.0111 (6)0.0190 (6)0.0025 (5)0.0049 (5)0.0006 (5)
C60.0261 (7)0.0152 (6)0.0136 (6)0.0041 (5)0.0007 (5)0.0018 (5)
C70.0223 (6)0.0139 (6)0.0144 (6)0.0016 (5)0.0019 (5)0.0014 (5)
C80.0364 (8)0.0146 (6)0.0236 (7)0.0044 (6)0.0065 (6)0.0038 (5)
C90.0165 (6)0.0115 (6)0.0195 (6)0.0036 (5)0.0013 (5)0.0002 (5)
C100.0140 (6)0.0169 (6)0.0250 (7)0.0046 (5)0.0031 (5)0.0013 (5)
C110.0161 (6)0.0150 (6)0.0185 (6)0.0085 (5)0.0029 (5)0.0043 (5)
C120.0158 (6)0.0104 (5)0.0120 (5)0.0044 (4)0.0041 (4)0.0034 (4)
C130.0140 (6)0.0116 (5)0.0117 (5)0.0036 (4)0.0014 (4)0.0028 (4)
C140.0169 (6)0.0110 (5)0.0129 (5)0.0047 (4)0.0061 (5)0.0037 (4)
Geometric parameters (Å, º) top
Ni1—O12.0569 (9)C2—C71.3904 (18)
Ni1—O1i2.0569 (9)C3—C41.3822 (18)
Ni1—O52.0697 (9)C3—H30.95
Ni1—O5i2.0697 (9)C4—C51.3970 (19)
Ni1—N12.1167 (10)C4—H40.95
Ni1—N1i2.1167 (10)C5—C61.3902 (19)
O1—C11.2681 (15)C6—C71.3941 (18)
O2—C11.2644 (16)C6—H60.95
O3—C51.3607 (15)C7—H70.95
O3—C81.4274 (18)C8—H8A0.98
O4—C141.2392 (15)C8—H8B0.98
O5—H510.83 (2)C8—H8C0.98
O5—H520.79 (2)C9—C101.3858 (18)
O6—H610.823 (18)C9—H90.95
O6—H620.818 (18)C10—C111.3867 (18)
N1—C91.3421 (16)C10—H100.95
N1—C131.3434 (15)C11—C121.3913 (18)
N2—C141.3324 (17)C11—H110.95
N2—H210.839 (18)C12—C131.3910 (17)
N2—H220.877 (19)C12—C141.5017 (16)
C1—C21.5001 (17)C13—H130.95
C2—C31.3995 (18)
O1i—Ni1—O1180.0C3—C4—C5119.95 (12)
O1—Ni1—O588.52 (4)C3—C4—H4120.0
O1i—Ni1—O591.48 (4)C5—C4—H4120.0
O1—Ni1—O5i91.48 (4)O3—C5—C4115.16 (12)
O1i—Ni1—O5i88.52 (4)O3—C5—C6124.95 (12)
O1—Ni1—N188.64 (4)C6—C5—C4119.89 (12)
O1i—Ni1—N191.36 (4)C5—C6—C7119.52 (12)
O1—Ni1—N1i91.36 (4)C5—C6—H6120.2
O1i—Ni1—N1i88.64 (4)C7—C6—H6120.2
O5—Ni1—O5i180.000 (1)C2—C7—C6121.20 (12)
O5—Ni1—N193.21 (4)C2—C7—H7119.4
O5i—Ni1—N186.79 (4)C6—C7—H7119.4
O5—Ni1—N1i86.79 (4)O3—C8—H8A109.5
O5i—Ni1—N1i93.21 (4)O3—C8—H8B109.5
N1—Ni1—N1i180.0O3—C8—H8C109.5
C1—O1—Ni1130.22 (8)H8A—C8—H8B109.5
C5—O3—C8117.74 (11)H8A—C8—H8C109.5
Ni1—O5—H51117.6 (12)H8B—C8—H8C109.5
Ni1—O5—H52104.9 (14)N1—C9—C10123.11 (12)
H51—O5—H52111.1 (19)N1—C9—H9118.4
H62—O6—H61108.0 (17)C10—C9—H9118.4
C9—N1—Ni1118.24 (8)C9—C10—C11118.69 (12)
C9—N1—C13117.80 (11)C9—C10—H10120.7
C13—N1—Ni1123.79 (8)C11—C10—H10120.7
C14—N2—H21120.0 (12)C10—C11—C12118.98 (11)
C14—N2—H22119.6 (12)C10—C11—H11120.5
H21—N2—H22120.1 (17)C12—C11—H11120.5
O1—C1—C2116.29 (11)C11—C12—C14118.60 (11)
O2—C1—O1124.22 (11)C13—C12—C11118.44 (11)
O2—C1—C2119.46 (11)C13—C12—C14122.93 (11)
C3—C2—C1120.07 (11)N1—C13—C12122.95 (11)
C7—C2—C1121.44 (12)N1—C13—H13118.5
C7—C2—C3118.47 (11)C12—C13—H13118.5
C2—C3—H3119.5O4—C14—N2122.82 (12)
C4—C3—C2120.95 (12)O4—C14—C12118.87 (11)
C4—C3—H3119.5N2—C14—C12118.31 (11)
O5—Ni1—O1—C1160.75 (10)C1—C2—C3—C4178.93 (12)
O5i—Ni1—O1—C119.25 (10)C7—C2—C3—C40.71 (19)
N1—Ni1—O1—C167.50 (10)C1—C2—C7—C6177.72 (12)
N1i—Ni1—O1—C1112.50 (10)C3—C2—C7—C60.5 (2)
O1—Ni1—N1—C9162.56 (10)C2—C3—C4—C51.2 (2)
O1i—Ni1—N1—C917.44 (10)C8—O3—C5—C4178.85 (12)
O1—Ni1—N1—C1312.62 (10)C8—O3—C5—C61.3 (2)
O1i—Ni1—N1—C13167.38 (10)C3—C4—C5—O3179.75 (12)
O5—Ni1—N1—C9109.01 (10)C3—C4—C5—C60.4 (2)
O5i—Ni1—N1—C970.99 (10)O3—C5—C6—C7179.07 (13)
O5—Ni1—N1—C1375.81 (10)C4—C5—C6—C70.7 (2)
O5i—Ni1—N1—C13104.19 (10)C5—C6—C7—C21.2 (2)
Ni1—O1—C1—O229.75 (18)N1—C9—C10—C111.5 (2)
Ni1—O1—C1—C2148.20 (9)C9—C10—C11—C120.1 (2)
Ni1—N1—C9—C10176.80 (10)C10—C11—C12—C131.78 (19)
C13—N1—C9—C101.33 (19)C10—C11—C12—C14179.97 (11)
Ni1—N1—C13—C12174.71 (9)C11—C12—C13—N12.04 (18)
C9—N1—C13—C120.49 (18)C14—C12—C13—N1179.79 (11)
O1—C1—C2—C36.12 (17)C11—C12—C14—O413.48 (17)
O1—C1—C2—C7172.05 (12)C11—C12—C14—N2167.30 (12)
O2—C1—C2—C3175.83 (11)C13—C12—C14—O4164.68 (12)
O2—C1—C2—C76.00 (18)C13—C12—C14—N214.53 (18)
Symmetry code: (i) x+2, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H22···O6ii0.88 (2)1.96 (2)2.8306 (16)170 (2)
O5—H51···O4iii0.83 (2)1.88 (2)2.7074 (14)171 (2)
O5—H52···O2i0.79 (2)1.95 (2)2.7040 (14)159 (2)
O6—H61···O20.82 (2)1.99 (2)2.8136 (14)174 (2)
O6—H62···O2iv0.82 (2)2.08 (2)2.8887 (15)169 (2)
C9—H9···O1i0.952.352.9719 (16)123
C10—H10···O5v0.952.413.2973 (17)156
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z; (iii) x+2, y, z+1; (iv) x+2, y+1, z; (v) x+1, y, z.

Experimental details

Crystal data
Chemical formula[Ni(C8H7O3)2(C6H6N2O)2(H2O)2]·2H2O
Mr677.28
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.1279 (2), 9.7006 (2), 10.0636 (3)
α, β, γ (°)101.637 (3), 91.634 (2), 105.137 (3)
V3)747.42 (4)
Z1
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.35 × 0.26 × 0.19
Data collection
DiffractometerBruker Kappa APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.797, 0.871
No. of measured, independent and
observed [I > 2σ(I)] reflections
13749, 3740, 3454
Rint0.024
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.067, 1.04
No. of reflections3740
No. of parameters228
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.32

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Selected bond lengths (Å) top
Ni1—O12.0569 (9)Ni1—N12.1167 (10)
Ni1—O52.0697 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H22···O6i0.88 (2)1.96 (2)2.8306 (16)170 (2)
O5—H51···O4ii0.83 (2)1.88 (2)2.7074 (14)171 (2)
O5—H52···O2iii0.79 (2)1.95 (2)2.7040 (14)159 (2)
O6—H61···O20.82 (2)1.99 (2)2.8136 (14)174 (2)
O6—H62···O2iv0.82 (2)2.08 (2)2.8887 (15)169 (2)
C9—H9···O1iii0.952.352.9719 (16)123
C10—H10···O5v0.952.413.2973 (17)156
Symmetry codes: (i) x+2, y, z; (ii) x+2, y, z+1; (iii) x+2, y+1, z+1; (iv) x+2, y+1, z; (v) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds