Download citation
Download citation
link to html
In the title compound, C32H24Cl4N2O, all four six-membered rings which constitute the di­aza­adamantanone cage adopt chair conformations. The crystal structure is stabilized by Cl...Cl interactions and C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536801013277/ci6033sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536801013277/ci6033Isup2.hkl
Contains datablock I

CCDC reference: 172213

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.061
  • wR factor = 0.149
  • Data-to-parameter ratio = 14.9

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry


Yellow Alert Alert Level C:
WEIGH_01 Alert C Extra text has been found in the _refine_ls_weighting_scheme field. This should be in the _refine_ls_weighting_details field. Weighting scheme given as calc w = 1/[\s^2^(Fo^2^)+8.0771P] where P = Weighting scheme identified as calc
0 Alert Level A = Potentially serious problem
0 Alert Level B = Potential problem
1 Alert Level C = Please check

Comment top

The present X-ray investigations on the title compound, 4,8,9,10-tetrakis(4-chlorophenyl)-1,3-diazaadamantan-6-one, (I), was carried out with a view to observing possible differences in the crystal and molecular structures upon exchange of substituents and obtain some information about the nature of specific substituent or specific interactions. Moreover, crystallographic investigations on symmetrically shaped molecules are expected to provide insights into the nature and strength of intermolecular interactions and their role in effecting symmetry carry-over from the free state to the solid. Recently, the crystal structure of a methoxy-substituted analogue of the title compound, 4,8,9,10-tetrakis(4-methoxyphenyl)-1,3-diazaadamantan-6-one benzene solvate, was elucidated in our laboratory (Krishnakumar et al., 2001).

Fig. 1 shows the crystallographic numbering scheme adopted. No significant differences in the geometry of the diazaadamantanone cage are seen as it is known to be inherently rigid and symmetrical. All four six-membered rings which constitute the diazaadamantanone cage adopt chair conformations, which is the most preferred conformation for adamantanones, irrespective of substitutions. A molecular fit of (I) with its methoxy-substituted analogue shows a near perfect fit, except for a slight rotation of the two axially substituted phenyl rings. Thus, it seems that there is no loss of molecular symmetry as a result of chloro substitution, though the molecule does not lie across the mirror plane as in the case of the methoxy-substituted analogue.

It is known that the regular hexagonal geometry of benzene is perturbed when the ring is substituted with strong electron-donating or electron-withdrawing groups (Domenicano & Murray-Rust, 1979; Domenicano et al., 1983). However, in the title compound, the chloro substituent does not play any significant role in deforming the phenyl rings.

The crystal packing is stabilized by Cl···Cl interactions (Fig. 2) in addition to C—H···O hydrogen bonds. The two short Cl···Cl distances observed are: Cl47···Cl77(1 - x, y + 1/2, -z + 3/2) = 3.466 (3) Å and Cl67···Cl77(x - 1, y + 1, z) = 3.346 (3) Å. These values are significantly shorter than the sum of the van der Waals radii and demonstrate the special nature of Cl···Cl interactions (Schmidt, 1971; Williams & Hsu, 1985) and their dominant role in determining the packing modes in crystal structures.

Experimental top

Colourless single crystals of the title compound were obtained as transparent needles by slow evaporation of a benzene solution at room temperature.

Refinement top

The H atoms were placed at calculated positions and were allowed to ride on their respective parent atoms with HFIX instructions using SHELXL97 (Sheldrick, 1997) defaults.

Computing details top

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. ORTEP diagram (XP; Siemens, 1990) with displacement ellipsoids drawn at the 50% probability level showing the atom-numbering scheme adopted.
[Figure 2] Fig. 2. Packing of the molecules viewed down the a axis. Cl···Cl interactions are shown as dashed lines. H atoms have been omitted for clarity.
4,8,9,10-Tetrakis(4-chlorophenyl)-1,3-diazaadamantan-6-one top
Crystal data top
C32H24Cl4N2OF(000) = 1224
Mr = 594.33Dx = 1.425 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54180 Å
a = 6.818 (3) ÅCell parameters from 25 reflections
b = 13.288 (4) Åθ = 10–25°
c = 30.670 (14) ŵ = 4.12 mm1
β = 94.47 (3)°T = 293 K
V = 2770 (2) Å3Needles, colourless
Z = 40.34 × 0.22 × 0.18 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
3549 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.036
Graphite monochromatorθmax = 70.1°, θmin = 2.9°
/w–2/q scansh = 08
Absorption correction: ψ scan
(North et al., 1968)
k = 016
Tmin = 0.42, Tmax = 0.48l = 3737
5739 measured reflections2 standard reflections every 200 reflections
5268 independent reflections intensity decay: 2%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.061H-atom parameters constrained
wR(F2) = 0.149Calculated w = 1/[σ2(Fo2) + 8.0771P]
where P = (Fo2 + 2Fc2)/3
S = 1.16(Δ/σ)max < 0.001
5268 reflectionsΔρmax = 0.37 e Å3
353 parametersΔρmin = 0.40 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00100 (5)
Crystal data top
C32H24Cl4N2OV = 2770 (2) Å3
Mr = 594.33Z = 4
Monoclinic, P21/cCu Kα radiation
a = 6.818 (3) ŵ = 4.12 mm1
b = 13.288 (4) ÅT = 293 K
c = 30.670 (14) Å0.34 × 0.22 × 0.18 mm
β = 94.47 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
3549 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.036
Tmin = 0.42, Tmax = 0.482 standard reflections every 200 reflections
5739 measured reflections intensity decay: 2%
5268 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.16Δρmax = 0.37 e Å3
5268 reflectionsΔρmin = 0.40 e Å3
353 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2913 (5)0.7303 (3)0.58381 (11)0.0366 (8)
O110.1514 (4)0.6354 (3)0.64983 (11)0.0537 (9)
C20.4423 (6)0.7662 (3)0.61705 (13)0.0371 (10)
H2A0.46750.83680.61170.045*
H2B0.56340.72970.61370.045*
N30.3890 (5)0.7546 (3)0.66238 (11)0.0365 (8)
C40.2101 (6)0.8164 (3)0.66696 (13)0.0360 (9)
H40.24300.88490.65820.043*
C410.1532 (6)0.8238 (3)0.71392 (14)0.0401 (10)
C420.0375 (7)0.8098 (4)0.72520 (16)0.0479 (12)
H420.13710.79770.70330.057*
C430.0832 (7)0.8133 (4)0.76859 (16)0.0517 (12)
H430.21150.80280.77590.062*
C440.0651 (8)0.8326 (4)0.80042 (16)0.0522 (13)
C450.2534 (8)0.8519 (4)0.79013 (16)0.0584 (14)
H450.35120.86740.81190.070*
C460.2954 (7)0.8478 (4)0.74690 (16)0.0508 (12)
H460.42270.86160.73970.061*
Cl470.0100 (2)0.82985 (13)0.85482 (4)0.0755 (5)
C50.0418 (6)0.7804 (4)0.63387 (14)0.0414 (11)
H50.07820.81960.63680.050*
C60.1101 (6)0.7893 (3)0.58664 (14)0.0403 (10)
H60.00830.75740.56690.048*
C610.1382 (6)0.8948 (4)0.56972 (15)0.0427 (11)
C620.0758 (7)0.9813 (4)0.58954 (16)0.0524 (13)
H620.00930.97590.61480.063*
C630.1099 (8)1.0758 (4)0.57272 (18)0.0604 (14)
H630.06781.13340.58650.073*
C640.2068 (7)1.0826 (4)0.53553 (18)0.0542 (13)
C650.2617 (7)0.9987 (4)0.51338 (17)0.0535 (13)
H650.32001.00490.48710.064*
C660.2287 (7)0.9048 (4)0.53099 (16)0.0507 (12)
H660.26790.84750.51660.061*
Cl670.2628 (2)1.20020 (11)0.51462 (6)0.0817 (5)
C70.2472 (6)0.6241 (3)0.59039 (14)0.0393 (10)
H70.13180.60760.57060.047*
C710.4142 (6)0.5568 (3)0.57784 (14)0.0394 (10)
C720.5537 (7)0.5921 (4)0.55083 (14)0.0435 (11)
H720.54870.65890.54180.052*
C730.6987 (7)0.5307 (4)0.53709 (15)0.0477 (12)
H730.79100.55570.51910.057*
C740.7059 (7)0.4317 (4)0.55018 (15)0.0470 (11)
C750.5678 (7)0.3935 (4)0.57610 (16)0.0541 (13)
H750.57140.32600.58420.065*
C760.4244 (7)0.4560 (4)0.58989 (16)0.0477 (12)
H760.33200.43020.60770.057*
Cl770.8883 (2)0.35305 (12)0.53312 (5)0.0693 (4)
C80.1875 (6)0.6072 (3)0.63831 (13)0.0368 (10)
H80.16050.53600.64360.044*
C90.3605 (6)0.6450 (3)0.66923 (13)0.0353 (9)
H90.47770.61270.65900.042*
C910.3596 (6)0.6161 (3)0.71697 (14)0.0385 (10)
C920.1952 (7)0.5834 (4)0.73677 (16)0.0472 (11)
H920.07640.57530.72010.057*
C930.2061 (8)0.5625 (4)0.78117 (16)0.0544 (13)
H930.09510.54020.79420.065*
C940.3804 (8)0.5746 (4)0.80584 (16)0.0541 (13)
C950.5459 (7)0.6029 (4)0.78700 (17)0.0574 (14)
H950.66520.60830.80370.069*
C960.5349 (7)0.6236 (4)0.74250 (15)0.0485 (12)
H960.64810.64290.72960.058*
Cl970.3921 (3)0.55127 (16)0.86172 (5)0.0923 (6)
C100.0069 (6)0.6700 (3)0.64207 (13)0.0373 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0326 (18)0.039 (2)0.0379 (19)0.0042 (16)0.0006 (15)0.0019 (16)
O110.0305 (16)0.065 (2)0.066 (2)0.0058 (16)0.0064 (15)0.0058 (18)
C20.033 (2)0.040 (2)0.038 (2)0.0004 (19)0.0055 (18)0.0039 (19)
N30.0328 (18)0.038 (2)0.0385 (19)0.0022 (15)0.0040 (15)0.0036 (16)
C40.036 (2)0.033 (2)0.040 (2)0.0033 (18)0.0052 (18)0.0026 (18)
C410.044 (3)0.036 (2)0.041 (2)0.004 (2)0.006 (2)0.0011 (19)
C420.045 (3)0.052 (3)0.048 (3)0.005 (2)0.009 (2)0.003 (2)
C430.050 (3)0.053 (3)0.054 (3)0.005 (2)0.016 (2)0.001 (2)
C440.066 (3)0.050 (3)0.042 (3)0.013 (3)0.013 (2)0.003 (2)
C450.061 (3)0.070 (4)0.043 (3)0.001 (3)0.000 (2)0.009 (3)
C460.047 (3)0.053 (3)0.053 (3)0.007 (2)0.004 (2)0.007 (2)
Cl470.0914 (11)0.0922 (11)0.0449 (7)0.0117 (9)0.0180 (7)0.0045 (7)
C50.035 (2)0.049 (3)0.041 (2)0.008 (2)0.0059 (19)0.005 (2)
C60.039 (2)0.043 (3)0.038 (2)0.007 (2)0.0002 (19)0.001 (2)
C610.038 (2)0.044 (3)0.045 (3)0.010 (2)0.003 (2)0.002 (2)
C620.054 (3)0.058 (3)0.046 (3)0.018 (3)0.008 (2)0.007 (2)
C630.073 (4)0.044 (3)0.064 (3)0.017 (3)0.006 (3)0.004 (3)
C640.049 (3)0.048 (3)0.065 (3)0.006 (2)0.003 (3)0.016 (3)
C650.041 (3)0.062 (3)0.058 (3)0.005 (2)0.007 (2)0.014 (3)
C660.048 (3)0.054 (3)0.051 (3)0.012 (2)0.010 (2)0.006 (2)
Cl670.0757 (10)0.0542 (9)0.1157 (14)0.0005 (7)0.0107 (9)0.0261 (9)
C70.037 (2)0.040 (2)0.041 (2)0.0010 (19)0.0019 (19)0.004 (2)
C710.039 (2)0.041 (2)0.039 (2)0.002 (2)0.0012 (19)0.002 (2)
C720.054 (3)0.040 (3)0.038 (2)0.002 (2)0.011 (2)0.000 (2)
C730.049 (3)0.058 (3)0.037 (2)0.004 (2)0.011 (2)0.003 (2)
C740.046 (3)0.056 (3)0.039 (2)0.011 (2)0.004 (2)0.005 (2)
C750.063 (3)0.044 (3)0.057 (3)0.009 (2)0.013 (3)0.002 (2)
C760.048 (3)0.044 (3)0.053 (3)0.002 (2)0.015 (2)0.007 (2)
Cl770.0754 (9)0.0760 (10)0.0588 (8)0.0304 (8)0.0194 (7)0.0013 (7)
C80.035 (2)0.039 (2)0.036 (2)0.0010 (19)0.0033 (18)0.0031 (19)
C90.031 (2)0.037 (2)0.039 (2)0.0016 (18)0.0055 (17)0.0044 (19)
C910.039 (2)0.034 (2)0.043 (2)0.0019 (19)0.0033 (19)0.0072 (19)
C920.037 (2)0.048 (3)0.058 (3)0.000 (2)0.006 (2)0.009 (2)
C930.052 (3)0.059 (3)0.054 (3)0.005 (3)0.016 (2)0.017 (3)
C940.060 (3)0.056 (3)0.047 (3)0.005 (3)0.008 (2)0.015 (2)
C950.047 (3)0.072 (4)0.052 (3)0.001 (3)0.003 (2)0.015 (3)
C960.039 (3)0.059 (3)0.048 (3)0.004 (2)0.002 (2)0.012 (2)
Cl970.0928 (12)0.1329 (16)0.0516 (8)0.0040 (11)0.0078 (8)0.0351 (9)
C100.030 (2)0.048 (3)0.034 (2)0.0002 (19)0.0010 (17)0.0024 (19)
Geometric parameters (Å, º) top
N1—C71.460 (5)C64—Cl671.743 (5)
N1—C21.471 (5)C65—C661.386 (7)
N1—C61.471 (5)C65—H650.9300
O11—C101.213 (5)C66—H660.9300
C2—N31.472 (5)C7—C711.520 (6)
C2—H2A0.9700C7—C81.571 (6)
C2—H2B0.9700C7—H70.9800
N3—C41.486 (5)C71—C761.390 (6)
N3—C91.487 (5)C71—C721.390 (6)
C4—C411.524 (6)C72—C731.373 (6)
C4—C51.547 (6)C72—H720.9300
C4—H40.9800C73—C741.375 (7)
C41—C461.383 (6)C73—H730.9300
C41—C421.384 (6)C74—C751.376 (7)
C42—C431.391 (6)C74—Cl771.736 (5)
C42—H420.9300C75—C761.375 (6)
C43—C441.374 (7)C75—H750.9300
C43—H430.9300C76—H760.9300
C44—C451.370 (7)C8—C101.499 (6)
C44—Cl471.739 (5)C8—C91.539 (6)
C45—C461.379 (7)C8—H80.9800
C45—H450.9300C9—C911.514 (6)
C46—H460.9300C9—H90.9800
C5—C101.511 (6)C91—C961.381 (6)
C5—C61.560 (6)C91—C921.386 (6)
C5—H50.9800C92—C931.386 (6)
C6—C611.513 (6)C92—H920.9300
C6—H60.9800C93—C941.368 (7)
C61—C621.383 (6)C93—H930.9300
C61—C661.387 (6)C94—C951.360 (7)
C62—C631.384 (7)C94—Cl971.737 (5)
C62—H620.9300C95—C961.388 (6)
C63—C641.365 (7)C95—H950.9300
C63—H630.9300C96—H960.9300
C64—C651.372 (7)
C7—N1—C2111.0 (3)C66—C65—H65120.7
C7—N1—C6108.9 (3)C65—C66—C61121.1 (5)
C2—N1—C6109.4 (3)C65—C66—H66119.5
N1—C2—N3114.2 (3)C61—C66—H66119.5
N1—C2—H2A108.7N1—C7—C71111.5 (4)
N3—C2—H2A108.7N1—C7—C8109.7 (3)
N1—C2—H2B108.7C71—C7—C8114.0 (4)
N3—C2—H2B108.7N1—C7—H7107.1
H2A—C2—H2B107.6C71—C7—H7107.1
C2—N3—C4107.2 (3)C8—C7—H7107.1
C2—N3—C9106.3 (3)C76—C71—C72117.5 (4)
C4—N3—C9114.2 (3)C76—C71—C7121.5 (4)
N3—C4—C41113.4 (3)C72—C71—C7120.9 (4)
N3—C4—C5109.9 (3)C73—C72—C71121.6 (4)
C41—C4—C5114.2 (3)C73—C72—H72119.2
N3—C4—H4106.3C71—C72—H72119.2
C41—C4—H4106.3C72—C73—C74119.3 (4)
C5—C4—H4106.3C72—C73—H73120.4
C46—C41—C42117.8 (4)C74—C73—H73120.4
C46—C41—C4119.4 (4)C73—C74—C75120.8 (4)
C42—C41—C4122.8 (4)C73—C74—Cl77119.9 (4)
C41—C42—C43121.3 (5)C75—C74—Cl77119.4 (4)
C41—C42—H42119.3C76—C75—C74119.3 (5)
C43—C42—H42119.3C76—C75—H75120.3
C44—C43—C42118.6 (5)C74—C75—H75120.3
C44—C43—H43120.7C75—C76—C71121.5 (4)
C42—C43—H43120.7C75—C76—H76119.3
C45—C44—C43121.5 (5)C71—C76—H76119.3
C45—C44—Cl47120.1 (4)C10—C8—C9111.5 (4)
C43—C44—Cl47118.4 (4)C10—C8—C7105.5 (3)
C44—C45—C46118.9 (5)C9—C8—C7106.7 (3)
C44—C45—H45120.6C10—C8—H8111.0
C46—C45—H45120.6C9—C8—H8111.0
C45—C46—C41121.7 (5)C7—C8—H8111.0
C45—C46—H46119.1N3—C9—C91113.3 (3)
C41—C46—H46119.1N3—C9—C8109.6 (3)
C10—C5—C4108.0 (3)C91—C9—C8116.9 (3)
C10—C5—C6106.9 (4)N3—C9—H9105.3
C4—C5—C6109.0 (3)C91—C9—H9105.3
C10—C5—H5110.9C8—C9—H9105.3
C4—C5—H5110.9C96—C91—C92117.9 (4)
C6—C5—H5110.9C96—C91—C9117.5 (4)
N1—C6—C61110.1 (4)C92—C91—C9124.6 (4)
N1—C6—C5109.1 (3)C91—C92—C93120.7 (5)
C61—C6—C5116.3 (4)C91—C92—H92119.7
N1—C6—H6106.9C93—C92—H92119.7
C61—C6—H6106.9C94—C93—C92119.8 (5)
C5—C6—H6106.9C94—C93—H93120.1
C62—C61—C66118.0 (5)C92—C93—H93120.1
C62—C61—C6124.6 (4)C95—C94—C93120.8 (5)
C66—C61—C6117.3 (4)C95—C94—Cl97119.5 (4)
C61—C62—C63121.6 (5)C93—C94—Cl97119.7 (4)
C61—C62—H62119.2C94—C95—C96119.3 (5)
C63—C62—H62119.2C94—C95—H95120.4
C64—C63—C62118.5 (5)C96—C95—H95120.4
C64—C63—H63120.7C91—C96—C95121.4 (4)
C62—C63—H63120.7C91—C96—H96119.3
C63—C64—C65122.0 (5)C95—C96—H96119.3
C63—C64—Cl67120.0 (4)O11—C10—C8123.6 (4)
C65—C64—Cl67118.0 (4)O11—C10—C5123.7 (4)
C64—C65—C66118.7 (5)C8—C10—C5112.7 (4)
C64—C65—H65120.7
C7—N1—C2—N358.3 (5)C2—N1—C7—C854.9 (4)
C6—N1—C2—N361.9 (4)C6—N1—C7—C865.5 (4)
N1—C2—N3—C461.8 (4)N1—C7—C71—C76166.1 (4)
N1—C2—N3—C960.8 (4)C8—C7—C71—C7641.1 (6)
C2—N3—C4—C41172.0 (4)N1—C7—C71—C7219.2 (6)
C9—N3—C4—C4170.5 (5)C8—C7—C71—C72144.2 (4)
C2—N3—C4—C559.0 (4)C76—C71—C72—C731.2 (7)
C9—N3—C4—C558.5 (4)C7—C71—C72—C73176.1 (4)
N3—C4—C41—C4648.4 (6)C71—C72—C73—C740.3 (7)
C5—C4—C41—C46175.2 (4)C72—C73—C74—C751.2 (7)
N3—C4—C41—C42133.3 (4)C72—C73—C74—Cl77180.0 (4)
C5—C4—C41—C426.4 (6)C73—C74—C75—C761.7 (8)
C46—C41—C42—C434.0 (7)Cl77—C74—C75—C76179.5 (4)
C4—C41—C42—C43177.6 (4)C74—C75—C76—C710.7 (8)
C41—C42—C43—C441.0 (8)C72—C71—C76—C750.7 (7)
C42—C43—C44—C452.4 (8)C7—C71—C76—C75175.6 (4)
C42—C43—C44—Cl47176.4 (4)N1—C7—C8—C1061.1 (4)
C43—C44—C45—C462.6 (8)C71—C7—C8—C10173.0 (4)
Cl47—C44—C45—C46176.2 (4)N1—C7—C8—C957.5 (4)
C44—C45—C46—C410.7 (8)C71—C7—C8—C968.4 (5)
C42—C41—C46—C453.9 (7)C2—N3—C9—C91164.3 (3)
C4—C41—C46—C45177.6 (5)C4—N3—C9—C9177.7 (4)
N3—C4—C5—C1057.2 (4)C2—N3—C9—C863.2 (4)
C41—C4—C5—C1071.4 (4)C4—N3—C9—C854.9 (4)
N3—C4—C5—C658.6 (4)C10—C8—C9—N352.1 (4)
C41—C4—C5—C6172.8 (4)C7—C8—C9—N362.7 (4)
C7—N1—C6—C61166.8 (4)C10—C8—C9—C9178.6 (5)
C2—N1—C6—C6171.7 (4)C7—C8—C9—C91166.7 (4)
C7—N1—C6—C564.4 (4)N3—C9—C91—C9669.2 (5)
C2—N1—C6—C557.1 (4)C8—C9—C91—C96162.0 (4)
C10—C5—C6—N159.5 (4)N3—C9—C91—C92110.5 (5)
C4—C5—C6—N157.0 (5)C8—C9—C91—C9218.4 (6)
C10—C5—C6—C61175.2 (4)C96—C91—C92—C932.4 (7)
C4—C5—C6—C6168.3 (5)C9—C91—C92—C93177.3 (4)
N1—C6—C61—C62136.6 (5)C91—C92—C93—C940.2 (8)
C5—C6—C61—C6211.9 (7)C92—C93—C94—C952.8 (8)
N1—C6—C61—C6645.1 (5)C92—C93—C94—Cl97178.4 (4)
C5—C6—C61—C66169.8 (4)C93—C94—C95—C962.6 (9)
C66—C61—C62—C633.0 (7)Cl97—C94—C95—C96178.6 (4)
C6—C61—C62—C63178.7 (5)C92—C91—C96—C952.5 (7)
C61—C62—C63—C640.3 (8)C9—C91—C96—C95177.2 (5)
C62—C63—C64—C653.4 (8)C94—C95—C96—C910.1 (8)
C62—C63—C64—Cl67177.1 (4)C9—C8—C10—O11125.5 (4)
C63—C64—C65—C664.2 (8)C7—C8—C10—O11119.0 (5)
Cl67—C64—C65—C66176.2 (4)C9—C8—C10—C556.1 (5)
C64—C65—C66—C611.4 (7)C7—C8—C10—C559.4 (4)
C62—C61—C66—C652.2 (7)C4—C5—C10—O11124.0 (4)
C6—C61—C66—C65179.5 (4)C6—C5—C10—O11118.8 (5)
C2—N1—C7—C7172.4 (4)C4—C5—C10—C857.7 (4)
C6—N1—C7—C71167.1 (3)C6—C5—C10—C859.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O11i0.982.583.428 (5)144
C2—H2B···O11i0.972.503.357 (5)148
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC32H24Cl4N2O
Mr594.33
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)6.818 (3), 13.288 (4), 30.670 (14)
β (°) 94.47 (3)
V3)2770 (2)
Z4
Radiation typeCu Kα
µ (mm1)4.12
Crystal size (mm)0.34 × 0.22 × 0.18
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.42, 0.48
No. of measured, independent and
observed [I > 2σ(I)] reflections
5739, 5268, 3549
Rint0.036
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.149, 1.16
No. of reflections5268
No. of parameters353
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.40

Computer programs: CAD-4 Software (Enraf-Nonius, 1989), CAD-4 Software, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), XP (Siemens, 1990), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···O11i0.982.583.428 (5)144
C2—H2B···O11i0.972.503.357 (5)148
Symmetry code: (i) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds