Download citation
Download citation
link to html
The crystal structure of the title compound, [(dppe-P,P')Cu(dppeS-P)(SC{O}Ph)], [Cu(C7H5OS)(C26H24P2S)(C26H24P2)], is reported. In this monomeric compound, the Cu atom has a tetrahedral coordination geometry, with a P3CuS core.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536802005810/ci6105sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536802005810/ci6105Isup2.hkl
Contains datablock I

CCDC reference: 185741

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.011 Å
  • R factor = 0.071
  • wR factor = 0.178
  • Data-to-parameter ratio = 17.0

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Diversified solid-state structures, bonding modes and potential applications as single-source molecular precursors to metal sulfide bulk materials, thin films and nanoparticles have stimulated our interest in the metal thiocarboxylate chemistry. We have characterized the structures of homoleptic anionic thiocarboxylate complexes of copper(I) and silver(I), (Ph4P)[M(SC{O}Me)2] and (Et3NH)[M(SC{O}Ph)2] (Sampanthar et al. 2000). More recently, we have reported the structures of triphenylphosphine and dppm [bis(diphenylphosphino)methane] adducts of copper(I) and silver(I) thiocarboxylates (Deivaraj et al., 2000; Deivaraj & Vittal, 2001a,b). Hence, as part of our systematic exploration, we were set out to synthesize and characterize dppe [bis-1,2(diphenylphosphino)ethane] adducts of copper thiobenzoate. During an attempt to synthesize the compound [(dppe-P,P')Cu(SC{O}Ph)(µ-dppe-P,P')Cu(SC{O}Ph)(dppe-P,P')], we, in fact, obtained the title compound, (I), as a decomposition product. The formation of the monosulfide of the dppe ligand, dppeS, had prevented the dppe ligand bridging two Cu atoms and thus led to a monomeric structure instead of a dimeric compound, as expected.

The dppe ligand chelates to the Cu atom, while the monosulfide of the dppe (dppeS) is bonded to the metal through the P atom. The thiobenzoate anion binds to the metal atom in a monodentate fashion through its S-donor site, thus accounting for the distorted tetrahedral geometry around the copper(I) metal atom, with a P3S donor set. The S atom of the dppeS ligand is not involved in any bonding.

The CuI—P distances are 2.293 (2), 2.302 (2) and 2.342 (2) Å, while the Cu—S distance is 2.306 (2) Å. The CuI—P distances fall within the normal range observed in the literature (2.220–2.420 Å; Allen et al., 1991). The CuI—S distance is comparable to those observed in compounds of types [(Ph3P)3Cu4(SC{O}Ph)4] and [(Ph3P)2Cu(µ-SC{O}Ph—S)2Cu(PPh3)] (Speier et al., 1991), however, they are shorter than the CuI—S distances observed in [(Ph3P)2Cu(SC{O}Ph)] (Deivaraj et al., 2000; Speier et al., 1991). The C—S and C—O distances are 1.725 (6) and 1.245 (6) Å, respectively. The CuI—O bonding distance, 3.394 (4) Å, is longer than the sum of their van der Waals radii (2.9 Å; Bondi, 1964), indicating the absence of any weak interaction between them.

The angles around the Cu atom range from 88.91 (6) to 119.85 (6)°, which denotes the extent of distortion of the tetrahedral geometry around the metal atom. The dihedral angle between the Cu1/S1/C1/O1 plane and the C2—C7 phenyl ring is 5.0 (3)°. This is a common feature observed in most of the thiobenzoate compounds. The torsion angle P1—C8—C9—P2 of the dppe ligand, 58.9 (5)°, indicates the staggered five-membered chelate ring formed by the dppe ligand with the Cu1 atom.

Experimental top

Slow diffusion of diethylether into a THF solution of the compound [(dppe)2Cu2(µ-dppe)(SC{O}Ph)2] resulted in the title compound, [(dppe-P,P')Cu(SC{O}Ph)(dppeS-P).

Refinement top

The phenyl ring (C1D—C6D) attached to P2 was found to be disordered. Three different orientations were modeled and their occupancies were refined to 0.391 (9), 0.138 (8) and 0.471 (7). Similarly, the two different orientations of a disordered phenyl ring (C1E—C6E) attached to P3 were found to have occupancies of 0.753 (7) and 0.247 (7). A common isotropic displacement parameter was refined for each disorder model which were confined to regular hexagons. Relatively higher agreement factors may be attributed to the two disordered phenyl rings present in the dppe ligand.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of (I) showing the labelling of the non-H atoms. Displacement ellipsoids are shown at 25% probability levels. For clarity, only the major conformers of the disordered phenyl rings are shown.
(I) top
Crystal data top
[Cu(C7H5OS)(C26H24P2S)(C26H24P2)]F(000) = 4288
Mr = 1029.55Dx = 1.292 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 36.7805 (2) ÅCell parameters from 8184 reflections
b = 15.5630 (2) Åθ = 2.1–25.0°
c = 18.6053 (2) ŵ = 0.65 mm1
β = 96.486 (1)°T = 293 K
V = 10581.79 (19) Å3Multifaceted block, gold
Z = 80.38 × 0.27 × 0.18 mm
Data collection top
Bruker SMART CCD
diffractometer
9137 independent reflections
Radiation source: fine-focus sealed tube5747 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.048
ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 2000)
h = 4341
Tmin = 0.777, Tmax = 0.889k = 1718
24925 measured reflectionsl = 2022
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.071Riding
wR(F2) = 0.178 w = 1/[σ2(Fo2) + (0.0727P)2 + 30.987P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
9137 reflectionsΔρmax = 0.73 e Å3
536 parametersΔρmin = 0.77 e Å3
22 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00029 (6)
Crystal data top
[Cu(C7H5OS)(C26H24P2S)(C26H24P2)]V = 10581.79 (19) Å3
Mr = 1029.55Z = 8
Monoclinic, C2/cMo Kα radiation
a = 36.7805 (2) ŵ = 0.65 mm1
b = 15.5630 (2) ÅT = 293 K
c = 18.6053 (2) Å0.38 × 0.27 × 0.18 mm
β = 96.486 (1)°
Data collection top
Bruker SMART CCD
diffractometer
9137 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 2000)
5747 reflections with I > 2σ(I)
Tmin = 0.777, Tmax = 0.889Rint = 0.048
24925 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.07122 restraints
wR(F2) = 0.178Riding
S = 1.02 w = 1/[σ2(Fo2) + (0.0727P)2 + 30.987P]
where P = (Fo2 + 2Fc2)/3
9137 reflectionsΔρmax = 0.73 e Å3
536 parametersΔρmin = 0.77 e Å3
Special details top

Experimental. The diffraction experiments were carried out on a Siemens SMART CCD diffractometer with a Mo K alpha sealed tube at 23°C. Preliminary cell constants were obtained from 45 frames (width of 0.3deg in omega). Final cell parameters were obtained by global refinements of reflections obtained from integration of all the frame data. A frame width of 0.3° in omega and a counting time of 20 s per frame at a crystal-to-detector distance of 5.0 cm. The collected frames were integrated using the preliminary cell-orientation matrix.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.644147 (16)0.77622 (4)0.67456 (3)0.0479 (2)
S10.66236 (4)0.63933 (9)0.64748 (9)0.0601 (4)
O10.59736 (11)0.6226 (2)0.5729 (2)0.0736 (12)
P10.58903 (4)0.79681 (9)0.71956 (8)0.0526 (4)
P20.67405 (4)0.82095 (10)0.78610 (8)0.0573 (4)
P30.65581 (3)0.86079 (8)0.57891 (7)0.0462 (3)
P40.58074 (4)0.78203 (9)0.38456 (8)0.0527 (4)
S20.58019 (5)0.88956 (11)0.32946 (9)0.0794 (5)
C10.62784 (15)0.5900 (3)0.5919 (3)0.0550 (14)
C20.63553 (16)0.5009 (3)0.5650 (3)0.0539 (13)
C30.60811 (19)0.4575 (4)0.5231 (4)0.0792 (19)
H30.58530.48330.51280.095*
C40.6140 (3)0.3751 (5)0.4958 (4)0.099 (2)
H40.59520.34590.46830.119*
C50.6479 (3)0.3385 (5)0.5101 (5)0.098 (2)
H50.65240.28480.49100.117*
C60.6747 (2)0.3801 (5)0.5519 (4)0.094 (2)
H60.69740.35380.56260.113*
C70.66906 (17)0.4610 (4)0.5790 (4)0.0716 (17)
H70.68800.48880.60710.086*
C80.60184 (17)0.8679 (4)0.7978 (3)0.0718 (17)
H8A0.60720.92510.78120.086*
H8B0.58180.87200.82720.086*
C90.63556 (17)0.8304 (4)0.8423 (3)0.0739 (18)
H9A0.62970.77410.86040.089*
H9B0.64270.86720.88350.089*
C100.63890 (14)0.8194 (4)0.4877 (3)0.0567 (14)
H10A0.64300.86270.45210.068*
H10B0.65310.76900.47790.068*
C110.59868 (13)0.7958 (3)0.4789 (3)0.0513 (13)
H11A0.58500.84050.50020.062*
H11B0.59540.74280.50490.062*
C1A0.56731 (14)0.7062 (4)0.7614 (3)0.0566 (14)
C2A0.54113 (17)0.7181 (5)0.8088 (4)0.083 (2)
H2A0.53400.77340.82000.100*
C3A0.5258 (2)0.6484 (6)0.8391 (4)0.099 (2)
H3A0.50820.65700.87050.118*
C4A0.53595 (19)0.5665 (5)0.8239 (4)0.093 (2)
H4A0.52530.51980.84460.112*
C5A0.56185 (19)0.5541 (5)0.7782 (4)0.092 (2)
H5A0.56900.49860.76780.111*
C6A0.57758 (17)0.6237 (4)0.7473 (4)0.0709 (17)
H6A0.59540.61440.71650.085*
C1B0.55038 (15)0.8511 (4)0.6677 (4)0.0619 (15)
C2B0.53463 (16)0.8130 (4)0.6064 (3)0.0675 (16)
H2B0.54320.75970.59330.081*
C3B0.50586 (18)0.8516 (6)0.5622 (4)0.095 (2)
H3B0.49520.82380.52090.114*
C4B0.4937 (2)0.9302 (7)0.5804 (7)0.124 (4)
H4B0.47500.95730.55080.149*
C5B0.5087 (3)0.9689 (7)0.6420 (8)0.171 (5)
H5B0.49981.02200.65480.205*
C6B0.5371 (2)0.9312 (5)0.6861 (6)0.138 (4)
H6B0.54730.95900.72780.165*
C1C0.69631 (15)0.9259 (4)0.7958 (3)0.0608 (15)
C2C0.72986 (17)0.9363 (4)0.7700 (4)0.0776 (18)
H2C0.74070.88970.74940.093*
C3C0.7478 (2)1.0154 (5)0.7742 (4)0.090 (2)
H3C0.77091.02040.75910.109*
C4C0.7315 (2)1.0846 (6)0.8000 (5)0.104 (3)
H4C0.74331.13750.80220.125*
C5C0.6983 (3)1.0777 (5)0.8226 (5)0.126 (3)
H5C0.68701.12620.83900.152*
C6C0.6807 (2)0.9984 (5)0.8217 (4)0.105 (3)
H6C0.65800.99440.83890.126*
C1D0.7033 (3)0.7513 (8)0.8471 (6)0.079 (3)*0.391 (9)
C2D0.7033 (3)0.6631 (8)0.8354 (5)0.079 (3)*0.391 (9)
H2D0.68840.63950.79670.095*0.391 (9)
C3D0.7257 (3)0.6102 (6)0.8815 (6)0.079 (3)*0.391 (9)
H3D0.72570.55120.87370.095*0.391 (9)
C4D0.7480 (3)0.6454 (7)0.9393 (6)0.079 (3)*0.391 (9)
H4D0.76290.61000.97020.095*0.391 (9)
C5D0.7479 (3)0.7336 (7)0.9510 (5)0.079 (3)*0.391 (9)
H5D0.76290.75720.98970.095*0.391 (9)
C6D0.7256 (3)0.7866 (6)0.9049 (7)0.079 (3)*0.391 (9)
H6D0.72560.84560.91270.095*0.391 (9)
C1DA0.7050 (6)0.7694 (17)0.8534 (12)0.060 (6)*0.138 (8)
C2DA0.7162 (7)0.7982 (15)0.9231 (13)0.060 (6)*0.138 (8)
H2DA0.70430.84430.94210.071*0.138 (8)
C3DA0.7451 (7)0.7580 (16)0.9645 (10)0.060 (6)*0.138 (8)
H3DA0.75260.77721.01120.071*0.138 (8)
C4DA0.7628 (6)0.6890 (16)0.9362 (12)0.060 (6)*0.138 (8)
H4DA0.78220.66210.96390.071*0.138 (8)
C5DA0.7516 (7)0.6602 (16)0.8665 (13)0.060 (6)*0.138 (8)
H5DA0.76350.61410.84760.071*0.138 (8)
C6DA0.7227 (7)0.7004 (17)0.8251 (10)0.060 (6)*0.138 (8)
H6DA0.71520.68120.77850.071*0.138 (8)
C1DB0.7086 (2)0.7425 (6)0.8310 (6)0.085 (2)*0.471 (7)
C2DB0.7460 (3)0.7579 (5)0.8433 (5)0.085 (2)*0.471 (7)
H2DB0.75550.81060.83090.102*0.471 (7)
C3DB0.76941 (19)0.6944 (6)0.8741 (5)0.085 (2)*0.471 (7)
H3DB0.79440.70470.88240.102*0.471 (7)
C4DB0.7553 (2)0.6156 (5)0.8927 (5)0.085 (2)*0.471 (7)
H4DB0.77100.57310.91330.102*0.471 (7)
C5DB0.7179 (3)0.6002 (5)0.8804 (6)0.085 (2)*0.471 (7)
H5DB0.70850.54750.89280.102*0.471 (7)
C6DB0.69458 (19)0.6637 (7)0.8495 (6)0.085 (2)*0.471 (7)
H6DB0.66950.65340.84130.102*0.471 (7)
C1E0.63870 (15)0.9708 (3)0.5742 (3)0.0777 (13)*0.763 (7)
C2E0.61823 (16)1.0081 (3)0.5149 (2)0.0777 (13)*0.763 (7)
H2E0.61340.97730.47200.093*0.763 (7)
C3E0.60503 (14)1.0913 (3)0.5197 (3)0.0777 (13)*0.763 (7)
H3E0.59131.11630.48000.093*0.763 (7)
C4E0.61230 (15)1.1373 (3)0.5838 (3)0.0777 (13)*0.763 (7)
H4E0.60351.19300.58700.093*0.763 (7)
C5E0.63276 (15)1.1000 (3)0.6430 (2)0.0777 (13)*0.763 (7)
H5E0.63761.13080.68590.093*0.763 (7)
C6E0.64596 (15)1.0168 (3)0.6383 (3)0.0777 (13)*0.763 (7)
H6E0.65970.99180.67790.093*0.763 (7)
C1EA0.6408 (4)0.9768 (7)0.5874 (10)0.069 (4)*0.237 (7)
C2EA0.6673 (3)1.0367 (10)0.6122 (9)0.069 (4)*0.237 (7)
H2EA0.69181.02020.62080.082*0.237 (7)
C3EA0.6574 (4)1.1212 (8)0.6241 (9)0.069 (4)*0.237 (7)
H3EA0.67511.16130.64070.082*0.237 (7)
C4EA0.6209 (4)1.1458 (7)0.6113 (9)0.069 (4)*0.237 (7)
H4EA0.61421.20230.61920.082*0.237 (7)
C5EA0.5944 (3)1.0859 (9)0.5864 (9)0.069 (4)*0.237 (7)
H5EA0.57001.10240.57780.082*0.237 (7)
C6EA0.6043 (4)1.0014 (8)0.5745 (9)0.069 (4)*0.237 (7)
H6EA0.58660.96130.55790.082*0.237 (7)
C1F0.70430 (13)0.8705 (3)0.5654 (3)0.0537 (13)
C2F0.71593 (19)0.9246 (5)0.5137 (4)0.095 (2)
H2F0.69920.96090.48760.114*
C3F0.7526 (2)0.9251 (6)0.5000 (5)0.118 (3)
H3F0.76020.96200.46530.142*
C4F0.7772 (2)0.8720 (6)0.5375 (5)0.099 (3)
H4F0.80180.87380.52990.118*
C5F0.76583 (19)0.8173 (5)0.5849 (5)0.107 (3)
H5F0.78250.77940.60920.128*
C6F0.72960 (17)0.8155 (5)0.5992 (4)0.087 (2)
H6F0.72240.77600.63240.104*
C1G0.53548 (14)0.7359 (4)0.3872 (3)0.0570 (14)
C2G0.52925 (17)0.6677 (4)0.4332 (4)0.0786 (19)
H2G0.54850.64510.46420.094*
C3G0.4947 (2)0.6340 (5)0.4326 (5)0.098 (2)
H3G0.49060.58820.46270.117*
C4G0.4662 (2)0.6684 (7)0.3874 (5)0.118 (3)
H4G0.44290.64440.38590.142*
C5G0.4717 (2)0.7367 (8)0.3452 (5)0.137 (4)
H5G0.45210.76080.31610.165*
C6G0.50609 (17)0.7709 (5)0.3450 (4)0.091 (2)
H6G0.50950.81820.31600.109*
C1H0.60854 (14)0.6990 (4)0.3479 (3)0.0562 (14)
C2H0.61795 (16)0.6244 (4)0.3857 (3)0.0650 (16)
H2H0.61090.61680.43180.078*
C3H0.63773 (18)0.5609 (5)0.3557 (4)0.085 (2)
H3H0.64410.51110.38170.102*
C4H0.64793 (19)0.5714 (5)0.2875 (5)0.094 (2)
H4H0.66110.52840.26730.113*
C5H0.6388 (2)0.6444 (6)0.2491 (4)0.103 (3)
H5H0.64590.65130.20300.123*
C6H0.61921 (17)0.7081 (4)0.2790 (4)0.0772 (18)
H6H0.61300.75790.25270.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0474 (4)0.0449 (4)0.0516 (4)0.0004 (3)0.0067 (3)0.0002 (3)
S10.0503 (8)0.0486 (8)0.0814 (11)0.0038 (6)0.0073 (7)0.0078 (7)
O10.065 (3)0.061 (3)0.090 (3)0.011 (2)0.011 (2)0.007 (2)
P10.0458 (8)0.0484 (8)0.0650 (9)0.0004 (6)0.0123 (7)0.0036 (7)
P20.0568 (9)0.0659 (9)0.0484 (8)0.0097 (7)0.0019 (7)0.0010 (7)
P30.0439 (7)0.0448 (7)0.0500 (8)0.0016 (6)0.0059 (6)0.0010 (6)
P40.0528 (8)0.0530 (8)0.0513 (8)0.0006 (7)0.0017 (6)0.0017 (7)
S20.0985 (13)0.0651 (10)0.0729 (11)0.0041 (9)0.0022 (9)0.0172 (8)
C10.062 (4)0.049 (3)0.055 (3)0.000 (3)0.010 (3)0.009 (3)
C20.069 (4)0.045 (3)0.050 (3)0.007 (3)0.015 (3)0.005 (2)
C30.088 (5)0.060 (4)0.089 (5)0.008 (4)0.003 (4)0.004 (4)
C40.134 (7)0.072 (5)0.090 (6)0.033 (5)0.004 (5)0.013 (4)
C50.132 (7)0.065 (5)0.100 (6)0.000 (5)0.031 (6)0.017 (4)
C60.100 (6)0.076 (5)0.109 (6)0.029 (4)0.024 (5)0.020 (4)
C70.068 (4)0.063 (4)0.086 (5)0.010 (3)0.020 (3)0.007 (3)
C80.070 (4)0.073 (4)0.076 (4)0.012 (3)0.027 (3)0.023 (3)
C90.076 (4)0.097 (5)0.050 (4)0.027 (4)0.018 (3)0.007 (3)
C100.052 (3)0.062 (3)0.058 (3)0.001 (3)0.013 (3)0.001 (3)
C110.050 (3)0.049 (3)0.056 (3)0.004 (2)0.012 (2)0.000 (2)
C1A0.041 (3)0.066 (4)0.063 (4)0.001 (3)0.008 (3)0.004 (3)
C2A0.071 (4)0.080 (5)0.106 (5)0.005 (4)0.040 (4)0.003 (4)
C3A0.079 (5)0.117 (7)0.108 (6)0.010 (5)0.044 (4)0.017 (5)
C4A0.073 (5)0.085 (5)0.122 (6)0.008 (4)0.017 (4)0.042 (5)
C5A0.075 (5)0.073 (5)0.133 (7)0.005 (4)0.033 (5)0.025 (4)
C6A0.067 (4)0.059 (4)0.092 (5)0.004 (3)0.030 (3)0.013 (3)
C1B0.054 (3)0.050 (3)0.084 (4)0.007 (3)0.017 (3)0.008 (3)
C2B0.061 (4)0.078 (4)0.066 (4)0.014 (3)0.017 (3)0.012 (3)
C3B0.060 (4)0.142 (8)0.082 (5)0.014 (5)0.011 (4)0.025 (5)
C4B0.080 (6)0.124 (8)0.169 (10)0.037 (6)0.012 (6)0.064 (7)
C5B0.138 (9)0.099 (7)0.266 (16)0.071 (7)0.029 (10)0.009 (9)
C6B0.117 (7)0.083 (6)0.202 (11)0.038 (5)0.031 (7)0.041 (6)
C1C0.057 (3)0.077 (4)0.048 (3)0.011 (3)0.005 (3)0.004 (3)
C2C0.069 (4)0.077 (4)0.088 (5)0.007 (4)0.011 (4)0.004 (4)
C3C0.076 (5)0.103 (6)0.093 (6)0.020 (5)0.012 (4)0.003 (5)
C4C0.102 (6)0.097 (6)0.114 (7)0.047 (5)0.019 (5)0.013 (5)
C5C0.140 (8)0.092 (6)0.156 (8)0.055 (6)0.053 (7)0.060 (6)
C6C0.101 (6)0.112 (6)0.110 (6)0.043 (5)0.045 (5)0.051 (5)
C1F0.047 (3)0.052 (3)0.064 (4)0.008 (3)0.012 (3)0.010 (3)
C2F0.071 (5)0.096 (5)0.121 (6)0.006 (4)0.025 (4)0.024 (5)
C3F0.083 (6)0.139 (8)0.139 (8)0.029 (6)0.045 (5)0.020 (6)
C4F0.055 (4)0.103 (6)0.143 (8)0.010 (4)0.028 (5)0.021 (6)
C5F0.054 (4)0.104 (6)0.164 (8)0.011 (4)0.017 (5)0.016 (6)
C6F0.056 (4)0.088 (5)0.118 (6)0.000 (4)0.018 (4)0.028 (4)
C1G0.048 (3)0.068 (4)0.056 (3)0.001 (3)0.007 (3)0.008 (3)
C2G0.060 (4)0.073 (4)0.103 (5)0.001 (3)0.007 (4)0.000 (4)
C3G0.073 (5)0.093 (5)0.133 (7)0.018 (4)0.029 (5)0.002 (5)
C4G0.053 (5)0.188 (10)0.112 (7)0.019 (5)0.003 (5)0.005 (7)
C5G0.066 (5)0.243 (13)0.101 (7)0.003 (6)0.003 (4)0.044 (8)
C6G0.058 (4)0.135 (7)0.078 (5)0.006 (4)0.002 (3)0.029 (4)
C1H0.041 (3)0.070 (4)0.057 (3)0.006 (3)0.004 (2)0.004 (3)
C2H0.071 (4)0.060 (4)0.065 (4)0.011 (3)0.012 (3)0.008 (3)
C3H0.082 (5)0.076 (5)0.099 (6)0.013 (4)0.016 (4)0.011 (4)
C4H0.075 (5)0.096 (6)0.114 (7)0.015 (4)0.020 (5)0.033 (5)
C5H0.096 (6)0.132 (7)0.087 (6)0.018 (5)0.039 (5)0.014 (5)
C6H0.072 (4)0.088 (5)0.073 (4)0.008 (4)0.019 (3)0.007 (4)
Geometric parameters (Å, º) top
Cu1—P32.2927 (15)C1D—C2D1.39
Cu1—P12.3015 (15)C1D—C6D1.39
Cu1—S12.3060 (15)C2D—C3D1.39
Cu1—P22.3419 (16)C3D—C4D1.39
S1—C11.725 (6)C4D—C5D1.39
O1—C11.245 (6)C5D—C6D1.39
P1—C1B1.832 (6)C1DA—C2DA1.39
P1—C1A1.837 (6)C1DA—C6DA1.39
P1—C81.846 (6)C2DA—C3DA1.39
P2—C1DA1.785 (12)C3DA—C4DA1.39
P2—C1C1.828 (6)C4DA—C5DA1.39
P2—C1D1.828 (8)C5DA—C6DA1.39
P2—C91.858 (6)C1DB—C2DB1.39
P2—C1DB1.888 (7)C1DB—C6DB1.39
P3—C1E1.823 (4)C2DB—C3DB1.39
P3—C1F1.835 (5)C3DB—C4DB1.39
P3—C101.855 (5)C4DB—C5DB1.39
P3—C1EA1.899 (10)C5DB—C6DB1.39
P4—C111.818 (5)C1E—C2E1.39
P4—C1G1.819 (5)C1E—C6E1.39
P4—C1H1.827 (6)C2E—C3E1.39
P4—S21.961 (2)C3E—C4E1.39
C1—C21.512 (7)C4E—C5E1.39
C2—C71.380 (8)C5E—C6E1.39
C2—C31.379 (8)C1EA—C2EA1.39
C3—C41.406 (9)C1EA—C6EA1.39
C4—C51.368 (10)C2EA—C3EA1.39
C5—C61.352 (10)C3EA—C4EA1.39
C6—C71.381 (9)C4EA—C5EA1.39
C8—C91.527 (9)C5EA—C6EA1.39
C10—C111.515 (7)C1F—C6F1.365 (8)
C1A—C6A1.372 (8)C1F—C2F1.382 (8)
C1A—C2A1.390 (8)C2F—C3F1.402 (10)
C2A—C3A1.373 (9)C3F—C4F1.358 (11)
C3A—C4A1.366 (10)C4F—C5F1.327 (10)
C4A—C5A1.360 (10)C5F—C6F1.388 (9)
C5A—C6A1.384 (8)C1G—C6G1.375 (8)
C1B—C2B1.356 (8)C1G—C2G1.399 (8)
C1B—C6B1.395 (9)C2G—C3G1.373 (9)
C2B—C3B1.400 (9)C3G—C4G1.378 (11)
C3B—C4B1.359 (12)C4G—C5G1.351 (12)
C4B—C5B1.356 (14)C5G—C6G1.371 (10)
C5B—C6B1.384 (13)C1H—C2H1.381 (8)
C1C—C6C1.377 (9)C1H—C6H1.389 (8)
C1C—C2C1.383 (8)C2H—C3H1.382 (8)
C2C—C3C1.394 (9)C3H—C4H1.373 (10)
C3C—C4C1.347 (10)C4H—C5H1.363 (11)
C4C—C5C1.338 (11)C5H—C6H1.380 (9)
C5C—C6C1.393 (10)
P3—Cu1—P1116.88 (5)C5B—C6B—C1B119.7 (9)
P3—Cu1—S1106.04 (6)C6C—C1C—C2C116.7 (6)
P1—Cu1—S1119.85 (6)C6C—C1C—P2124.6 (5)
P3—Cu1—P2114.01 (6)C2C—C1C—P2118.5 (5)
P1—Cu1—P288.91 (6)C1C—C2C—C3C121.2 (7)
S1—Cu1—P2110.44 (6)C4C—C3C—C2C120.0 (7)
C1—S1—Cu1109.3 (2)C5C—C4C—C3C120.4 (8)
C1B—P1—C1A103.2 (2)C4C—C5C—C6C120.4 (8)
C1B—P1—C8104.6 (3)C1C—C6C—C5C121.3 (7)
C1A—P1—C8102.1 (3)C2D—C1D—C6D120.0
C1B—P1—Cu1122.4 (2)C2D—C1D—P2119.9 (7)
C1A—P1—Cu1119.36 (18)C6D—C1D—P2120.1 (7)
C8—P1—Cu1102.31 (19)C1D—C2D—C3D120.0
C1DA—P2—C1C95.1 (9)C4D—C3D—C2D120.0
C1DA—P2—C1D9.7 (11)C3D—C4D—C5D120.0
C1C—P2—C1D104.0 (5)C4D—C5D—C6D120.0
C1DA—P2—C996.1 (9)C5D—C6D—C1D120.0
C1C—P2—C9103.6 (3)C2DA—C1DA—C6DA120.0
C1D—P2—C997.4 (4)C2DA—C1DA—P2127.5 (15)
C1DA—P2—C1DB19.1 (9)C6DA—C1DA—P2111.7 (15)
C1C—P2—C1DB105.2 (4)C1DA—C2DA—C3DA120.0
C1D—P2—C1DB12.2 (6)C4DA—C3DA—C2DA120.0
C9—P2—C1DB108.7 (4)C3DA—C4DA—C5DA120.0
C1DA—P2—Cu1133.4 (9)C4DA—C5DA—C6DA120.0
C1C—P2—Cu1120.92 (19)C5DA—C6DA—C1DA120.0
C1D—P2—Cu1123.9 (4)C2DB—C1DB—C6DB120.0
C9—P2—Cu1102.2 (2)C2DB—C1DB—P2124.5 (6)
C1DB—P2—Cu1115.2 (3)C6DB—C1DB—P2115.4 (6)
C1E—P3—C1F104.6 (3)C1DB—C2DB—C3DB120.0
C1E—P3—C10101.8 (3)C4DB—C3DB—C2DB120.0
C1F—P3—C1097.7 (2)C3DB—C4DB—C5DB120.0
C1E—P3—C1EA7.8 (6)C6DB—C5DB—C4DB120.0
C1F—P3—C1EA103.2 (5)C5DB—C6DB—C1DB120.0
C10—P3—C1EA109.6 (6)C2E—C1E—C6E120.0
C1E—P3—Cu1118.87 (19)C2E—C1E—P3125.7 (3)
C1F—P3—Cu1115.05 (19)C6E—C1E—P3114.2 (3)
C10—P3—Cu1115.96 (18)C3E—C2E—C1E120.0
C1EA—P3—Cu1113.6 (5)C2E—C3E—C4E120.0
C11—P4—C1G104.7 (2)C3E—C4E—C5E120.0
C11—P4—C1H106.6 (2)C4E—C5E—C6E120.0
C1G—P4—C1H106.5 (2)C5E—C6E—C1E120.0
C11—P4—S2112.69 (18)C2EA—C1EA—C6EA120.0
C1G—P4—S2113.3 (2)C2EA—C1EA—P3117.8 (9)
C1H—P4—S2112.4 (2)C6EA—C1EA—P3122.1 (9)
O1—C1—C2118.4 (5)C3EA—C2EA—C1EA120.0
O1—C1—S1124.6 (4)C4EA—C3EA—C2EA120.0
C2—C1—S1117.0 (4)C5EA—C4EA—C3EA120.0
C7—C2—C3117.9 (6)C4EA—C5EA—C6EA120.0
C7—C2—C1123.1 (5)C5EA—C6EA—C1EA120.0
C3—C2—C1118.9 (5)C6F—C1F—C2F117.0 (5)
C2—C3—C4121.2 (7)C6F—C1F—P3120.5 (4)
C5—C4—C3118.9 (7)C2F—C1F—P3121.8 (5)
C6—C5—C4120.2 (7)C1F—C2F—C3F120.7 (7)
C5—C6—C7121.0 (7)C4F—C3F—C2F120.2 (8)
C2—C7—C6120.7 (7)C5F—C4F—C3F119.3 (7)
C9—C8—P1108.6 (4)C4F—C5F—C6F121.5 (8)
C8—C9—P2110.4 (4)C1F—C6F—C5F121.2 (7)
C11—C10—P3113.9 (4)C6G—C1G—C2G118.5 (6)
C10—C11—P4112.1 (4)C6G—C1G—P4119.4 (5)
C6A—C1A—C2A118.1 (6)C2G—C1G—P4122.0 (4)
C6A—C1A—P1119.7 (4)C3G—C2G—C1G120.0 (7)
C2A—C1A—P1122.2 (5)C2G—C3G—C4G119.8 (8)
C3A—C2A—C1A120.1 (7)C5G—C4G—C3G120.3 (8)
C4A—C3A—C2A121.1 (7)C4G—C5G—C6G120.5 (8)
C5A—C4A—C3A119.3 (7)C5G—C6G—C1G120.7 (7)
C4A—C5A—C6A120.2 (7)C2H—C1H—C6H118.4 (6)
C1A—C6A—C5A121.1 (6)C2H—C1H—P4121.5 (4)
C2B—C1B—C6B117.9 (7)C6H—C1H—P4120.0 (5)
C2B—C1B—P1118.3 (4)C1H—C2H—C3H120.5 (6)
C6B—C1B—P1123.7 (6)C4H—C3H—C2H120.1 (7)
C1B—C2B—C3B121.9 (7)C5H—C4H—C3H120.4 (7)
C4B—C3B—C2B119.3 (8)C4H—C5H—C6H119.8 (7)
C5B—C4B—C3B119.7 (8)C5H—C6H—C1H120.9 (7)
C4B—C5B—C6B121.5 (9)
P3—Cu1—S1—C182.9 (2)C9—P2—C1D—C6D82.6 (6)
P1—Cu1—S1—C152.1 (2)C1DB—P2—C1D—C6D120 (3)
P2—Cu1—S1—C1153.08 (19)Cu1—P2—C1D—C6D167.3 (5)
P3—Cu1—P1—C1B18.6 (3)C6D—C1D—C2D—C3D0.0
S1—Cu1—P1—C1B111.8 (2)P2—C1D—C2D—C3D179.7 (8)
P2—Cu1—P1—C1B135.1 (2)C1D—C2D—C3D—C4D0.0
P3—Cu1—P1—C1A150.5 (2)C2D—C3D—C4D—C5D0.0
S1—Cu1—P1—C1A20.1 (2)C3D—C4D—C5D—C6D0.0
P2—Cu1—P1—C1A93.0 (2)C4D—C5D—C6D—C1D0.0
P3—Cu1—P1—C897.8 (2)C2D—C1D—C6D—C5D0.0
S1—Cu1—P1—C8131.8 (2)P2—C1D—C6D—C5D179.7 (8)
P2—Cu1—P1—C818.7 (2)C1C—P2—C1DA—C2DA49.1 (16)
P3—Cu1—P2—C1DA123.2 (13)C1D—P2—C1DA—C2DA154 (7)
P1—Cu1—P2—C1DA117.7 (13)C9—P2—C1DA—C2DA55.2 (16)
S1—Cu1—P2—C1DA3.9 (13)C1DB—P2—C1DA—C2DA172 (4)
P3—Cu1—P2—C1C12.0 (2)Cu1—P2—C1DA—C2DA168.3 (12)
P1—Cu1—P2—C1C107.1 (2)C1C—P2—C1DA—C6DA120.6 (13)
S1—Cu1—P2—C1C131.3 (2)C1D—P2—C1DA—C6DA36 (6)
P3—Cu1—P2—C1D126.1 (5)C9—P2—C1DA—C6DA135.1 (13)
P1—Cu1—P2—C1D114.8 (5)C1DB—P2—C1DA—C6DA2 (2)
S1—Cu1—P2—C1D6.8 (5)Cu1—P2—C1DA—C6DA22 (2)
P3—Cu1—P2—C9126.2 (2)C6DA—C1DA—C2DA—C3DA0.0
P1—Cu1—P2—C97.0 (2)P2—C1DA—C2DA—C3DA169 (2)
S1—Cu1—P2—C9114.6 (2)C1DA—C2DA—C3DA—C4DA0.0
P3—Cu1—P2—C1DB116.2 (4)C2DA—C3DA—C4DA—C5DA0.0
P1—Cu1—P2—C1DB124.6 (4)C3DA—C4DA—C5DA—C6DA0.0
S1—Cu1—P2—C1DB3.0 (4)C4DA—C5DA—C6DA—C1DA0.0
P1—Cu1—P3—C1E34.3 (2)C2DA—C1DA—C6DA—C5DA0.0
S1—Cu1—P3—C1E170.9 (2)P2—C1DA—C6DA—C5DA170.5 (19)
P2—Cu1—P3—C1E67.4 (2)C1DA—P2—C1DB—C2DB81 (3)
P1—Cu1—P3—C1F159.41 (19)C1C—P2—C1DB—C2DB20.9 (7)
S1—Cu1—P3—C1F64.01 (19)C1D—P2—C1DB—C2DB107 (3)
P2—Cu1—P3—C1F57.7 (2)C9—P2—C1DB—C2DB131.3 (6)
P1—Cu1—P3—C1087.5 (2)Cu1—P2—C1DB—C2DB114.8 (6)
S1—Cu1—P3—C1049.1 (2)C1DA—P2—C1DB—C6DB102 (3)
P2—Cu1—P3—C10170.83 (19)C1C—P2—C1DB—C6DB161.6 (4)
P1—Cu1—P3—C1EA40.8 (5)C1D—P2—C1DB—C6DB75 (3)
S1—Cu1—P3—C1EA177.4 (5)C9—P2—C1DB—C6DB51.2 (6)
P2—Cu1—P3—C1EA60.9 (5)Cu1—P2—C1DB—C6DB62.6 (5)
Cu1—S1—C1—O13.3 (5)C6DB—C1DB—C2DB—C3DB0.0
Cu1—S1—C1—C2176.9 (3)P2—C1DB—C2DB—C3DB177.4 (8)
O1—C1—C2—C7175.9 (5)C1DB—C2DB—C3DB—C4DB0.0
S1—C1—C2—C74.3 (7)C2DB—C3DB—C4DB—C5DB0.0
O1—C1—C2—C32.8 (8)C3DB—C4DB—C5DB—C6DB0.0
S1—C1—C2—C3177.1 (4)C4DB—C5DB—C6DB—C1DB0.0
C7—C2—C3—C40.2 (9)C2DB—C1DB—C6DB—C5DB0.0
C1—C2—C3—C4179.0 (6)P2—C1DB—C6DB—C5DB177.6 (7)
C2—C3—C4—C51.2 (11)C1F—P3—C1E—C2E101.6 (4)
C3—C4—C5—C62.1 (12)C10—P3—C1E—C2E0.3 (4)
C4—C5—C6—C72.0 (13)C1EA—P3—C1E—C2E177 (4)
C3—C2—C7—C60.1 (9)Cu1—P3—C1E—C2E128.4 (3)
C1—C2—C7—C6178.8 (6)C1F—P3—C1E—C6E81.9 (3)
C5—C6—C7—C21.0 (11)C10—P3—C1E—C6E176.8 (3)
C1B—P1—C8—C9176.7 (4)C1EA—P3—C1E—C6E1 (4)
C1A—P1—C8—C976.0 (4)Cu1—P3—C1E—C6E48.1 (3)
Cu1—P1—C8—C948.1 (4)C6E—C1E—C2E—C3E0.0
P1—C8—C9—P258.9 (5)P3—C1E—C2E—C3E176.3 (5)
C1DA—P2—C9—C8175.9 (10)C1E—C2E—C3E—C4E0.0
C1C—P2—C9—C887.3 (5)C2E—C3E—C4E—C5E0.0
C1D—P2—C9—C8166.2 (6)C3E—C4E—C5E—C6E0.0
C1DB—P2—C9—C8161.2 (5)C4E—C5E—C6E—C1E0.0
Cu1—P2—C9—C839.0 (5)C2E—C1E—C6E—C5E0.0
C1E—P3—C10—C1177.9 (4)P3—C1E—C6E—C5E176.7 (4)
C1F—P3—C10—C11175.4 (4)C1E—P3—C1EA—C2EA127 (5)
C1EA—P3—C10—C1177.6 (7)C1F—P3—C1EA—C2EA26.2 (9)
Cu1—P3—C10—C1152.6 (4)C10—P3—C1EA—C2EA129.5 (8)
P3—C10—C11—P4165.4 (3)Cu1—P3—C1EA—C2EA99.0 (8)
C1G—P4—C11—C10170.1 (4)C1E—P3—C1EA—C6EA57 (4)
C1H—P4—C11—C1057.5 (4)C1F—P3—C1EA—C6EA158.3 (8)
S2—P4—C11—C1066.3 (4)C10—P3—C1EA—C6EA55.0 (10)
C1B—P1—C1A—C6A120.7 (5)Cu1—P3—C1EA—C6EA76.4 (10)
C8—P1—C1A—C6A130.9 (5)C6EA—C1EA—C2EA—C3EA0.0
Cu1—P1—C1A—C6A19.1 (6)P3—C1EA—C2EA—C3EA175.5 (12)
C1B—P1—C1A—C2A60.9 (6)C1EA—C2EA—C3EA—C4EA0.0
C8—P1—C1A—C2A47.5 (6)C2EA—C3EA—C4EA—C5EA0.0
Cu1—P1—C1A—C2A159.3 (5)C3EA—C4EA—C5EA—C6EA0.0
C6A—C1A—C2A—C3A1.2 (10)C4EA—C5EA—C6EA—C1EA0.0
P1—C1A—C2A—C3A179.6 (6)C2EA—C1EA—C6EA—C5EA0.0
C1A—C2A—C3A—C4A0.4 (12)P3—C1EA—C6EA—C5EA175.3 (13)
C2A—C3A—C4A—C5A0.3 (12)C1E—P3—C1F—C6F146.8 (5)
C3A—C4A—C5A—C6A0.3 (12)C10—P3—C1F—C6F108.9 (5)
C2A—C1A—C6A—C5A1.2 (10)C1EA—P3—C1F—C6F138.8 (7)
P1—C1A—C6A—C5A179.7 (5)Cu1—P3—C1F—C6F14.5 (6)
C4A—C5A—C6A—C1A0.5 (11)C1E—P3—C1F—C2F42.6 (6)
C1A—P1—C1B—C2B72.9 (5)C10—P3—C1F—C2F61.8 (6)
C8—P1—C1B—C2B179.5 (5)C1EA—P3—C1F—C2F50.5 (8)
Cu1—P1—C1B—C2B65.3 (5)Cu1—P3—C1F—C2F174.8 (5)
C1A—P1—C1B—C6B109.8 (7)C6F—C1F—C2F—C3F3.3 (11)
C8—P1—C1B—C6B3.3 (8)P3—C1F—C2F—C3F174.3 (6)
Cu1—P1—C1B—C6B112.0 (7)C1F—C2F—C3F—C4F0.3 (13)
C6B—C1B—C2B—C3B0.2 (10)C2F—C3F—C4F—C5F2.6 (14)
P1—C1B—C2B—C3B177.6 (5)C3F—C4F—C5F—C6F2.5 (14)
C1B—C2B—C3B—C4B1.2 (11)C2F—C1F—C6F—C5F3.5 (11)
C2B—C3B—C4B—C5B1.9 (14)P3—C1F—C6F—C5F174.6 (6)
C3B—C4B—C5B—C6B1.8 (19)C4F—C5F—C6F—C1F0.6 (13)
C4B—C5B—C6B—C1B0.8 (19)C11—P4—C1G—C6G131.4 (5)
C2B—C1B—C6B—C5B0.0 (14)C1H—P4—C1G—C6G115.9 (5)
P1—C1B—C6B—C5B177.3 (9)S2—P4—C1G—C6G8.2 (6)
C1DA—P2—C1C—C6C113.7 (11)C11—P4—C1G—C2G46.0 (6)
C1D—P2—C1C—C6C117.6 (7)C1H—P4—C1G—C2G66.7 (5)
C9—P2—C1C—C6C16.2 (7)S2—P4—C1G—C2G169.2 (5)
C1DB—P2—C1C—C6C130.2 (7)C6G—C1G—C2G—C3G3.6 (10)
Cu1—P2—C1C—C6C97.3 (6)P4—C1G—C2G—C3G179.0 (5)
C1DA—P2—C1C—C2C72.1 (10)C1G—C2G—C3G—C4G0.9 (11)
C1D—P2—C1C—C2C68.2 (6)C2G—C3G—C4G—C5G2.1 (14)
C9—P2—C1C—C2C169.6 (5)C3G—C4G—C5G—C6G2.3 (16)
C1DB—P2—C1C—C2C55.6 (6)C4G—C5G—C6G—C1G0.5 (15)
Cu1—P2—C1C—C2C76.9 (5)C2G—C1G—C6G—C5G3.4 (11)
C6C—C1C—C2C—C3C3.7 (10)P4—C1G—C6G—C5G179.2 (7)
P2—C1C—C2C—C3C178.4 (5)C11—P4—C1H—C2H44.2 (5)
C1C—C2C—C3C—C4C3.8 (11)C1G—P4—C1H—C2H67.2 (5)
C2C—C3C—C4C—C5C0.8 (13)S2—P4—C1H—C2H168.1 (4)
C3C—C4C—C5C—C6C1.9 (15)C11—P4—C1H—C6H139.0 (5)
C2C—C1C—C6C—C5C1.0 (11)C1G—P4—C1H—C6H109.6 (5)
P2—C1C—C6C—C5C175.2 (7)S2—P4—C1H—C6H15.0 (5)
C4C—C5C—C6C—C1C1.9 (14)C6H—C1H—C2H—C3H0.5 (9)
C1DA—P2—C1D—C2D180 (100)P4—C1H—C2H—C3H177.3 (5)
C1C—P2—C1D—C2D156.2 (6)C1H—C2H—C3H—C4H0.5 (10)
C9—P2—C1D—C2D97.8 (7)C2H—C3H—C4H—C5H0.4 (11)
C1DB—P2—C1D—C2D59 (3)C3H—C4H—C5H—C6H0.1 (12)
Cu1—P2—C1D—C2D12.4 (8)C4H—C5H—C6H—C1H0.0 (12)
C1DA—P2—C1D—C6D0 (6)C2H—C1H—C6H—C5H0.2 (10)
C1C—P2—C1D—C6D23.5 (7)P4—C1H—C6H—C5H177.1 (6)

Experimental details

Crystal data
Chemical formula[Cu(C7H5OS)(C26H24P2S)(C26H24P2)]
Mr1029.55
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)36.7805 (2), 15.5630 (2), 18.6053 (2)
β (°) 96.486 (1)
V3)10581.79 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.38 × 0.27 × 0.18
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.777, 0.889
No. of measured, independent and
observed [I > 2σ(I)] reflections
24925, 9137, 5747
Rint0.048
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.178, 1.02
No. of reflections9137
No. of parameters536
No. of restraints22
H-atom treatmentRiding
w = 1/[σ2(Fo2) + (0.0727P)2 + 30.987P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.73, 0.77

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SAINT, SHELXTL (Bruker, 1997), SHELXTL.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds