Download citation
Download citation
link to html
In the title compound, C25H20O4, the di­hydro­pyran rings adopt distorted sofa conformations. The mol­ecule comprises two planar regions which form a dihedral angle of 62.56 (3)°. C—H...π interactions link the mol­ecules to form centrosymmetric dimeric pairs. The dimers are interlinked along the [101] direction by C—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680300789X/ci6219sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680300789X/ci6219Isup2.hkl
Contains datablock I

CCDC reference: 214620

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.049
  • wR factor = 0.153
  • Data-to-parameter ratio = 14.4

checkCIF results

No syntax errors found

ADDSYM reports no extra symmetry








Comment top

Coumarin derivatives occurring in plants have different biological activities (Cisowski, 1983, 1984). These derivatives are used in oral anticoagulation therapy (Cole et al., 1988; Greenfield, 1988). Coumarin derivatives have been found to be useful in solid state photochemical reactions (Gnanaguru et al., 1985) and in dye lasers (Masilamani, 1979). Coumarin substrates are also used in enzyme determination (Michel & Durant, 1976). The title compound, (I), a coumarin derivative was chosen for crystallographic study to determine its structure and conformation.

The title molecule (Fig. 1) consists of three benzene rings (A, B and F), one pyran ring (C) and two dihydropyran rings (D and E). The molecule contains two planar regions, one comprising of atoms in A, B, C and D rings and other containing atoms in E and F rings. The weighted least-squares planes through these two halves (excluding C17), form a dihedral angle of 62.56 (3)°. The H17—C17—C26—H26 torsion angle at the D and E ring junction is −46.6 (2)°. Both the dihydropyran rings, D and E, adopt distorted sofa conformations with a ΔCs(C17) asymmetry parameter of 0.070 (1) and 0.026 (1), respectively (Nardelli, 1983); the deviation of C17 from the C3—C4—O15—C16—C26 and C18—O19—C20—C25—C26 planes is 0.623 (2) and 0.633 (2) Å, respectively. All the C—C bond lengths in the title compound agree well with the mean values (Allen et al., 1987). The C2—O1 [1.381 (2) Å], C14—O1 [1.371 (2) Å] and C2—O29 [1.216 (2) Å] distances in the pyran ring agree well with those reported in the related structures (Chinnakali et al., 1998, 1999).

In the crystal, the inversion related molecules are linked to form dimeric pairs by mutual C—H···π interactions (Table 2), C28—H28A···CgA, where CgA is the centroid of the benzene ring A (C9—C13) of the symmetry-related molecule at (1 − x, 1 − y, −z). The dimeric pairs are interlinked by C7—H7···O29ii [symmetry code:(ii) x − 1/2, 3/2 − y, z − 1/2] hydrogen bonds along the [101] direction.

Experimental top

To a refluxing solution of 4-hydroxy-α-naphthocoumarin (1 mmol) in 10 ml of dry ethanol, 2-(3-methyl-2-butenyloxy)benzaldehyde (1 mmol) was added and the reaction mixture was refluxed for 7 h; evaporation of the solvent and flash column chromatography (hexane/ethyl acetate) afforded the title compound as a colourless solid with 22% yield. Single crystals were grown by slow evaporation from a solution in methanol–chloroform (1:1).

Refinement top

The H atoms were positioned geometrically and were treated as riding on their parent C atoms; refined isotropically with phenyl C—H distance of 0.93 Å, methyl C—H distance of 0.96 Å, methylene C—H distance of 0.98 Å and ethylene C—H distance of 0.97 Å.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia,1997) and PLATON (Spek, 1990); software used to prepare material for publication: SHELXL97 and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of title compound showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Packing of the molecules in the title compound, viewed down the a axis. For clarity, H atoms not involved in hydrogen bonding have been omitted.
[6a,16b]-cis-7,7-Dimethyl-6,6a,7,16b- tetrahydrochromeno[4',3':3,4]pyrano[3,2-c]-α-naphthocoumarin top
Crystal data top
C25H20O4F(000) = 808
Mr = 384.41Dx = 1.324 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54180 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 12.172 (1) Åθ = 15–35°
b = 9.140 (1) ŵ = 0.72 mm1
c = 18.081 (1) ÅT = 293 K
β = 106.58 (1)°Block, colourless
V = 1927.9 (3) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.014
Radiation source: fine-focus sealed tubeθmax = 71.9°, θmin = 3.9°
Graphite monochromatorh = 015
ω–2θ scansk = 011
3967 measured reflectionsl = 2221
3783 independent reflections3 standard reflections every 100 reflections
2686 reflections with I > 2σ(I) intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0905P)2 + 0.3018P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3783 reflectionsΔρmax = 0.20 e Å3
263 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0045 (5)
Crystal data top
C25H20O4V = 1927.9 (3) Å3
Mr = 384.41Z = 4
Monoclinic, P21/nCu Kα radiation
a = 12.172 (1) ŵ = 0.72 mm1
b = 9.140 (1) ÅT = 293 K
c = 18.081 (1) Å0.30 × 0.25 × 0.20 mm
β = 106.58 (1)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.014
3967 measured reflections3 standard reflections every 100 reflections
3783 independent reflections intensity decay: none
2686 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.153H-atom parameters constrained
S = 1.02Δρmax = 0.20 e Å3
3783 reflectionsΔρmin = 0.25 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.68391 (10)0.79519 (16)0.10818 (7)0.0528 (4)
C20.68450 (16)0.7257 (2)0.17611 (10)0.0508 (5)
C30.58192 (15)0.6570 (2)0.18167 (9)0.0440 (4)
C40.48988 (14)0.6497 (2)0.11790 (9)0.0417 (4)
C50.49193 (14)0.7184 (2)0.04648 (9)0.0430 (4)
C60.39750 (16)0.7161 (2)0.02126 (10)0.0516 (5)
H60.33050.66740.02110.062*
C70.40477 (16)0.7847 (2)0.08620 (10)0.0531 (5)
H70.34250.78200.13020.064*
C80.50480 (15)0.8601 (2)0.08835 (9)0.0452 (4)
C90.51411 (18)0.9306 (2)0.15618 (11)0.0527 (5)
H90.45220.92950.20040.063*
C100.6122 (2)0.9996 (2)0.15725 (12)0.0583 (5)
H100.61721.04350.20260.070*
C110.70632 (19)1.0058 (2)0.09097 (12)0.0597 (5)
H110.77251.05520.09230.072*
C120.70080 (17)0.9394 (2)0.02445 (11)0.0530 (5)
H120.76350.94330.01930.064*
C130.60074 (15)0.8649 (2)0.02168 (9)0.0436 (4)
C140.58970 (15)0.7905 (2)0.04481 (9)0.0430 (4)
O150.39235 (10)0.57902 (16)0.11412 (7)0.0517 (4)
C160.37477 (15)0.5139 (2)0.18455 (11)0.0456 (4)
C170.49121 (16)0.4570 (2)0.23484 (11)0.0470 (4)
H170.51710.38440.20360.056*
C180.4903 (2)0.3799 (2)0.30928 (13)0.0616 (6)
H18A0.42920.30790.29750.074*
H18B0.56220.32770.32890.074*
O190.47520 (15)0.4735 (2)0.36842 (9)0.0742 (5)
C200.52330 (19)0.6102 (3)0.37570 (11)0.0598 (6)
C210.5152 (2)0.6896 (4)0.43913 (13)0.0804 (8)
H210.48330.64710.47500.096*
C220.5541 (2)0.8309 (4)0.44906 (15)0.0878 (9)
H220.55000.88340.49220.105*
C230.5995 (2)0.8958 (3)0.39522 (16)0.0802 (8)
H230.62360.99270.40100.096*
C240.60862 (19)0.8146 (3)0.33238 (12)0.0613 (6)
H240.63990.85810.29650.074*
C250.57236 (16)0.6705 (2)0.32170 (10)0.0509 (5)
C260.58379 (15)0.5763 (2)0.25478 (10)0.0448 (4)
H260.65800.52640.27220.054*
C270.31806 (17)0.6303 (2)0.21983 (12)0.0566 (5)
H27A0.37170.70760.23970.085*
H27B0.29320.58860.26110.085*
H27C0.25310.66880.18120.085*
C280.2908 (2)0.3907 (3)0.15310 (14)0.0659 (6)
H28A0.32770.31690.13080.099*
H28B0.22570.42850.11440.099*
H28C0.26600.34860.19430.099*
O290.77551 (12)0.7283 (2)0.22640 (8)0.0734 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0416 (6)0.0783 (10)0.0355 (6)0.0165 (6)0.0060 (5)0.0084 (6)
C20.0420 (9)0.0735 (14)0.0350 (8)0.0080 (9)0.0079 (7)0.0073 (9)
C30.0413 (9)0.0565 (11)0.0352 (8)0.0029 (8)0.0126 (7)0.0027 (8)
C40.0350 (8)0.0533 (10)0.0391 (8)0.0036 (7)0.0142 (7)0.0002 (8)
C50.0375 (9)0.0579 (11)0.0339 (8)0.0039 (8)0.0108 (7)0.0005 (8)
C60.0392 (9)0.0742 (14)0.0397 (9)0.0080 (9)0.0087 (7)0.0024 (9)
C70.0441 (10)0.0752 (14)0.0366 (9)0.0014 (9)0.0061 (7)0.0008 (9)
C80.0518 (10)0.0504 (10)0.0346 (8)0.0050 (8)0.0141 (7)0.0008 (8)
C90.0675 (12)0.0525 (11)0.0385 (9)0.0088 (10)0.0157 (8)0.0040 (8)
C100.0824 (14)0.0521 (12)0.0466 (10)0.0051 (11)0.0283 (10)0.0088 (9)
C110.0701 (13)0.0575 (13)0.0600 (12)0.0119 (11)0.0323 (10)0.0019 (10)
C120.0548 (11)0.0606 (12)0.0455 (10)0.0092 (9)0.0173 (8)0.0013 (9)
C130.0474 (9)0.0505 (10)0.0355 (8)0.0027 (8)0.0159 (7)0.0020 (8)
C140.0379 (8)0.0581 (11)0.0322 (8)0.0032 (8)0.0087 (6)0.0013 (7)
O150.0405 (6)0.0710 (9)0.0454 (7)0.0114 (6)0.0150 (5)0.0052 (6)
C160.0440 (9)0.0460 (10)0.0536 (10)0.0024 (8)0.0248 (8)0.0046 (8)
C170.0494 (10)0.0454 (10)0.0535 (10)0.0080 (8)0.0264 (8)0.0046 (8)
C180.0693 (13)0.0545 (12)0.0707 (14)0.0104 (10)0.0353 (11)0.0172 (10)
O190.0956 (12)0.0789 (11)0.0657 (9)0.0106 (10)0.0513 (9)0.0170 (8)
C200.0644 (13)0.0738 (15)0.0452 (10)0.0197 (11)0.0220 (9)0.0104 (10)
C210.0923 (18)0.105 (2)0.0498 (12)0.0325 (17)0.0304 (12)0.0051 (13)
C220.0889 (18)0.112 (2)0.0608 (15)0.0295 (18)0.0194 (13)0.0225 (16)
C230.0783 (16)0.0783 (17)0.0729 (16)0.0158 (14)0.0035 (13)0.0183 (13)
C240.0589 (12)0.0695 (14)0.0495 (11)0.0082 (11)0.0058 (9)0.0006 (10)
C250.0476 (10)0.0636 (12)0.0403 (9)0.0114 (9)0.0109 (7)0.0060 (9)
C260.0439 (9)0.0540 (11)0.0391 (9)0.0038 (8)0.0162 (7)0.0069 (8)
C270.0539 (11)0.0575 (12)0.0645 (12)0.0108 (9)0.0268 (10)0.0052 (10)
C280.0615 (13)0.0586 (13)0.0824 (15)0.0109 (10)0.0279 (11)0.0015 (11)
O290.0465 (8)0.1216 (14)0.0433 (7)0.0230 (8)0.0011 (6)0.0180 (8)
Geometric parameters (Å, º) top
O1—C141.371 (2)C16—C281.518 (3)
O1—C21.381 (2)C16—C171.540 (3)
C2—O291.216 (2)C17—C181.522 (3)
C2—C31.427 (2)C17—C261.535 (3)
C3—C41.361 (2)C17—H170.98
C3—C261.508 (2)C18—O191.422 (3)
C4—O151.336 (2)C18—H18A0.97
C4—C51.443 (2)C18—H18B0.97
C5—C141.368 (2)O19—C201.370 (3)
C5—C61.421 (2)C20—C211.385 (3)
C6—C71.356 (3)C20—C251.395 (3)
C6—H60.93C21—C221.370 (4)
C7—C81.409 (3)C21—H210.93
C7—H70.93C22—C231.382 (4)
C8—C91.418 (2)C22—H220.93
C8—C131.420 (2)C23—C241.388 (3)
C9—C101.356 (3)C23—H230.93
C9—H90.93C24—C251.385 (3)
C10—C111.403 (3)C24—H240.93
C10—H100.93C25—C261.523 (3)
C11—C121.366 (3)C26—H260.98
C11—H110.93C27—H27A0.96
C12—C131.409 (3)C27—H27B0.96
C12—H120.93C27—H27C0.96
C13—C141.420 (2)C28—H28A0.96
O15—C161.476 (2)C28—H28B0.96
C16—C271.505 (3)C28—H28C0.96
C14—O1—C2121.31 (14)C18—C17—C16116.18 (15)
O29—C2—O1115.36 (16)C26—C17—C16112.90 (15)
O29—C2—C3125.78 (17)C18—C17—H17106.3
O1—C2—C3118.86 (15)C26—C17—H17106.3
C4—C3—C2119.17 (16)C16—C17—H17106.3
C4—C3—C26121.43 (16)O19—C18—C17114.94 (17)
C2—C3—C26118.84 (15)O19—C18—H18A108.5
O15—C4—C3124.88 (16)C17—C18—H18A108.5
O15—C4—C5114.00 (14)O19—C18—H18B108.5
C3—C4—C5121.11 (16)C17—C18—H18B108.5
C14—C5—C6118.87 (16)H18A—C18—H18B107.5
C14—C5—C4117.83 (15)C20—O19—C18118.51 (15)
C6—C5—C4123.30 (16)O19—C20—C21115.4 (2)
C7—C6—C5120.21 (17)O19—C20—C25123.34 (19)
C7—C6—H6119.9C21—C20—C25121.2 (2)
C5—C6—H6119.9C22—C21—C20119.9 (3)
C6—C7—C8121.36 (16)C22—C21—H21120.0
C6—C7—H7119.3C20—C21—H21120.0
C8—C7—H7119.3C21—C22—C23120.3 (2)
C7—C8—C9121.94 (17)C21—C22—H22119.8
C7—C8—C13119.96 (16)C23—C22—H22119.8
C9—C8—C13118.10 (17)C22—C23—C24119.2 (3)
C10—C9—C8120.79 (18)C22—C23—H23120.4
C10—C9—H9119.6C24—C23—H23120.4
C8—C9—H9119.6C25—C24—C23121.7 (2)
C9—C10—C11120.95 (18)C25—C24—H24119.1
C9—C10—H10119.5C23—C24—H24119.1
C11—C10—H10119.5C24—C25—C20117.5 (2)
C12—C11—C10120.07 (19)C24—C25—C26123.40 (18)
C12—C11—H11120.0C20—C25—C26119.14 (19)
C10—C11—H11120.0C3—C26—C25115.97 (16)
C11—C12—C13120.43 (19)C3—C26—C17108.37 (14)
C11—C12—H12119.8C25—C26—C17111.14 (14)
C13—C12—H12119.8C3—C26—H26107.0
C12—C13—C8119.64 (16)C25—C26—H26107.0
C12—C13—C14123.58 (16)C17—C26—H26107.0
C8—C13—C14116.77 (16)C16—C27—H27A109.5
C5—C14—O1121.47 (16)C16—C27—H27B109.5
C5—C14—C13122.83 (16)H27A—C27—H27B109.5
O1—C14—C13115.70 (15)C16—C27—H27C109.5
C4—O15—C16119.77 (13)H27A—C27—H27C109.5
O15—C16—C27106.10 (15)H27B—C27—H27C109.5
O15—C16—C28102.94 (15)C16—C28—H28A109.5
C27—C16—C28110.00 (16)C16—C28—H28B109.5
O15—C16—C17108.08 (13)H28A—C28—H28B109.5
C27—C16—C17116.39 (16)C16—C28—H28C109.5
C28—C16—C17112.25 (17)H28A—C28—H28C109.5
C18—C17—C26108.12 (16)H28B—C28—H28C109.5
C14—O1—C2—O29174.79 (19)C3—C4—O15—C166.0 (3)
C14—O1—C2—C34.6 (3)C5—C4—O15—C16175.06 (15)
O29—C2—C3—C4173.1 (2)C4—O15—C16—C2790.5 (2)
O1—C2—C3—C46.2 (3)C4—O15—C16—C28153.9 (2)
O29—C2—C3—C261.6 (3)C4—O15—C16—C1735.0 (2)
O1—C2—C3—C26177.76 (17)O15—C16—C17—C18177.69 (16)
C2—C3—C4—O15174.76 (18)C27—C16—C17—C1863.1 (2)
C26—C3—C4—O153.4 (3)C28—C16—C17—C1864.9 (2)
C2—C3—C4—C54.1 (3)O15—C16—C17—C2656.59 (19)
C26—C3—C4—C5175.5 (2)C27—C16—C17—C2662.6 (2)
O15—C4—C5—C14178.61 (17)C28—C16—C17—C26169.42 (15)
C3—C4—C5—C140.4 (3)C26—C17—C18—O1955.3 (2)
O15—C4—C5—C62.2 (3)C16—C17—C18—O1972.8 (2)
C3—C4—C5—C6178.86 (19)C17—C18—O19—C2035.4 (3)
C14—C5—C6—C70.1 (3)C18—O19—C20—C21173.70 (19)
C4—C5—C6—C7179.11 (19)C18—O19—C20—C259.4 (3)
C5—C6—C7—C80.3 (3)O19—C20—C21—C22175.9 (2)
C6—C7—C8—C9179.13 (19)C25—C20—C21—C221.0 (4)
C6—C7—C8—C130.2 (3)C20—C21—C22—C231.3 (4)
C7—C8—C9—C10178.52 (19)C21—C22—C23—C242.1 (4)
C13—C8—C9—C100.5 (3)C22—C23—C24—C250.7 (3)
C8—C9—C10—C111.3 (3)C23—C24—C25—C201.5 (3)
C9—C10—C11—C121.2 (3)C23—C24—C25—C26178.29 (19)
C10—C11—C12—C130.3 (3)O19—C20—C25—C24174.3 (2)
C11—C12—C13—C80.6 (3)C21—C20—C25—C242.4 (3)
C11—C12—C13—C14178.51 (19)O19—C20—C25—C265.9 (3)
C7—C8—C13—C12179.47 (18)C21—C20—C25—C26177.44 (19)
C9—C8—C13—C120.5 (3)C4—C3—C26—C25107.7 (2)
C7—C8—C13—C140.3 (3)C2—C3—C26—C2581.0 (2)
C9—C8—C13—C14178.64 (17)C4—C3—C26—C1718.1 (2)
C6—C5—C14—O1179.4 (2)C2—C3—C26—C17153.29 (17)
C4—C5—C14—O11.4 (3)C24—C25—C26—C328.5 (2)
C6—C5—C14—C130.7 (3)C20—C25—C26—C3151.63 (17)
C4—C5—C14—C13178.59 (17)C24—C25—C26—C17152.88 (17)
C2—O1—C14—C50.8 (3)C20—C25—C26—C1727.3 (2)
C2—O1—C14—C13179.22 (17)C18—C17—C26—C3177.81 (15)
C12—C13—C14—C5179.86 (19)C16—C17—C26—C347.87 (19)
C8—C13—C14—C50.8 (3)C18—C17—C26—C2549.28 (19)
C12—C13—C14—O10.2 (3)C16—C17—C26—C2580.67 (18)
C8—C13—C14—O1179.27 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28A···CgAi0.962.603.530 (3)163
C7—H7···O29ii0.932.493.306 (2)147
Symmetry codes: (i) x+1, y+1, z; (ii) x1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formulaC25H20O4
Mr384.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)12.172 (1), 9.140 (1), 18.081 (1)
β (°) 106.58 (1)
V3)1927.9 (3)
Z4
Radiation typeCu Kα
µ (mm1)0.72
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3967, 3783, 2686
Rint0.014
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.153, 1.02
No. of reflections3783
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.25

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS, XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia,1997) and PLATON (Spek, 1990), SHELXL97 and PARST (Nardelli, 1995).

Selected geometric parameters (Å, º) top
O1—C141.371 (2)C16—C271.505 (3)
O1—C21.381 (2)C16—C281.518 (3)
C2—O291.216 (2)C16—C171.540 (3)
C2—C31.427 (2)C17—C181.522 (3)
C3—C41.361 (2)C17—C261.535 (3)
C3—C261.508 (2)C18—O191.422 (3)
C4—O151.336 (2)O19—C201.370 (3)
C4—C51.443 (2)C21—C221.370 (4)
C5—C141.368 (2)C25—C261.523 (3)
O15—C161.476 (2)
C14—O1—C2121.31 (14)C5—C14—O1121.47 (16)
O29—C2—O1115.36 (16)C4—O15—C16119.77 (13)
O29—C2—C3125.78 (17)O15—C16—C27106.10 (15)
O1—C2—C3118.86 (15)O15—C16—C28102.94 (15)
O15—C4—C3124.88 (16)O19—C20—C21115.4 (2)
O15—C4—C5114.00 (14)O19—C20—C25123.34 (19)
C26—C3—C4—C5175.5 (2)C4—O15—C16—C28153.9 (2)
C6—C5—C14—O1179.4 (2)O19—C20—C25—C24174.3 (2)
C4—O15—C16—C2790.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C28—H28A···CgAi0.962.603.530 (3)163
C7—H7···O29ii0.932.493.306 (2)147
Symmetry codes: (i) x+1, y+1, z; (ii) x1/2, y+3/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds