Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680301417X/cm6048sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S160053680301417X/cm6048Isup2.hkl |
CCDC reference: 217428
The title complex was obtained by the reaction of aqeous solution of ammonium monovanadate(V), malonate acid and ethylenediamine-N-acetic acid in a 1:1:1 molar ratio at pH 4.5. Reaction solution was filtered off, in order to remove yellow solid, which precipitated during the reaction. After a few days, from mother liquor crystallized a blue complex. Some reduction occurs and the obtained complex was of vanadium(IV).
The positions of all H atom were located in difference Fourier syntheses. All H atoms have been refined with individual isotropic displacement parameters.
Data collection: XSCANS (Bruker, 1999); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Bruker, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXTL.
Fig. 1. A view of the molecular structure showing H2en[VO(mal)2H2O] cation with the atom labels. Displacement ellipsoids are shown at the 50% probability level. |
(C2H10N2)[VO(C3H2O4)2(H2O)] | F(000) = 724 |
Mr = 351.17 | Dx = 1.838 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 48 reflections |
a = 14.579 (2) Å | θ = 4.4–13.6° |
b = 11.866 (1) Å | µ = 0.84 mm−1 |
c = 8.758 (2) Å | T = 210 K |
β = 123.13 (1)° | Prism, blue |
V = 1268.8 (4) Å3 | 0.52 × 0.34 × 0.26 mm |
Z = 4 |
Siemens P4 diffractometer | 1568 reflections with I > 2σ(I)' |
Radiation source: fine-focus sealed tube | Rint = 0.019 |
Graphite monochromator | θmax = 29.0°, θmin = 2.4° |
profile data from ω scans | h = −19→19 |
Absorption correction: ψ scan (North et al., 1968) | k = −16→16 |
Tmin = 0.717, Tmax = 0.804 | l = −11→11 |
3486 measured reflections | 3 standard reflections every 100 reflections |
1689 independent reflections | intensity decay: 5.4% |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.025 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.066 | All H-atom parameters refined |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0338P)2 + 1.3358P] where P = (Fo2 + 2Fc2)/3 |
1689 reflections | (Δ/σ)max = 0.001 |
129 parameters | Δρmax = 0.53 e Å−3 |
0 restraints | Δρmin = −0.47 e Å−3 |
(C2H10N2)[VO(C3H2O4)2(H2O)] | V = 1268.8 (4) Å3 |
Mr = 351.17 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 14.579 (2) Å | µ = 0.84 mm−1 |
b = 11.866 (1) Å | T = 210 K |
c = 8.758 (2) Å | 0.52 × 0.34 × 0.26 mm |
β = 123.13 (1)° |
Siemens P4 diffractometer | 1568 reflections with I > 2σ(I)' |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.019 |
Tmin = 0.717, Tmax = 0.804 | 3 standard reflections every 100 reflections |
3486 measured reflections | intensity decay: 5.4% |
1689 independent reflections |
R[F2 > 2σ(F2)] = 0.025 | 0 restraints |
wR(F2) = 0.066 | All H-atom parameters refined |
S = 1.06 | Δρmax = 0.53 e Å−3 |
1689 reflections | Δρmin = −0.47 e Å−3 |
129 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
V1 | 0.5000 | 0.10767 (2) | 0.2500 | 0.01114 (9) | |
C1 | 0.25952 (10) | 0.10589 (10) | 0.06517 (16) | 0.0137 (2) | |
C2 | 0.25885 (10) | 0.06216 (11) | −0.09858 (16) | 0.0165 (2) | |
C3 | 0.33219 (9) | 0.12403 (10) | −0.14319 (16) | 0.0130 (2) | |
O1 | 0.35173 (7) | 0.13205 (8) | 0.20988 (12) | 0.01808 (19) | |
O2 | 0.17143 (8) | 0.11267 (9) | 0.05393 (13) | 0.0203 (2) | |
O3 | 0.43277 (7) | 0.13849 (8) | −0.01520 (12) | 0.01585 (18) | |
O4 | 0.29336 (7) | 0.15626 (8) | −0.30166 (12) | 0.01790 (19) | |
O5 | 0.5000 | −0.02680 (11) | 0.2500 | 0.0182 (3) | |
O6 | 0.5000 | 0.29590 (13) | 0.2500 | 0.0420 (5) | |
C4 | 0.02449 (12) | 0.15068 (12) | 0.3512 (2) | 0.0244 (3) | |
N4 | 0.09058 (9) | 0.25406 (10) | 0.44152 (15) | 0.0175 (2) | |
H2A | 0.2872 (17) | −0.0146 (17) | −0.070 (3) | 0.031 (5)* | |
H2B | 0.1851 (16) | 0.0612 (16) | −0.199 (3) | 0.024 (4)* | |
H4A | 0.1215 (18) | 0.280 (2) | 0.386 (3) | 0.045 (6)* | |
H4B | 0.1403 (18) | 0.2405 (18) | 0.545 (3) | 0.033 (5)* | |
H4C | 0.0481 (19) | 0.3031 (19) | 0.439 (3) | 0.037 (6)* | |
H4D | −0.0347 (17) | 0.1498 (17) | 0.379 (3) | 0.032 (5)* | |
H4E | 0.0728 (17) | 0.0823 (19) | 0.407 (3) | 0.034 (5)* | |
H6 | 0.4538 (18) | 0.3316 (19) | 0.167 (3) | 0.037 (6)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
V1 | 0.00901 (13) | 0.01337 (14) | 0.00899 (14) | 0.000 | 0.00359 (11) | 0.000 |
C1 | 0.0126 (5) | 0.0158 (5) | 0.0118 (5) | 0.0024 (4) | 0.0060 (4) | 0.0025 (4) |
C2 | 0.0137 (5) | 0.0236 (6) | 0.0120 (5) | −0.0058 (4) | 0.0070 (5) | −0.0039 (4) |
C3 | 0.0116 (5) | 0.0154 (5) | 0.0116 (5) | 0.0010 (4) | 0.0062 (4) | −0.0003 (4) |
O1 | 0.0115 (4) | 0.0285 (5) | 0.0122 (4) | 0.0018 (3) | 0.0052 (3) | −0.0040 (3) |
O2 | 0.0122 (4) | 0.0312 (5) | 0.0179 (5) | 0.0044 (3) | 0.0086 (4) | 0.0035 (4) |
O3 | 0.0112 (4) | 0.0234 (4) | 0.0111 (4) | −0.0018 (3) | 0.0049 (3) | 0.0018 (3) |
O4 | 0.0146 (4) | 0.0262 (5) | 0.0112 (4) | 0.0026 (3) | 0.0060 (3) | 0.0038 (3) |
O5 | 0.0189 (6) | 0.0162 (6) | 0.0191 (6) | 0.000 | 0.0101 (5) | 0.000 |
O6 | 0.0294 (8) | 0.0153 (7) | 0.0302 (9) | 0.000 | −0.0164 (7) | 0.000 |
C4 | 0.0267 (7) | 0.0211 (6) | 0.0265 (7) | 0.0019 (5) | 0.0153 (6) | 0.0043 (5) |
N4 | 0.0129 (5) | 0.0254 (6) | 0.0126 (5) | 0.0025 (4) | 0.0060 (4) | 0.0024 (4) |
V1—O5 | 1.5957 (13) | C2—H2B | 0.948 (19) |
V1—O3 | 2.0002 (10) | C3—O4 | 1.2386 (15) |
V1—O3i | 2.0002 (10) | C3—O3 | 1.2804 (14) |
V1—O1i | 2.0123 (9) | O6—H6 | 0.79 (2) |
V1—O1 | 2.0123 (9) | C4—N4 | 1.4920 (19) |
V1—O6 | 2.2335 (16) | C4—C4ii | 1.505 (3) |
C1—O2 | 1.2358 (15) | C4—H4D | 1.01 (2) |
C1—O1 | 1.2835 (15) | C4—H4E | 1.01 (2) |
C1—C2 | 1.5201 (17) | N4—H4A | 0.88 (3) |
C2—C3 | 1.5138 (16) | N4—H4B | 0.81 (2) |
C2—H2A | 0.97 (2) | N4—H4C | 0.84 (2) |
O5—V1—O3 | 100.53 (3) | C3—C2—H2B | 111.6 (11) |
O5—V1—O3i | 100.53 (3) | C1—C2—H2B | 107.5 (11) |
O3—V1—O3i | 158.93 (6) | H2A—C2—H2B | 109.6 (17) |
O5—V1—O1i | 98.26 (3) | O4—C3—O3 | 122.88 (11) |
O3—V1—O1i | 88.53 (4) | O4—C3—C2 | 118.96 (11) |
O3i—V1—O1i | 88.46 (4) | O3—C3—C2 | 118.14 (10) |
O5—V1—O1 | 98.26 (3) | C1—O1—V1 | 125.66 (8) |
O3—V1—O1 | 88.46 (4) | C3—O3—V1 | 126.29 (8) |
O3i—V1—O1 | 88.53 (4) | V1—O6—H6 | 122.3 (16) |
O1i—V1—O1 | 163.47 (6) | N4—C4—C4ii | 112.19 (9) |
O5—V1—O6 | 180.0 | N4—C4—H4D | 105.6 (12) |
O3—V1—O6 | 79.47 (3) | C4ii—C4—H4D | 111.2 (12) |
O3i—V1—O6 | 79.47 (3) | N4—C4—H4E | 109.1 (13) |
O1i—V1—O6 | 81.74 (3) | C4ii—C4—H4E | 109.0 (12) |
O1—V1—O6 | 81.74 (3) | H4D—C4—H4E | 109.7 (16) |
O2—C1—O1 | 123.02 (12) | C4—N4—H4A | 111.8 (15) |
O2—C1—C2 | 118.45 (11) | C4—N4—H4B | 110.7 (15) |
O1—C1—C2 | 118.52 (10) | H4A—N4—H4B | 106 (2) |
C3—C2—C1 | 115.89 (10) | C4—N4—H4C | 107.5 (15) |
C3—C2—H2A | 105.1 (12) | H4A—N4—H4C | 110 (2) |
C1—C2—H2A | 106.9 (12) | H4B—N4—H4C | 111 (2) |
Symmetry codes: (i) −x+1, y, −z+1/2; (ii) −x, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4A···O4iii | 0.88 (3) | 1.91 (3) | 2.7859 (15) | 171 (2) |
N4—H4B···O4iv | 0.81 (2) | 2.12 (2) | 2.8067 (15) | 142.3 (19) |
N4—H4B···O1v | 0.81 (2) | 2.58 (2) | 3.0080 (16) | 114.9 (17) |
N4—H4C···O3vi | 0.84 (2) | 2.05 (2) | 2.8312 (15) | 154 (2) |
N4—H4C···O5vii | 0.84 (2) | 2.46 (2) | 2.9829 (17) | 121.5 (18) |
O6—H6···O2iii | 0.79 (2) | 1.91 (2) | 2.6902 (12) | 168 (2) |
Symmetry codes: (iii) −x+1/2, −y+1/2, −z; (iv) x, y, z+1; (v) −x+1/2, −y+1/2, −z+1; (vi) x−1/2, −y+1/2, z+1/2; (vii) x−1/2, y+1/2, z. |
Experimental details
Crystal data | |
Chemical formula | (C2H10N2)[VO(C3H2O4)2(H2O)] |
Mr | 351.17 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 210 |
a, b, c (Å) | 14.579 (2), 11.866 (1), 8.758 (2) |
β (°) | 123.13 (1) |
V (Å3) | 1268.8 (4) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.84 |
Crystal size (mm) | 0.52 × 0.34 × 0.26 |
Data collection | |
Diffractometer | Siemens P4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.717, 0.804 |
No. of measured, independent and observed [I > 2σ(I)'] reflections | 3486, 1689, 1568 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.682 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.025, 0.066, 1.06 |
No. of reflections | 1689 |
No. of parameters | 129 |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.53, −0.47 |
Computer programs: XSCANS (Bruker, 1999), XSCANS, SHELXTL (Bruker, 1998), SHELXTL, ORTEP-3 (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
N4—H4A···O4i | 0.88 (3) | 1.91 (3) | 2.7859 (15) | 171 (2) |
N4—H4B···O4ii | 0.81 (2) | 2.12 (2) | 2.8067 (15) | 142.3 (19) |
N4—H4B···O1iii | 0.81 (2) | 2.58 (2) | 3.0080 (16) | 114.9 (17) |
N4—H4C···O3iv | 0.84 (2) | 2.05 (2) | 2.8312 (15) | 154 (2) |
N4—H4C···O5v | 0.84 (2) | 2.46 (2) | 2.9829 (17) | 121.5 (18) |
O6—H6···O2i | 0.79 (2) | 1.91 (2) | 2.6902 (12) | 168 (2) |
Symmetry codes: (i) −x+1/2, −y+1/2, −z; (ii) x, y, z+1; (iii) −x+1/2, −y+1/2, −z+1; (iv) x−1/2, −y+1/2, z+1/2; (v) x−1/2, y+1/2, z. |
There are only few crystal structures of bis(dicarboxylato)oxovanadate(IV) complexes described in the literature, namely sodium bis(oxalato)fluorooxovanadate(IV) hexahydrate (Rieskamp & Mattes, 1976),diammonium aquabis(oxalato)oxovanadate(IV) monohydrate (Hazell, 1968; Oughtred et al., 1976), diammonium aquabis(malonato)oxovanadate(IV) monohydrate (Piro & Baran, 1997) and N,N,N',N'-tetramethylethylenediammonium aquabis(malonato)oxovanadate(IV) dihydrate (Pajunen & Pajunen, 1980).
For this type of complex, two different coordination modes are observed regarding the dicarboxylate ligand, which can either be arranged cis or trans to each other. It was noted that the oxovanadate(IV) complexes containing oxalate ligands prefer a cis configuration while the corresponding malonate complexes prefer a trans configuration. This suggests, that the size of the chelation ring has a profound effect on the distribution of geometric isomers. The conformation of the chelation ring is boat. As we expected in the ethylenediammonium aquabis(malonato)oxovanadate(IV) complex, (I), arrangement of malonate ligands are trans (Fig. 1), as in the described structure of N,N,N',N'-tetramethylethylenediammonium aquabis(malonato)oxovanadate(IV) dihydrate, (II) (Pajunen & Pajunen, 1980). Comparing apical V—O bond distances of these two complexes we can see that they are equivalent. Hence, for complex (I) in the equatorial plane, V—O bond distances [V—O1 = 2.012 (1) Å and V—O3 = 2.000 (1) Å] are longer than in complex (II) [V—O1 = 1.981 (2) Å and V—O3 = 1.995 (2) Å]. Atoms V1, O5 and O6 lie on twofold axis of symmetry.
Ethylenediammonium ion participates in five strong intermolecular bonds with five O atoms (Table 1). Moreover, water atom O6 also participates as a hydrogen-bond donor with atom O2. Structural units are exclusively connected over hydrogen bonds, which extend in three dimensions. Between atoms N4 and O4 cyclic hydrogen bonds are formed (Table 1) around the inversion centre at (1/2, 1/2, 1/2). Comparing differences in the same intermolecular hydrogen-bond distance in (I) (Table 1) and complex 2 [N(H)···O = 1.89 (1) Å], we found an unexpected result.
The more bulky cation of (II) has shorter hydrogen-bond distance. Conformation of cation in (I) is closer to eclipsed with torsion angle (N4—C4—C4b—N4b) of −54.8°. Probably the intermolecular interactions stabilize the conformation of the cation.