Download citation
Download citation
link to html
Au–Pt bimetallic nanoparticles have been synthesized through a one-pot synthesis route from their respective chloride precursors using block copolymer as a stabilizer. Growth of the nanoparticles has been studied by simultaneous in situ measurement of X-ray absorption spectroscopy (XAS) and UV–Vis spectroscopy at the energy-dispersive EXAFS beamline (BL-08) at Indus-2 SRS at RRCAT, Indore, India. In situ XAS spectra, comprising both X-ray near-edge structure (XANES) and extended X-ray absorption fine-structure (EXAFS) parts, have been measured simultaneously at the Au and Pt L3-edges. While the XANES spectra of the precursors provide real-time information on the reduction process, the EXAFS spectra reveal the structure of the clusters formed in the intermediate stages of growth. This insight into the formation process throws light on how the difference in the reduction potential of the two precursors could be used to obtain the core–shell-type configuration of a bimetallic alloy in a one-pot synthesis method. The core–shell-type structure of the nanoparticles has also been confirmed by ex situ energy-dispersive spectroscopy line-scan and X-ray photoelectron spectroscopy measurements with in situ ion etching on fully formed nanoparticles.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S1600577517006257/co5084sup1.pdf
Figures S1 to S7 and Tables S1 and S2


Follow J. Synchrotron Rad.
Sign up for e-alerts
Follow J. Synchrotron Rad. on Twitter
Follow us on facebook
Sign up for RSS feeds