Download citation
Download citation
link to html
In the title compound, C10H19N32+·2Br, the plane of the three butyl C atoms nearest to the pyridine ring is almost perpendicular to the ring [dihedral angle = 84.80 (2)°]. The N atom of the ammonium group is displaced by 1.150 (8) Å from the plane of these three C atoms. The iminium N atom lies on the opposite side of this plane. The crystal structure is stabilized by hydrogen bonds between the N and Br atoms, as well as by inter­molecular C—H...Br inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808012154/cs2071sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808012154/cs2071Isup2.hkl
Contains datablock I

CCDC reference: 690927

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.010 Å
  • R factor = 0.041
  • wR factor = 0.092
  • Data-to-parameter ratio = 15.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.31 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 10 PLAT480_ALERT_4_C Long H...A H-Bond Reported H3 .. BR1 .. 3.02 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H6A .. BR1 .. 2.96 Ang.
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.313 Tmax scaled 0.313 Tmin scaled 0.119 REFLT03_ALERT_4_G WARNING: Large fraction of Friedel related reflns may be needed to determine absolute structure From the CIF: _diffrn_reflns_theta_max 26.99 From the CIF: _reflns_number_total 2307 Count of symmetry unique reflns 1611 Completeness (_total/calc) 143.20% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 696 Fraction of Friedel pairs measured 0.432 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT791_ALERT_1_G Confirm the Absolute Configuration of C7 ... S PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 5 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Ionic liquids, specially functional ionic liquids, have received growing attention recently due to their tuneable features for various chemical tasks. (S. Luo, et al., 2006). The title compound, readily synthesized from commercially available L-valine and 2-aminopyridine, might have potential utilities in some specific chemical tasks, when it is converted into a kind of functional ionic liquid by neutralization with sodium hydroxide. The structure of (S)-1-(2-ammonio-3-methylbutyl)pyridin-2(1H)-iminium dibromide is shown in Fig. 1.

The crystal is built of doubly protonated cations and bromide anions. The protonation of the amines is appropriate like in the scheme, for the C1—N2 bond distance reveals its double bond property. The dihedral angle between the plane of three alkyl carbons C6/C7/C8 and the pyridine ring is 84.80 (2) °, which means the two planes are approximately perpendicular to one another. The atom N3 of the ammonium group bonded to the alkyl chain is displaced from the plane of three carbons C6/C7/C8 by 1.150 (8) Å. The iminium N2 lies on the opposite side of this plane. The crystal structure is stablized by hydrogen-bonds between the atoms N and Br as well as by intermolecular C—H—Br interactions. The molecular packing of the title compound showing H-bridge interactions between cationic-anionic groups is shown in Fig. 2.

Related literature top

For the synthesis of (S)-1-bromo-3-methylbutan-2-amine hydrobromide, see: Xu et al. (2006). For related literature, see: Luo et al. (2006).

Experimental top

The title compound was synthesized by treating 2-aminopyridine (0.94 g,10 mmol) with (S)-1-bromo-3-methylbutan-2-amine hydrobromide (2.47 g,10 mmol) in MeCN (30 ml) under stirring at 353 K for 24 h (yield 81%). The compound (S)-1-bromo-3-methylbutan-2-amine hydrobromide was obtained from commercially available L-valine by reduction with NaBH4 and subsequent bromination with PBr3 (Xu et al., 2006). Suitable crystals of the title compound were obtained by slow evaporation of an ethanol solution at room temperature.

Refinement top

All carbon-bonded H atoms were placed in calculated positions with C—H = 0.93 Å (aromatic), C—H = 0.98 Å (sp), C—H = 0.93 Å (sp2), C—H = 0.96 Å(sp3) and refined using a riding model, with Uiso(H)=1.2eq(C). N-bound H atoms were located in a difference map and refined with an N—H distance restraint of 0.86 (3) Å.

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SMART (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound with the atomic labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular packing of the title compound showing H-bridge interactions between cationic-anionic groups.
(S)-1-(2-Ammonio-3-methylbutyl)-1,2-dihydropyridin-2-iminium dibromide top
Crystal data top
C10H19N32+·2BrF(000) = 340
Mr = 341.10Dx = 1.607 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 5.9311 (11) ÅCell parameters from 1818 reflections
b = 12.456 (2) Åθ = 5.4–53.4°
c = 9.6807 (18) ŵ = 5.73 mm1
β = 99.733 (3)°T = 293 K
V = 704.9 (2) Å3Prismatic, colorless
Z = 20.45 × 0.34 × 0.20 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2307 independent reflections
Radiation source: fine-focus sealed tube2054 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.381, Tmax = 1.000k = 1215
4117 measured reflectionsl = 1212
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0533P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
2307 reflectionsΔρmax = 0.91 e Å3
147 parametersΔρmin = 0.71 e Å3
3 restraintsAbsolute structure: Flack (1983), 696 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (2)
Crystal data top
C10H19N32+·2BrV = 704.9 (2) Å3
Mr = 341.10Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.9311 (11) ŵ = 5.73 mm1
b = 12.456 (2) ÅT = 293 K
c = 9.6807 (18) Å0.45 × 0.34 × 0.20 mm
β = 99.733 (3)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2307 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2054 reflections with I > 2σ(I)
Tmin = 0.381, Tmax = 1.000Rint = 0.038
4117 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092Δρmax = 0.91 e Å3
S = 0.99Δρmin = 0.71 e Å3
2307 reflectionsAbsolute structure: Flack (1983), 696 Friedel pairs
147 parametersAbsolute structure parameter: 0.06 (2)
3 restraints
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.02019 (11)0.21057 (4)0.84434 (6)0.03666 (18)
Br20.61945 (10)0.78903 (5)0.54550 (7)0.03742 (19)
N10.7631 (8)0.4733 (4)0.2958 (5)0.0269 (11)
N20.4665 (11)0.5923 (5)0.3096 (7)0.0398 (14)
N30.9054 (9)0.3672 (4)0.5746 (5)0.0291 (11)
H3A0.77990.33020.54060.044*
H3B0.94810.35180.66510.044*
H3C1.01720.34960.52800.044*
C10.5506 (11)0.5110 (5)0.2454 (6)0.0295 (14)
C20.4223 (13)0.4609 (6)0.1291 (7)0.0404 (17)
H20.27660.48630.09370.048*
C30.5050 (15)0.3772 (7)0.0677 (7)0.052 (2)
H30.41490.34270.00720.062*
C40.7331 (15)0.3408 (7)0.1176 (8)0.052 (2)
H40.79750.28560.07250.062*
C50.8497 (13)0.3880 (6)0.2301 (7)0.0378 (16)
H50.99530.36280.26610.045*
C60.9101 (11)0.5224 (6)0.4176 (7)0.0314 (14)
H6A0.89220.59980.41190.038*
H6B1.06860.50600.41310.038*
C70.8569 (10)0.4843 (5)0.5581 (6)0.0274 (13)
H70.69280.49450.55670.033*
C80.9855 (11)0.5495 (6)0.6818 (7)0.0369 (16)
H80.95490.62560.66050.044*
C90.8975 (15)0.5251 (8)0.8154 (7)0.057 (2)
H9A0.94140.45350.84560.086*
H9B0.73380.53090.79940.086*
H9C0.96140.57530.88670.086*
C101.2447 (12)0.5333 (8)0.6994 (8)0.057 (2)
H10A1.31940.57870.77340.086*
H10B1.29620.55140.61350.086*
H10C1.28090.45960.72240.086*
H2A0.355 (12)0.623 (8)0.260 (9)0.09 (4)*
H2B0.525 (13)0.636 (6)0.371 (7)0.06 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0508 (4)0.0348 (4)0.0231 (3)0.0033 (3)0.0026 (3)0.0009 (3)
Br20.0309 (3)0.0355 (4)0.0448 (4)0.0023 (3)0.0033 (3)0.0065 (3)
N10.033 (3)0.025 (3)0.024 (3)0.001 (2)0.007 (2)0.004 (2)
N20.040 (4)0.035 (4)0.041 (4)0.006 (3)0.002 (3)0.003 (3)
N30.032 (3)0.029 (3)0.026 (3)0.004 (2)0.004 (2)0.003 (2)
C10.041 (4)0.028 (4)0.018 (3)0.001 (3)0.002 (3)0.006 (3)
C20.042 (4)0.051 (5)0.025 (3)0.004 (3)0.005 (3)0.006 (3)
C30.074 (5)0.054 (5)0.025 (4)0.011 (4)0.002 (4)0.012 (4)
C40.077 (6)0.049 (5)0.032 (4)0.006 (4)0.014 (4)0.010 (3)
C50.051 (4)0.038 (4)0.026 (4)0.009 (3)0.012 (3)0.003 (3)
C60.031 (3)0.032 (4)0.028 (3)0.003 (3)0.004 (3)0.001 (3)
C70.021 (3)0.030 (3)0.029 (3)0.001 (2)0.001 (2)0.003 (3)
C80.046 (4)0.030 (4)0.031 (4)0.002 (3)0.004 (3)0.006 (3)
C90.066 (5)0.077 (6)0.025 (4)0.014 (5)0.003 (4)0.015 (4)
C100.035 (4)0.088 (7)0.043 (5)0.016 (4)0.008 (3)0.014 (5)
Geometric parameters (Å, º) top
Br1—H3B2.4578C4—C51.325 (10)
Br2—H2B2.55 (7)C4—H40.9300
N1—C11.356 (8)C5—H50.9300
N1—C51.380 (8)C6—C71.523 (9)
N1—C61.476 (8)C6—H6A0.9700
N2—C11.329 (9)C6—H6B0.9700
N2—H2A0.84 (8)C7—C81.538 (9)
N2—H2B0.84 (7)C7—H70.9800
N3—C71.490 (8)C8—C91.506 (11)
N3—H3A0.8900C8—C101.531 (10)
N3—H3B0.8900C8—H80.9800
N3—H3C0.8900C9—H9A0.9600
C1—C21.396 (9)C9—H9B0.9600
C2—C31.334 (11)C9—H9C0.9600
C2—H20.9300C10—H10A0.9600
C3—C41.431 (11)C10—H10B0.9600
C3—H30.9300C10—H10C0.9600
C1—N1—C5119.8 (6)C7—C6—H6A108.8
C1—N1—C6122.1 (5)N1—C6—H6B108.8
C5—N1—C6118.2 (5)C7—C6—H6B108.8
C1—N2—H2A114 (7)H6A—C6—H6B107.7
C1—N2—H2B133 (6)N3—C7—C6109.6 (5)
H2A—N2—H2B107 (9)N3—C7—C8111.9 (5)
C7—N3—H3A109.5C6—C7—C8112.3 (6)
C7—N3—H3B109.5N3—C7—H7107.6
H3A—N3—H3B109.5C6—C7—H7107.6
C7—N3—H3C109.5C8—C7—H7107.6
H3A—N3—H3C109.5C9—C8—C10111.4 (6)
H3B—N3—H3C109.5C9—C8—C7111.3 (6)
N2—C1—N1119.7 (6)C10—C8—C7111.9 (6)
N2—C1—C2121.4 (7)C9—C8—H8107.3
N1—C1—C2118.8 (7)C10—C8—H8107.3
C3—C2—C1121.2 (7)C7—C8—H8107.3
C3—C2—H2119.4C8—C9—H9A109.5
C1—C2—H2119.4C8—C9—H9B109.5
C2—C3—C4119.7 (7)H9A—C9—H9B109.5
C2—C3—H3120.2C8—C9—H9C109.5
C4—C3—H3120.2H9A—C9—H9C109.5
C5—C4—C3117.9 (7)H9B—C9—H9C109.5
C5—C4—H4121.0C8—C10—H10A109.5
C3—C4—H4121.0C8—C10—H10B109.5
C4—C5—N1122.5 (7)H10A—C10—H10B109.5
C4—C5—H5118.7C8—C10—H10C109.5
N1—C5—H5118.7H10A—C10—H10C109.5
N1—C6—C7113.7 (5)H10B—C10—H10C109.5
N1—C6—H6A108.8
C5—N1—C1—N2179.3 (6)C6—N1—C5—C4178.0 (7)
C6—N1—C1—N22.4 (9)C1—N1—C6—C782.3 (7)
C5—N1—C1—C21.2 (8)C5—N1—C6—C799.4 (7)
C6—N1—C1—C2179.5 (6)N1—C6—C7—N364.0 (7)
N2—C1—C2—C3177.9 (7)N1—C6—C7—C8170.9 (5)
N1—C1—C2—C30.2 (10)N3—C7—C8—C967.1 (7)
C1—C2—C3—C42.8 (11)C6—C7—C8—C9169.2 (6)
C2—C3—C4—C54.2 (11)N3—C7—C8—C1058.3 (8)
C3—C4—C5—N13.0 (11)C6—C7—C8—C1065.5 (8)
C1—N1—C5—C40.3 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···Br20.84 (7)2.55 (7)3.368 (7)167 (8)
N2—H2A···Br1i0.84 (8)2.53 (8)3.357 (6)168 (10)
N3—H3C···Br2ii0.892.503.369 (5)166
N3—H3B···Br10.892.463.238 (5)147
N3—H3A···Br2iii0.892.433.281 (5)160
C3—H3···Br1iv0.933.023.892 (8)157
C4—H4···Br1v0.932.913.748 (8)150
C6—H6A···Br1vi0.972.963.528 (7)119
C5—H5···Br2ii0.932.833.721 (7)162
C8—H8···Br20.982.933.793 (7)147
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+2, y1/2, z+1; (iii) x+1, y1/2, z+1; (iv) x1, y, z1; (v) x, y, z1; (vi) x+2, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC10H19N32+·2Br
Mr341.10
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)5.9311 (11), 12.456 (2), 9.6807 (18)
β (°) 99.733 (3)
V3)704.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)5.73
Crystal size (mm)0.45 × 0.34 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.381, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4117, 2307, 2054
Rint0.038
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.092, 0.99
No. of reflections2307
No. of parameters147
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.91, 0.71
Absolute structureFlack (1983), 696 Friedel pairs
Absolute structure parameter0.06 (2)

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···Br20.84 (7)2.55 (7)3.368 (7)167 (8)
N2—H2A···Br1i0.84 (8)2.53 (8)3.357 (6)168 (10)
N3—H3C···Br2ii0.892.503.369 (5)166.2
N3—H3B···Br10.892.463.238 (5)146.6
N3—H3A···Br2iii0.892.433.281 (5)160.4
C3—H3···Br1iv0.933.023.892 (8)156.9
C4—H4···Br1v0.932.913.748 (8)150.2
C6—H6A···Br1vi0.972.963.528 (7)118.5
C5—H5···Br2ii0.932.833.721 (7)161.9
C8—H8···Br20.982.933.793 (7)147.2
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x+2, y1/2, z+1; (iii) x+1, y1/2, z+1; (iv) x1, y, z1; (v) x, y, z1; (vi) x+2, y+1/2, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds