Download citation
Download citation
link to html
In the title mol­ecule, C20H18N2O2S, all bond lengths and angles are within normal ranges. Weak inter­molecular C—H...O inter­actions link the mol­ecules into centrosymmetric dimers. The crystal packing is further stabilized by van der Waals forces.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536806003849/cv2003sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536806003849/cv2003Isup2.hkl
Contains datablock I

CCDC reference: 601148

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.059
  • wR factor = 0.174
  • Data-to-parameter ratio = 17.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.98 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2003); software used to prepare material for publication: WinGX (Farrugia, 1999).

N,N-Dibenzyl-3-nitrobenzenesulfenamide top
Crystal data top
C20H18N2O2SF(000) = 736
Mr = 350.42Dx = 1.317 Mg m3
Monoclinic, P21/cMelting point: 358 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.599 (2) ÅCell parameters from 4503 reflections
b = 20.30 (2) Åθ = 1.7–27.0°
c = 15.557 (6) ŵ = 0.20 mm1
β = 90.585 (12)°T = 298 K
V = 1768 (2) Å3Prism, yellow
Z = 40.35 × 0.23 × 0.19 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
3955 independent reflections
Radiation source: fine-focus sealed tube3247 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
φ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 1.7°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
h = 77
Tmin = 0.943, Tmax = 0.960k = 2624
9951 measured reflectionsl = 2012
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.059 w = 1/[σ2(Fo2) + (0.0751P)2 + 0.4961P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.174(Δ/σ)max < 0.001
S = 1.19Δρmax = 0.31 e Å3
3955 reflectionsΔρmin = 0.27 e Å3
227 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Weighted least-squares planes through the starred atoms (Nardelli, Musatti, Domiano & Andreetti Ric·Sci.(1965),15(II—A),807). Equation of the plane: m1*X+m2*Y+m3*Z=d

Plane 1 m1 = 0.49156(0.00099) m2 = -0.85909(0.00060) m3 = -0.14258(0.00112) D = -2.52452(0.01502) Atom d s d/s (d/s)**2 C1 * -0.0025 0.0021 - 1.167 1.362 C2 * 0.0014 0.0027 0.529 0.280 C3 * 0.0023 0.0029 0.802 0.642 C4 * -0.0034 0.0029 - 1.183 1.400 C5 * 0.0004 0.0029 0.157 0.025 C6 * 0.0030 0.0027 1.118 1.249 ============ Sum((d/s)**2) for starred atoms 4.958 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms does not deviate significantly from planarity

Plane 2 m1 = 0.48662(0.00096) m2 = -0.00592(0.00095) m3 = -0.87359(0.00054) D = -8.70554(0.01001) Atom d s d/s (d/s)**2 C9 * 0.0011 0.0020 0.543 0.295 C10 * -0.0030 0.0024 - 1.215 1.476 C11 * 0.0012 0.0026 0.450 0.203 C12 * 0.0026 0.0026 0.998 0.997 C13 * -0.0041 0.0026 - 1.586 2.516 C14 * 0.0015 0.0023 0.653 0.427 ============ Sum((d/s)**2) for starred atoms 5.914 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms does not deviate significantly from planarity

Plane 3 m1 = 0.61344(0.00073) m2 = 0.07968(0.00096) m3 = -0.78571(0.00056) D = -4.60722(0.00549) Atom d s d/s (d/s)**2 C15 * -0.0073 0.0021 - 3.521 12.400 C16 * 0.0026 0.0025 1.064 1.133 C17 * 0.0075 0.0027 2.731 7.457 C18 * -0.0067 0.0024 - 2.774 7.694 C19 * -0.0006 0.0023 - 0.279 0.078 C20 * 0.0075 0.0022 3.396 11.531 ============ Sum((d/s)**2) for starred atoms 40.293 Chi-squared at 95% for 3 degrees of freedom: 7.81 The group of atoms deviates significantly from planarity

Plane 4 m1 = -0.59144(0.00152) m2 = -0.07604(0.00542) m3 = 0.80275(0.00137) D = 4.71382(0.00988) Atom d s d/s (d/s)**2 N2 * 0.0000 0.0024 0.000 0.000 O2 * 0.0000 0.0028 0.000 0.000 O1 * 0.0000 0.0028 0.000 0.000 ============ Sum((d/s)**2) for starred atoms 0.000

Plane 5 m1 = 0.68304(0.00075) m2 = 0.41302(0.00123) m3 = 0.60239(0.00063) D = 9.16407(0.00419) Atom d s d/s (d/s)**2 S1 * 0.0000 0.0007 0.000 0.000 C8 * 0.0000 0.0023 0.000 0.000 C7 * 0.0000 0.0025 0.000 0.000 N1 0.3931 0.0018 221.067 48870.707 ============ Sum((d/s)**2) for starred atoms 0.000

Plane 6 m1 = -0.35327(0.00238) m2 = -0.21906(0.00183) m3 = -0.90951(0.00123) D = -11.15265(0.00405) Atom d s d/s (d/s)**2 C8 * 0.0000 0.0023 0.000 0.000 N1 * 0.0000 0.0017 0.000 0.000 C7 * 0.0000 0.0024 0.000 0.000 ============ Sum((d/s)**2) for starred atoms 0.000

Plane 7 m1 = 0.44301(0.00147) m2 = -0.89633(0.00073) m3 = -0.01807(0.00102) D = -2.66350(0.01138) Atom d s d/s (d/s)**2 C15 * 0.0000 0.0025 0.000 0.000 S1 * 0.0000 0.0009 0.000 0.000 N1 * 0.0000 0.0019 0.000 0.000 ============ Sum((d/s)**2) for starred atoms 0.000 Dihedral angles formed by LSQ-planes Plane - plane angle (s.u.) angle (s.u.) 1 2 68.36 (0.08) 111.64 (0.08) 1 3 69.81 (0.08) 110.19 (0.08) 1 4 70.13 (0.30) 109.87 (0.30) 1 5 83.97 (0.09) 96.03 (0.09) 1 6 81.71 (0.13) 98.29 (0.13) 1 7 7.96 (0.09) 172.04 (0.09) 2 3 10.12 (0.07) 169.88 (0.07) 2 4 8.65 (0.18) 171.35 (0.18) 2 5 78.68 (0.06) 101.32 (0.06) 2 6 51.40 (0.13) 128.60 (0.13) 2 7 76.31 (0.08) 103.69 (0.08) 3 4 1.61 (0.10) 178.39 (0.10) 3 5 88.77 (0.05) 91.23 (0.05) 3 6 61.28 (0.13) 118.72 (0.13) 3 7 77.61 (0.09) 102.39 (0.09) 4 5 87.24 (0.16) 92.76 (0.16) 4 6 59.70 (0.18) 120.30 (0.18) 4 7 77.97 (0.30) 102.03 (0.30) 5 6 28.40 (0.13) 151.60 (0.13) 5 7 85.50 (0.09) 94.50 (0.09) 6 7 86.77 (0.13) 93.23 (0.13)

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.56277 (10)0.21224 (3)0.56495 (4)0.0405 (2)
O10.2354 (5)0.01340 (11)0.43497 (18)0.0866 (8)
O20.0683 (5)0.00805 (12)0.35767 (17)0.0968 (9)
N10.4582 (3)0.19604 (9)0.66524 (11)0.0333 (4)
N20.0969 (5)0.02535 (12)0.40327 (14)0.0561 (6)
C10.4650 (4)0.11507 (10)0.78420 (14)0.0352 (5)
C20.2882 (4)0.08128 (13)0.82716 (17)0.0470 (6)
H20.15820.06470.79640.0584 (19)*
C30.3016 (5)0.07175 (14)0.91512 (18)0.0550 (7)
H30.18110.04880.94290.0584 (19)*
C40.4923 (5)0.09605 (14)0.96164 (17)0.0542 (7)
H40.50070.091.02080.0584 (19)*
C50.6703 (5)0.12944 (14)0.91983 (17)0.0534 (7)
H50.80020.14580.95090.0584 (19)*
C60.6573 (4)0.13881 (13)0.83204 (16)0.0465 (6)
H60.77920.16140.80450.0584 (19)*
C70.4559 (5)0.12508 (11)0.68794 (15)0.0418 (6)
H7A0.59210.10350.66210.0584 (19)*
H7B0.31210.10490.66480.0584 (19)*
C80.2318 (4)0.22871 (11)0.68671 (15)0.0373 (5)
H8A0.18610.21570.74420.0584 (19)*
H8B0.10840.21340.64730.0584 (19)*
C90.2428 (4)0.30316 (11)0.68264 (13)0.0325 (5)
C100.4294 (4)0.33820 (12)0.71981 (16)0.0427 (6)
H100.55540.31550.74560.0584 (19)*
C110.4314 (4)0.40637 (13)0.71931 (17)0.0480 (6)
H110.55870.4290.74440.0584 (19)*
C120.2455 (4)0.44107 (13)0.68185 (17)0.0474 (6)
H120.24720.48690.68140.0584 (19)*
C130.0578 (4)0.40712 (13)0.64521 (17)0.0496 (6)
H130.0690.43010.62040.0584 (19)*
C140.0568 (4)0.33870 (12)0.64521 (15)0.0414 (5)
H140.07040.31630.61980.0584 (19)*
C150.3364 (4)0.18277 (12)0.49231 (13)0.0352 (5)
C160.1797 (5)0.22795 (12)0.45375 (15)0.0452 (6)
H160.19790.27280.46450.0584 (19)*
C170.0016 (5)0.20647 (14)0.40001 (17)0.0524 (7)
H170.1040.23690.37440.0584 (19)*
C180.0319 (5)0.14010 (14)0.38399 (15)0.0484 (6)
H180.15560.12520.34860.0584 (19)*
C190.1262 (4)0.09632 (12)0.42182 (14)0.0397 (5)
C200.3110 (4)0.11585 (11)0.47526 (14)0.0378 (5)
H200.41570.08520.49920.0584 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0431 (3)0.0446 (4)0.0339 (3)0.0127 (2)0.0018 (2)0.0058 (2)
O10.1130 (19)0.0411 (13)0.105 (2)0.0119 (13)0.0193 (16)0.0235 (12)
O20.140 (2)0.0680 (16)0.0815 (17)0.0458 (16)0.0434 (16)0.0047 (13)
N10.0424 (10)0.0281 (10)0.0292 (9)0.0016 (8)0.0008 (7)0.0031 (7)
N20.0839 (16)0.0445 (13)0.0397 (12)0.0136 (12)0.0044 (11)0.0096 (10)
C10.0461 (12)0.0232 (11)0.0363 (12)0.0027 (9)0.0037 (9)0.0025 (9)
C20.0446 (13)0.0407 (14)0.0554 (16)0.0068 (11)0.0061 (11)0.0001 (11)
C30.0582 (15)0.0528 (17)0.0544 (17)0.0099 (13)0.0132 (12)0.0077 (13)
C40.0733 (17)0.0529 (17)0.0362 (13)0.0057 (14)0.0006 (12)0.0044 (12)
C50.0569 (15)0.0581 (17)0.0449 (15)0.0071 (13)0.0155 (12)0.0004 (12)
C60.0485 (13)0.0464 (15)0.0445 (14)0.0127 (11)0.0015 (10)0.0004 (11)
C70.0609 (14)0.0277 (12)0.0367 (13)0.0018 (10)0.0058 (10)0.0064 (9)
C80.0382 (11)0.0337 (12)0.0401 (13)0.0044 (9)0.0011 (9)0.0008 (9)
C90.0353 (10)0.0318 (12)0.0303 (11)0.0008 (9)0.0015 (8)0.0024 (9)
C100.0404 (12)0.0410 (14)0.0464 (14)0.0000 (10)0.0114 (10)0.0032 (11)
C110.0485 (13)0.0387 (14)0.0567 (16)0.0072 (11)0.0064 (11)0.0119 (12)
C120.0559 (14)0.0309 (13)0.0555 (16)0.0041 (11)0.0074 (12)0.0020 (11)
C130.0477 (13)0.0448 (15)0.0562 (16)0.0111 (11)0.0048 (11)0.0061 (12)
C140.0361 (11)0.0451 (14)0.0430 (13)0.0006 (10)0.0056 (9)0.0044 (11)
C150.0439 (11)0.0361 (12)0.0256 (10)0.0052 (10)0.0015 (8)0.0021 (9)
C160.0657 (15)0.0330 (13)0.0367 (13)0.0012 (11)0.0001 (11)0.0008 (10)
C170.0650 (16)0.0515 (17)0.0405 (14)0.0121 (13)0.0121 (12)0.0041 (12)
C180.0549 (14)0.0568 (17)0.0333 (13)0.0038 (12)0.0105 (10)0.0001 (11)
C190.0569 (13)0.0355 (13)0.0268 (11)0.0074 (10)0.0006 (9)0.0038 (9)
C200.0487 (12)0.0347 (12)0.0297 (11)0.0037 (10)0.0034 (9)0.0025 (9)
Geometric parameters (Å, º) top
S1—N11.7042 (19)C8—H8B0.97
S1—C151.792 (2)C9—C101.385 (3)
O1—N21.206 (3)C9—C141.390 (3)
O2—N21.212 (3)C10—C111.383 (4)
N1—C81.472 (3)C10—H100.93
N1—C71.483 (3)C11—C121.381 (4)
N2—C191.478 (3)C11—H110.93
C1—C21.382 (3)C12—C131.376 (4)
C1—C61.389 (3)C12—H120.93
C1—C71.512 (3)C13—C141.389 (4)
C2—C31.383 (4)C13—H130.93
C2—H20.93C14—H140.93
C3—C41.375 (4)C15—C201.391 (3)
C3—H30.93C15—C161.400 (3)
C4—C51.374 (4)C16—C171.379 (4)
C4—H40.93C16—H160.93
C5—C61.380 (4)C17—C181.380 (4)
C5—H50.93C17—H170.93
C6—H60.93C18—C191.381 (3)
C7—H7A0.97C18—H180.93
C7—H7B0.97C19—C201.379 (3)
C8—C91.513 (3)C20—H200.93
C8—H8A0.97
N1—S1—C15105.39 (10)C10—C9—C14117.8 (2)
C8—N1—C7111.97 (18)C10—C9—C8121.7 (2)
C8—N1—S1115.19 (15)C14—C9—C8120.3 (2)
C7—N1—S1114.16 (14)C11—C10—C9121.2 (2)
O1—N2—O2122.3 (3)C11—C10—H10119.4
O1—N2—C19119.1 (2)C9—C10—H10119.4
O2—N2—C19118.6 (3)C12—C11—C10120.4 (2)
C2—C1—C6117.9 (2)C12—C11—H11119.8
C2—C1—C7121.9 (2)C10—C11—H11119.8
C6—C1—C7120.2 (2)C13—C12—C11119.3 (2)
C1—C2—C3121.1 (2)C13—C12—H12120.4
C1—C2—H2119.5C11—C12—H12120.4
C3—C2—H2119.5C12—C13—C14120.2 (2)
C4—C3—C2120.3 (2)C12—C13—H13119.9
C4—C3—H3119.9C14—C13—H13119.9
C2—C3—H3119.9C13—C14—C9121.1 (2)
C5—C4—C3119.4 (2)C13—C14—H14119.5
C5—C4—H4120.3C9—C14—H14119.5
C3—C4—H4120.3C20—C15—C16119.7 (2)
C4—C5—C6120.3 (2)C20—C15—S1121.08 (17)
C4—C5—H5119.8C16—C15—S1119.19 (19)
C6—C5—H5119.8C17—C16—C15120.5 (2)
C5—C6—C1121.0 (2)C17—C16—H16119.8
C5—C6—H6119.5C15—C16—H16119.8
C1—C6—H6119.5C16—C17—C18120.4 (2)
N1—C7—C1111.48 (17)C16—C17—H17119.8
N1—C7—H7A109.3C18—C17—H17119.8
C1—C7—H7A109.3C17—C18—C19118.3 (2)
N1—C7—H7B109.3C17—C18—H18120.9
C1—C7—H7B109.3C19—C18—H18120.9
H7A—C7—H7B108C20—C19—C18123.1 (2)
N1—C8—C9113.86 (18)C20—C19—N2118.6 (2)
N1—C8—H8A108.8C18—C19—N2118.3 (2)
C9—C8—H8A108.8C19—C20—C15118.0 (2)
N1—C8—H8B108.8C19—C20—H20121
C9—C8—H8B108.8C15—C20—H20121
H8A—C8—H8B107.7
C15—S1—N1—C860.87 (18)C10—C11—C12—C130.2 (4)
C15—S1—N1—C770.74 (17)C11—C12—C13—C140.7 (4)
C6—C1—C2—C30.4 (4)C12—C13—C14—C90.6 (4)
C7—C1—C2—C3179.0 (2)C10—C9—C14—C130.1 (3)
C1—C2—C3—C40.1 (4)C8—C9—C14—C13176.4 (2)
C2—C3—C4—C50.5 (4)N1—S1—C15—C2077.0 (2)
C3—C4—C5—C60.3 (4)N1—S1—C15—C16101.62 (19)
C4—C5—C6—C10.2 (4)C20—C15—C16—C170.9 (4)
C2—C1—C6—C50.6 (4)S1—C15—C16—C17177.7 (2)
C7—C1—C6—C5179.2 (2)C15—C16—C17—C180.5 (4)
C8—N1—C7—C171.0 (2)C16—C17—C18—C191.2 (4)
S1—N1—C7—C1155.84 (16)C17—C18—C19—C200.6 (4)
C2—C1—C7—N1121.4 (2)C17—C18—C19—N2178.7 (2)
C6—C1—C7—N160.1 (3)O1—N2—C19—C200.3 (4)
C7—N1—C8—C9167.67 (18)O2—N2—C19—C20178.6 (3)
S1—N1—C8—C959.7 (2)O1—N2—C19—C18179.1 (3)
N1—C8—C9—C1046.6 (3)O2—N2—C19—C182.1 (4)
N1—C8—C9—C14137.1 (2)C18—C19—C20—C150.8 (3)
C14—C9—C10—C110.4 (3)N2—C19—C20—C15179.9 (2)
C8—C9—C10—C11176.8 (2)C16—C15—C20—C191.5 (3)
C9—C10—C11—C120.3 (4)S1—C15—C20—C19177.06 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···O1i0.972.573.443 (5)150
Symmetry code: (i) x+1, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds