Download citation
Download citation
link to html
In the title mononuclear complex, [Cu(C9H9O3)2(H2O)2], the CuII ion, located on an inversion center, is hexa­coordinated by four O atoms from two benzyl­oxyacetate ligands [Cu—O = 1.9420 (14) and 2.2922 (14) Å] and two water mol­ecules [Cu—O = 2.0157 (15) Å] in a distorted octa­hedral geometry. In the crystal structure, inter­molecular O—H...O hydrogen bonds link the mol­ecules into layers parallel to the bc plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808010593/cv2398sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808010593/cv2398Isup2.hkl
Contains datablock I

CCDC reference: 688838

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.034
  • wR factor = 0.083
  • Data-to-parameter ratio = 16.5

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT230_ALERT_2_C Hirshfeld Test Diff for O1 - C1 .. 5.01 su PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Current interests in supramolecular chemistry are rapidly expanding for their intriguing architectures and potential applications (Eddaoudi et al., 2005). The organic aromatic carboxylate ligand, benzyloxyacetate, has various coordination modes and can link metal centres through carboxylate groups or/and benzyloxy group into different extended architectures. Therefore, benzyloxyacetate can be considered as a good candidate to construct various metal-organic complexes. Herein we report the crystal structure of the title mononuclear complex of benzyloxyacetate, [Cu(C9H9O3)2(H2O)2], (I).

As illustrated in Fig. 1, the CuII ion lies on an inversion center and displays an octahedral geometry defined by four carboxylate O atoms from two different benzyloxyacetate ligands and two water molecules. The Cu—O and Cu—Ow bond lengths are 1.942 (1), 2.292 (1) and 2.016 (2) Å, respectively. The characteristic CO(carboxylate) bond lengths suggest electron localization of the carboxylate groups of the anionic ligands. In the crystal structure, intermolecular hydrogen bonds (Table 1) give rise to a supramolecular structure.

Related literature top

For general background, see: Eddaoudi et al. (2005).

Experimental top

The ligand, benzyloxyacetic acid was commercially available and used without further purification. The title complex was prepared by the addition of Cu(Ac)2.H2O (4.00 g, 20 mmol) to a hot aqueous solution of benzyloxyacetic acid (1.66 g, 10 mmol); the pH was adjusted to 6 with 0.1M sodium hydroxide. The solution was allowed to evaporate at room temperature. Blue prismatic crystals were separated from the filtered solution after several days. C&H analysis. Calc. for C18H22CuO8: C 50.28, H 5.16%. Found: C 50.26, H 5.17%.

Refinement top

The C-bound H atoms were placed in calculated positions, with C—H = 0.93 or 0.97 Å, and were refined in the riding-model approximation, with Uiso(H) = 1.2Ueq(C). The H atoms of the water molecule were located in a difference Fourier map and refined with bond restrint O—H = 0.84 (2) Å in the riding-model approximation, with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 30% probability displacement ellipsoids [symmetry code: (i) -x+1, -y, -z+1].
Diaquabis(benzyloxyacetato)copper(II) top
Crystal data top
[Cu(C9H9O3)2(H2O)2]F(000) = 446
Mr = 429.91Dx = 1.536 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7991 reflections
a = 11.8847 (4) Åθ = 1.8–27.6°
b = 7.1509 (2) ŵ = 1.22 mm1
c = 11.6564 (5) ÅT = 296 K
β = 110.283 (3)°Prism, blue
V = 929.21 (6) Å30.32 × 0.24 × 0.18 mm
Z = 2
Data collection top
Bruker P4
diffractometer
2144 independent reflections
Radiation source: fine-focus sealed tube1606 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 10.000 pixels mm-1θmax = 27.6°, θmin = 1.8°
ω scansh = 1515
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 98
Tmin = 0.711, Tmax = 0.803l = 1510
7991 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0429P)2]
where P = (Fo2 + 2Fc2)/3
2144 reflections(Δ/σ)max < 0.001
130 parametersΔρmax = 0.40 e Å3
3 restraintsΔρmin = 0.57 e Å3
Crystal data top
[Cu(C9H9O3)2(H2O)2]V = 929.21 (6) Å3
Mr = 429.91Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.8847 (4) ŵ = 1.22 mm1
b = 7.1509 (2) ÅT = 296 K
c = 11.6564 (5) Å0.32 × 0.24 × 0.18 mm
β = 110.283 (3)°
Data collection top
Bruker P4
diffractometer
2144 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1606 reflections with I > 2σ(I)
Tmin = 0.711, Tmax = 0.803Rint = 0.035
7991 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0343 restraints
wR(F2) = 0.082H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.40 e Å3
2144 reflectionsΔρmin = 0.57 e Å3
130 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.00000.50000.02860 (13)
O10.47417 (14)0.2249 (2)0.58090 (13)0.0345 (4)
O20.53762 (17)0.4957 (2)0.67150 (14)0.0417 (4)
O30.66880 (13)0.1742 (2)0.52517 (14)0.0407 (4)
O1W0.42562 (15)0.1187 (2)0.33393 (14)0.0374 (4)
C10.5503 (2)0.3554 (3)0.61482 (17)0.0325 (5)
C20.6644 (2)0.3444 (3)0.5852 (2)0.0376 (5)
C30.7506 (2)0.1723 (4)0.4603 (2)0.0442 (6)
C40.8798 (2)0.1745 (3)0.54208 (19)0.0341 (5)
C50.9166 (2)0.0908 (4)0.6556 (2)0.0427 (6)
C61.0355 (3)0.0908 (4)0.7283 (2)0.0510 (7)
C71.1196 (2)0.1751 (4)0.6891 (2)0.0513 (7)
C81.0844 (2)0.2568 (4)0.5758 (3)0.0507 (7)
C90.9650 (2)0.2583 (4)0.5025 (2)0.0430 (6)
H1W10.425 (2)0.2360 (13)0.335 (2)0.056*
H1W20.457 (2)0.075 (3)0.286 (2)0.056*
H2A0.66750.44860.53310.045*
H2B0.73330.35300.66010.045*
H3A0.73520.28030.40670.053*
H3B0.73610.06120.40940.053*
H5A0.86040.03390.68330.051*
H6A1.05930.03330.80450.061*
H7A1.19980.17680.73920.062*
H8A1.14140.31150.54820.061*
H9A0.94160.31570.42620.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0348 (2)0.0229 (2)0.03073 (19)0.00185 (16)0.01464 (16)0.00319 (15)
O10.0435 (9)0.0261 (8)0.0393 (8)0.0028 (7)0.0212 (7)0.0052 (7)
O20.0643 (11)0.0267 (9)0.0400 (8)0.0002 (8)0.0254 (8)0.0066 (7)
O1W0.0465 (10)0.0316 (9)0.0357 (8)0.0020 (8)0.0160 (7)0.0004 (7)
C10.0444 (13)0.0287 (12)0.0245 (9)0.0028 (10)0.0122 (10)0.0021 (9)
C20.0400 (13)0.0300 (13)0.0423 (12)0.0057 (10)0.0136 (11)0.0086 (10)
O30.0369 (9)0.0375 (9)0.0537 (9)0.0061 (7)0.0234 (8)0.0147 (8)
C30.0414 (14)0.0559 (17)0.0389 (12)0.0013 (12)0.0188 (11)0.0086 (11)
C40.0382 (12)0.0335 (12)0.0347 (11)0.0017 (10)0.0178 (10)0.0028 (9)
C50.0493 (16)0.0419 (14)0.0427 (12)0.0061 (12)0.0233 (12)0.0054 (11)
C60.0590 (18)0.0537 (17)0.0393 (13)0.0205 (14)0.0158 (13)0.0053 (12)
C70.0400 (14)0.0482 (17)0.0584 (15)0.0070 (13)0.0077 (13)0.0118 (13)
C80.0413 (15)0.0456 (16)0.0726 (18)0.0036 (12)0.0289 (14)0.0005 (14)
C90.0453 (14)0.0432 (15)0.0459 (13)0.0038 (11)0.0225 (12)0.0055 (11)
Geometric parameters (Å, º) top
Cu1—O11.9420 (14)C3—C41.500 (3)
Cu1—O32.2922 (14)C3—H3A0.9700
Cu1—O1W2.0157 (15)C3—H3B0.9700
O1—C11.264 (3)C4—C51.379 (3)
O2—C11.239 (2)C4—C91.386 (3)
Cu1—O1i1.9420 (14)C5—C61.372 (4)
Cu1—O3i2.2922 (14)C5—H5A0.9300
Cu1—O1Wi2.0157 (15)C6—C71.374 (4)
O3—C31.424 (2)C6—H6A0.9300
O1W—H1W10.839 (9)C7—C81.370 (4)
O1W—H1W20.83 (2)C7—H7A0.9300
C1—C21.512 (3)C8—C91.380 (4)
C2—O31.414 (2)C8—H8A0.9300
C2—H2A0.9700C9—H9A0.9300
C2—H2B0.9700
O1i—Cu1—O1180.00 (7)C1—C2—H2B109.6
O1i—Cu1—O3103.51 (6)C2—O3—C3114.88 (17)
O1—Cu1—O376.49 (6)C2—O3—Cu1110.48 (12)
O1i—Cu1—O1W88.45 (6)C3—O3—Cu1130.94 (13)
O1—Cu1—O1W91.55 (6)C4—C3—H3A108.9
O3—Cu1—O3i180.0C4—C3—H3B108.9
O1W—Cu1—O388.11 (6)C4—C5—H5A119.7
O1Wi—Cu1—O391.89 (6)C4—C9—H9A119.9
O1W—Cu1—O1Wi180.0C5—C4—C9118.8 (2)
Cu1—O1W—H1W1114.0 (18)C5—C4—C3121.3 (2)
Cu1—O1W—H1W2109.5 (18)C5—C6—C7120.4 (2)
O1i—Cu1—O3i76.49 (6)C5—C6—H6A119.8
O1—Cu1—O3i103.51 (6)C6—C5—C4120.6 (2)
O1i—Cu1—O1Wi91.55 (6)C6—C5—H5A119.7
O1—Cu1—O1Wi88.45 (6)C6—C7—H7A120.2
O1—C1—C2119.44 (18)C7—C6—H6A119.8
O2—C1—O1123.9 (2)C7—C8—C9120.3 (2)
O2—C1—C2116.6 (2)C7—C8—H8A119.9
O3—C2—C1110.35 (18)C8—C7—C6119.6 (2)
O3—C2—H2A109.6C8—C7—H7A120.2
O3—C2—H2B109.6C8—C9—C4120.3 (2)
O3—C3—C4113.51 (18)C8—C9—H9A119.9
O3—C3—H3A108.9C9—C8—H8A119.9
O3—C3—H3B108.9C9—C4—C3119.9 (2)
O1W—Cu1—O3i91.89 (6)H1W1—O1W—H1W2113.6 (15)
O1Wi—Cu1—O3i88.11 (6)H2A—C2—H2B108.1
C1—O1—Cu1123.14 (13)H3A—C3—H3B107.7
C1—C2—H2A109.6
Cu1—O1—C1—O2176.53 (15)O1W—Cu1—O3—C292.76 (14)
Cu1—O1—C1—C23.9 (3)O1Wi—Cu1—O3—C287.24 (14)
Cu1—O3—C3—C4134.22 (17)O1W—Cu1—O3—C363.95 (19)
O1i—Cu1—O3—C2179.29 (13)O1Wi—Cu1—O3—C3116.05 (19)
O1—Cu1—O3—C20.71 (13)C1—C2—O3—C3161.48 (18)
O1i—Cu1—O3—C324.0 (2)C1—C2—O3—Cu10.7 (2)
O1—Cu1—O3—C3156.0 (2)C2—O3—C3—C469.9 (3)
O1—C1—C2—O32.8 (3)C3—C4—C5—C6178.6 (2)
O2—C1—C2—O3177.60 (17)C3—C4—C9—C8178.3 (2)
O3—Cu1—O1—C12.51 (15)C4—C5—C6—C70.3 (4)
O3i—Cu1—O1—C1177.49 (15)C5—C4—C9—C80.2 (3)
O3—C3—C4—C531.9 (3)C5—C6—C7—C81.2 (4)
O3—C3—C4—C9149.7 (2)C6—C7—C8—C91.5 (4)
O1W—Cu1—O1—C190.19 (16)C7—C8—C9—C41.0 (4)
O1Wi—Cu1—O1—C189.81 (16)C9—C4—C5—C60.1 (3)
Symmetry code: (i) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2ii0.84 (1)1.98 (1)2.796 (2)165 (2)
O1W—H1W2···O2iii0.83 (2)1.96 (1)2.788 (2)173 (2)
Symmetry codes: (ii) x+1, y+1, z+1; (iii) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Cu(C9H9O3)2(H2O)2]
Mr429.91
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)11.8847 (4), 7.1509 (2), 11.6564 (5)
β (°) 110.283 (3)
V3)929.21 (6)
Z2
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.32 × 0.24 × 0.18
Data collection
DiffractometerBruker P4
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.711, 0.803
No. of measured, independent and
observed [I > 2σ(I)] reflections
7991, 2144, 1606
Rint0.035
(sin θ/λ)max1)0.653
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.082, 1.03
No. of reflections2144
No. of parameters130
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.40, 0.57

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O2i0.839 (9)1.978 (12)2.796 (2)165 (2)
O1W—H1W2···O2ii0.83 (2)1.964 (10)2.788 (2)173 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds