In the title compound, {[Sr(C
6H
2N
2O
4)(H
2O)
2]·H
2O}
n, the Sr
II ions are bridged by the pyrazine-2,3-dicarboxylate ligands with the formation of two-dimensional polymeric layers parallel to the
ac plane. Each Sr
II ion is eight-coordinated by one N and five O atoms from the four ligands and two water molecules. The coordination polyhedron is derived from a pentagonal bipyramid with an O atom at the apex on one side of the equatorial plane and two O atoms sharing the apical site on the other side. The coordinated and uncoordinated water molecules are involved in O—H
O and O—H
N hydrogen bonds, which consolidate the crystal structure.
Supporting information
CCDC reference: 696408
Key indicators
- Single-crystal X-ray study
- T = 120 K
- Mean (C-C) = 0.004 Å
- R factor = 0.025
- wR factor = 0.055
- Data-to-parameter ratio = 13.3
checkCIF/PLATON results
No syntax errors found
Alert level C
PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .... 2.06
PLAT417_ALERT_2_C Short Inter D-H..H-D H1W1 .. H2W2 .. 2.13 Ang.
PLAT720_ALERT_4_C Number of Unusual/Non-Standard Labels .......... 6
PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.35 Ratio
0 ALERT level A = In general: serious problem
0 ALERT level B = Potentially serious problem
4 ALERT level C = Check and explain
0 ALERT level G = General alerts; check
0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
2 ALERT type 2 Indicator that the structure model may be wrong or deficient
0 ALERT type 3 Indicator that the structure quality may be low
2 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check
A solution of
pyrazine-2,3-dicarboxlic acid (0.5 g, 2.91 mmol) in methanol (40 ml) was added
to a solution of Sr(NO3)2 (0.31 g, 1.46 mmol) in water (10 ml) and the
resulting colourless solution was stirred for 10 min at room temperature. This
solution was left to evaporate slowly at room temperature. After one week,
colourless plate crystals of the title compound were isolated (yield 0.35 g,
78.03%).
C-bound H atoms were geometrically positioned (C-H 0.95 Å),
while O-bound H atoms
were found in difference Fourier maps, but placed in idealized positions
with O-H of 0.85 Å.
All hydrogen atoms were refined
in riding model approximation with Uiso(H) =
1.2Ueq of the paren atom.
Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Poly[[diaqua-µ
4-pyrazine-2,3-dicarboxylato-
κ6N,O
2:O
2':O
3,O
3':O
3-strontium(II)] monohydrate]
top
Crystal data top
[Sr(C6H2N2O4)(H2O)2]·H2O | F(000) = 608 |
Mr = 307.76 | Dx = 2.069 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yn | Cell parameters from 156 reflections |
a = 10.4931 (7) Å | θ = 3–26° |
b = 6.9839 (4) Å | µ = 5.48 mm−1 |
c = 13.5208 (8) Å | T = 120 K |
β = 94.267 (1)° | Plate, colorless |
V = 988.10 (10) Å3 | 0.28 × 0.25 × 0.10 mm |
Z = 4 | |
Data collection top
Bruker SMART 1000 CCD area-detector diffractometer | 1934 independent reflections |
Radiation source: fine-focus sealed tube | 1595 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.040 |
ϕ and ω scans | θmax = 26.0°, θmin = 2.4° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −12→12 |
Tmin = 0.240, Tmax = 0.568 | k = −8→8 |
8338 measured reflections | l = −16→16 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.024 | Hydrogen site location: mixed |
wR(F2) = 0.054 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.026P)2] where P = (Fo2 + 2Fc2)/3 |
1934 reflections | (Δ/σ)max = 0.002 |
145 parameters | Δρmax = 0.92 e Å−3 |
0 restraints | Δρmin = −0.45 e Å−3 |
Crystal data top
[Sr(C6H2N2O4)(H2O)2]·H2O | V = 988.10 (10) Å3 |
Mr = 307.76 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 10.4931 (7) Å | µ = 5.48 mm−1 |
b = 6.9839 (4) Å | T = 120 K |
c = 13.5208 (8) Å | 0.28 × 0.25 × 0.10 mm |
β = 94.267 (1)° | |
Data collection top
Bruker SMART 1000 CCD area-detector diffractometer | 1934 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | 1595 reflections with I > 2σ(I) |
Tmin = 0.240, Tmax = 0.568 | Rint = 0.040 |
8338 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.024 | 0 restraints |
wR(F2) = 0.054 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.92 e Å−3 |
1934 reflections | Δρmin = −0.45 e Å−3 |
145 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Sr1 | −0.44206 (2) | 0.17756 (3) | 0.375530 (17) | 0.01058 (9) | |
N1 | −0.4291 (2) | 0.1488 (3) | 0.17632 (16) | 0.0137 (5) | |
N2 | −0.3958 (2) | 0.2550 (3) | −0.01781 (16) | 0.0138 (5) | |
O1 | −0.14140 (18) | 0.1344 (3) | −0.07125 (13) | 0.0154 (4) | |
O2 | −0.09707 (18) | 0.3655 (3) | 0.03862 (13) | 0.0148 (4) | |
O3 | −0.21964 (18) | 0.1162 (3) | 0.30617 (13) | 0.0164 (4) | |
O4 | −0.10633 (16) | 0.0171 (3) | 0.18088 (13) | 0.0131 (4) | |
C1 | −0.3115 (2) | 0.1518 (4) | 0.14221 (19) | 0.0114 (6) | |
C2 | −0.2956 (3) | 0.2059 (4) | 0.04464 (19) | 0.0117 (6) | |
C3 | −0.5114 (3) | 0.2480 (4) | 0.0166 (2) | 0.0156 (6) | |
H3A | −0.5841 | 0.2794 | −0.0264 | 0.019* | |
C4 | −0.5277 (3) | 0.1963 (4) | 0.11335 (19) | 0.0150 (6) | |
H4A | −0.6115 | 0.1945 | 0.1356 | 0.018* | |
C5 | −0.2037 (3) | 0.0901 (4) | 0.21630 (19) | 0.0123 (6) | |
C6 | −0.1670 (3) | 0.2340 (4) | 0.00239 (19) | 0.0114 (6) | |
O1W | −0.64324 (17) | −0.0101 (3) | 0.30768 (13) | 0.0161 (4) | |
H1W1 | −0.6382 | −0.1106 | 0.2727 | 0.019* | |
H2W1 | −0.7174 | 0.0355 | 0.2932 | 0.019* | |
O2W | −0.31193 (17) | 0.2633 (3) | 0.53262 (13) | 0.0150 (4) | |
H1W2 | −0.3220 | 0.3802 | 0.5478 | 0.018* | |
H2W2 | −0.3246 | 0.1853 | 0.5791 | 0.018* | |
O3W | 0.11689 (17) | 0.1471 (3) | 0.28299 (13) | 0.0161 (4) | |
H1W3 | 0.0444 | 0.1203 | 0.2540 | 0.019* | |
H2W3 | 0.1011 | 0.1787 | 0.3415 | 0.019* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Sr1 | 0.00953 (13) | 0.01224 (14) | 0.01019 (13) | 0.00004 (11) | 0.00220 (9) | 0.00048 (11) |
N1 | 0.0110 (12) | 0.0183 (13) | 0.0119 (11) | 0.0000 (10) | 0.0026 (9) | −0.0003 (10) |
N2 | 0.0112 (12) | 0.0163 (12) | 0.0140 (11) | 0.0013 (9) | 0.0021 (9) | 0.0000 (10) |
O1 | 0.0168 (10) | 0.0174 (10) | 0.0125 (9) | −0.0015 (8) | 0.0050 (8) | −0.0024 (8) |
O2 | 0.0123 (10) | 0.0160 (11) | 0.0163 (10) | −0.0026 (8) | 0.0029 (8) | −0.0017 (8) |
O3 | 0.0142 (10) | 0.0245 (11) | 0.0106 (9) | 0.0028 (8) | 0.0022 (8) | −0.0006 (8) |
O4 | 0.0084 (9) | 0.0159 (10) | 0.0154 (9) | 0.0020 (8) | 0.0033 (8) | −0.0022 (8) |
C1 | 0.0086 (13) | 0.0133 (14) | 0.0124 (13) | −0.0008 (11) | 0.0016 (10) | −0.0041 (11) |
C2 | 0.0137 (14) | 0.0095 (13) | 0.0123 (13) | −0.0030 (11) | 0.0024 (11) | −0.0016 (11) |
C3 | 0.0119 (15) | 0.0185 (14) | 0.0161 (14) | 0.0013 (11) | −0.0009 (11) | −0.0008 (12) |
C4 | 0.0096 (14) | 0.0195 (15) | 0.0157 (14) | −0.0006 (11) | 0.0005 (11) | −0.0008 (12) |
C5 | 0.0126 (14) | 0.0099 (13) | 0.0144 (14) | −0.0027 (11) | 0.0017 (11) | 0.0027 (11) |
C6 | 0.0115 (14) | 0.0108 (13) | 0.0118 (13) | 0.0017 (11) | −0.0001 (11) | 0.0027 (11) |
O1W | 0.0123 (10) | 0.0176 (10) | 0.0184 (10) | 0.0009 (8) | 0.0016 (8) | −0.0007 (8) |
O2W | 0.0161 (10) | 0.0145 (10) | 0.0142 (10) | −0.0007 (8) | 0.0010 (8) | 0.0013 (8) |
O3W | 0.0112 (10) | 0.0257 (11) | 0.0113 (9) | −0.0009 (8) | 0.0012 (8) | −0.0013 (8) |
Geometric parameters (Å, º) top
Sr1—O2i | 2.4887 (18) | O2—Sr1ii | 2.4887 (18) |
Sr1—O2W | 2.5106 (18) | O2—Sr1v | 2.8517 (18) |
Sr1—O4ii | 2.5533 (18) | O3—C5 | 1.252 (3) |
Sr1—O1W | 2.5937 (19) | O4—C5 | 1.267 (3) |
Sr1—O3 | 2.6145 (18) | O4—Sr1i | 2.5533 (18) |
Sr1—O1iii | 2.6155 (18) | C1—C2 | 1.394 (4) |
Sr1—N1 | 2.714 (2) | C1—C5 | 1.517 (4) |
Sr1—O2iii | 2.8517 (18) | C2—C6 | 1.516 (4) |
Sr1—C6iii | 3.082 (3) | C3—C4 | 1.381 (4) |
Sr1—Sr1iv | 4.4235 (5) | C3—H3A | 0.9500 |
Sr1—H1W2 | 2.9292 | C4—H4A | 0.9500 |
Sr1—H2W2 | 2.9320 | C6—Sr1v | 3.082 (3) |
N1—C4 | 1.332 (3) | O1W—H1W1 | 0.8500 |
N1—C1 | 1.349 (3) | O1W—H2W1 | 0.8500 |
N2—C3 | 1.331 (3) | O2W—H1W2 | 0.8500 |
N2—C2 | 1.343 (3) | O2W—H2W2 | 0.8500 |
O1—C6 | 1.260 (3) | O3W—H1W3 | 0.8501 |
O1—Sr1v | 2.6155 (18) | O3W—H2W3 | 0.8499 |
O2—C6 | 1.252 (3) | | |
| | | |
O2i—Sr1—O2W | 75.75 (6) | O2iii—Sr1—H1W2 | 70.9 |
O2i—Sr1—O4ii | 157.35 (6) | C6iii—Sr1—H1W2 | 76.3 |
O2W—Sr1—O4ii | 85.61 (6) | Sr1iv—Sr1—H1W2 | 78.0 |
O2i—Sr1—O1W | 79.88 (6) | O2i—Sr1—H2W2 | 62.3 |
O2W—Sr1—O1W | 142.83 (6) | O2W—Sr1—H2W2 | 15.6 |
O4ii—Sr1—O1W | 122.57 (6) | O4ii—Sr1—H2W2 | 100.6 |
O2i—Sr1—O3 | 84.44 (6) | O1W—Sr1—H2W2 | 128.0 |
O2W—Sr1—O3 | 84.19 (6) | O3—Sr1—H2W2 | 90.9 |
O4ii—Sr1—O3 | 80.93 (6) | O1iii—Sr1—H2W2 | 91.2 |
O1W—Sr1—O3 | 121.00 (6) | N1—Sr1—H2W2 | 152.2 |
O2i—Sr1—O1iii | 114.76 (6) | O2iii—Sr1—H2W2 | 60.0 |
O2W—Sr1—O1iii | 92.48 (6) | C6iii—Sr1—H2W2 | 76.1 |
O4ii—Sr1—O1iii | 78.28 (6) | Sr1iv—Sr1—H2W2 | 54.3 |
O1W—Sr1—O1iii | 72.81 (6) | H1W2—Sr1—H2W2 | 28.2 |
O3—Sr1—O1iii | 159.14 (6) | C4—N1—C1 | 117.7 (2) |
O2i—Sr1—N1 | 112.29 (6) | C4—N1—Sr1 | 121.46 (17) |
O2W—Sr1—N1 | 142.46 (6) | C1—N1—Sr1 | 116.91 (16) |
O4ii—Sr1—N1 | 75.33 (6) | C3—N2—C2 | 117.5 (2) |
O1W—Sr1—N1 | 73.21 (6) | C6—O1—Sr1v | 99.33 (16) |
O3—Sr1—N1 | 61.32 (6) | C6—O2—Sr1ii | 153.65 (17) |
O1iii—Sr1—N1 | 114.22 (6) | C6—O2—Sr1v | 88.36 (15) |
O2i—Sr1—O2iii | 68.33 (6) | Sr1ii—O2—Sr1v | 111.67 (6) |
O2W—Sr1—O2iii | 71.13 (6) | C5—O3—Sr1 | 124.02 (17) |
O4ii—Sr1—O2iii | 117.81 (5) | C5—O4—Sr1i | 132.10 (16) |
O1W—Sr1—O2iii | 73.99 (5) | N1—C1—C2 | 120.3 (2) |
O3—Sr1—O2iii | 146.69 (6) | N1—C1—C5 | 115.2 (2) |
O1iii—Sr1—O2iii | 47.66 (5) | C2—C1—C5 | 124.4 (2) |
N1—Sr1—O2iii | 146.41 (6) | N2—C2—C1 | 121.3 (2) |
O2i—Sr1—C6iii | 91.29 (7) | N2—C2—C6 | 114.0 (2) |
O2W—Sr1—C6iii | 82.66 (6) | C1—C2—C6 | 124.4 (2) |
O4ii—Sr1—C6iii | 99.08 (6) | N2—C3—C4 | 121.4 (3) |
O1W—Sr1—C6iii | 70.19 (6) | N2—C3—H3A | 119.3 |
O3—Sr1—C6iii | 166.80 (6) | C4—C3—H3A | 119.3 |
O1iii—Sr1—C6iii | 23.79 (6) | N1—C4—C3 | 121.7 (3) |
N1—Sr1—C6iii | 131.61 (7) | N1—C4—H4A | 119.1 |
O2iii—Sr1—C6iii | 23.97 (6) | C3—C4—H4A | 119.1 |
O2i—Sr1—Sr1iv | 36.81 (4) | O3—C5—O4 | 126.5 (2) |
O2W—Sr1—Sr1iv | 69.70 (4) | O3—C5—C1 | 116.9 (2) |
O4ii—Sr1—Sr1iv | 145.08 (4) | O4—C5—C1 | 116.6 (2) |
O1W—Sr1—Sr1iv | 73.93 (4) | O2—C6—O1 | 124.1 (2) |
O3—Sr1—Sr1iv | 118.96 (4) | O2—C6—C2 | 117.4 (2) |
O1iii—Sr1—Sr1iv | 78.55 (4) | O1—C6—C2 | 118.3 (2) |
N1—Sr1—Sr1iv | 138.62 (5) | O2—C6—Sr1v | 67.67 (14) |
O2iii—Sr1—Sr1iv | 31.52 (4) | O1—C6—Sr1v | 56.88 (13) |
C6iii—Sr1—Sr1iv | 54.80 (5) | C2—C6—Sr1v | 167.25 (17) |
O2i—Sr1—H1W2 | 90.3 | Sr1—O1W—H1W1 | 122.1 |
O2W—Sr1—H1W2 | 15.7 | Sr1—O1W—H2W1 | 126.8 |
O4ii—Sr1—H1W2 | 72.9 | H1W1—O1W—H2W1 | 105.9 |
O1W—Sr1—H1W2 | 144.7 | Sr1—O2W—H1W2 | 111.4 |
O3—Sr1—H1W2 | 91.3 | Sr1—O2W—H2W2 | 111.6 |
O1iii—Sr1—H1W2 | 81.0 | H1W2—O2W—H2W2 | 114.0 |
N1—Sr1—H1W2 | 140.8 | H1W3—O3W—H2W3 | 104.9 |
| | | |
O2i—Sr1—N1—C4 | 121.4 (2) | C3—N2—C2—C1 | −0.7 (4) |
O2W—Sr1—N1—C4 | −143.01 (19) | C3—N2—C2—C6 | −175.0 (2) |
O4ii—Sr1—N1—C4 | −81.1 (2) | N1—C1—C2—N2 | −0.4 (4) |
O1W—Sr1—N1—C4 | 50.2 (2) | C5—C1—C2—N2 | 178.5 (2) |
O3—Sr1—N1—C4 | −168.7 (2) | N1—C1—C2—C6 | 173.3 (2) |
O1iii—Sr1—N1—C4 | −11.5 (2) | C5—C1—C2—C6 | −7.8 (4) |
O2iii—Sr1—N1—C4 | 37.4 (3) | C2—N2—C3—C4 | 1.3 (4) |
C6iii—Sr1—N1—C4 | 8.1 (2) | C1—N1—C4—C3 | −0.3 (4) |
Sr1iv—Sr1—N1—C4 | 89.0 (2) | Sr1—N1—C4—C3 | 156.5 (2) |
O2i—Sr1—N1—C1 | −81.51 (18) | N2—C3—C4—N1 | −0.8 (4) |
O2W—Sr1—N1—C1 | 14.0 (2) | Sr1—O3—C5—O4 | −162.37 (19) |
O4ii—Sr1—N1—C1 | 75.96 (18) | Sr1—O3—C5—C1 | 17.6 (3) |
O1W—Sr1—N1—C1 | −152.72 (19) | Sr1i—O4—C5—O3 | 96.7 (3) |
O3—Sr1—N1—C1 | −11.61 (17) | Sr1i—O4—C5—C1 | −83.2 (3) |
O1iii—Sr1—N1—C1 | 145.59 (17) | N1—C1—C5—O3 | −27.8 (3) |
O2iii—Sr1—N1—C1 | −165.53 (15) | C2—C1—C5—O3 | 153.3 (3) |
C6iii—Sr1—N1—C1 | 165.13 (16) | N1—C1—C5—O4 | 152.2 (2) |
Sr1iv—Sr1—N1—C1 | −113.97 (17) | C2—C1—C5—O4 | −26.8 (4) |
O2i—Sr1—O3—C5 | 115.1 (2) | Sr1ii—O2—C6—O1 | 148.1 (3) |
O2W—Sr1—O3—C5 | −168.7 (2) | Sr1v—O2—C6—O1 | 7.3 (3) |
O4ii—Sr1—O3—C5 | −82.2 (2) | Sr1ii—O2—C6—C2 | −26.3 (5) |
O1W—Sr1—O3—C5 | 40.4 (2) | Sr1v—O2—C6—C2 | −167.1 (2) |
O1iii—Sr1—O3—C5 | −87.1 (3) | Sr1ii—O2—C6—Sr1v | 140.8 (4) |
N1—Sr1—O3—C5 | −4.08 (19) | Sr1v—O1—C6—O2 | −8.1 (3) |
O2iii—Sr1—O3—C5 | 149.62 (18) | Sr1v—O1—C6—C2 | 166.25 (19) |
C6iii—Sr1—O3—C5 | −173.4 (3) | N2—C2—C6—O2 | 110.2 (3) |
Sr1iv—Sr1—O3—C5 | 128.36 (19) | C1—C2—C6—O2 | −63.9 (4) |
C4—N1—C1—C2 | 0.9 (4) | N2—C2—C6—O1 | −64.5 (3) |
Sr1—N1—C1—C2 | −157.03 (19) | C1—C2—C6—O1 | 121.4 (3) |
C4—N1—C1—C5 | −178.1 (2) | N2—C2—C6—Sr1v | −0.2 (9) |
Sr1—N1—C1—C5 | 24.0 (3) | C1—C2—C6—Sr1v | −174.3 (7) |
Symmetry codes: (i) −x−1/2, y−1/2, −z+1/2; (ii) −x−1/2, y+1/2, −z+1/2; (iii) x−1/2, −y+1/2, z+1/2; (iv) −x−1, −y, −z+1; (v) x+1/2, −y+1/2, z−1/2. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···O3Wi | 0.85 | 1.87 | 2.713 (3) | 170 |
O1W—H2W1···O3Wvi | 0.85 | 1.90 | 2.744 (3) | 171 |
O2W—H1W2···O1ii | 0.85 | 1.85 | 2.696 (3) | 174 |
O2W—H2W2···O1Wiv | 0.85 | 2.01 | 2.857 (3) | 178 |
O3W—H1W3···O4 | 0.85 | 1.94 | 2.781 (3) | 170 |
O3W—H2W3···N2vii | 0.85 | 1.96 | 2.792 (3) | 168 |
Symmetry codes: (i) −x−1/2, y−1/2, −z+1/2; (ii) −x−1/2, y+1/2, −z+1/2; (iv) −x−1, −y, −z+1; (vi) x−1, y, z; (vii) x+1/2, −y+1/2, z+1/2. |
Experimental details
Crystal data |
Chemical formula | [Sr(C6H2N2O4)(H2O)2]·H2O |
Mr | 307.76 |
Crystal system, space group | Monoclinic, P21/n |
Temperature (K) | 120 |
a, b, c (Å) | 10.4931 (7), 6.9839 (4), 13.5208 (8) |
β (°) | 94.267 (1) |
V (Å3) | 988.10 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 5.48 |
Crystal size (mm) | 0.28 × 0.25 × 0.10 |
|
Data collection |
Diffractometer | Bruker SMART 1000 CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 1998) |
Tmin, Tmax | 0.240, 0.568 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8338, 1934, 1595 |
Rint | 0.040 |
(sin θ/λ)max (Å−1) | 0.617 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.054, 1.01 |
No. of reflections | 1934 |
No. of parameters | 145 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.92, −0.45 |
Selected bond lengths (Å) topSr1—O2i | 2.4887 (18) | Sr1—O3 | 2.6145 (18) |
Sr1—O2W | 2.5106 (18) | Sr1—O1iii | 2.6155 (18) |
Sr1—O4ii | 2.5533 (18) | Sr1—N1 | 2.714 (2) |
Sr1—O1W | 2.5937 (19) | Sr1—O2iii | 2.8517 (18) |
Symmetry codes: (i) −x−1/2, y−1/2, −z+1/2; (ii) −x−1/2, y+1/2, −z+1/2; (iii) x−1/2, −y+1/2, z+1/2. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1W—H1W1···O3Wi | 0.85 | 1.872 | 2.713 (3) | 170 |
O1W—H2W1···O3Wiv | 0.85 | 1.901 | 2.744 (3) | 171 |
O2W—H1W2···O1ii | 0.85 | 1.849 | 2.696 (3) | 174 |
O2W—H2W2···O1Wv | 0.85 | 2.007 | 2.857 (3) | 178 |
O3W—H1W3···O4 | 0.85 | 1.941 | 2.781 (3) | 170 |
O3W—H2W3···N2vi | 0.85 | 1.955 | 2.792 (3) | 168 |
Symmetry codes: (i) −x−1/2, y−1/2, −z+1/2; (ii) −x−1/2, y+1/2, −z+1/2; (iv) x−1, y, z; (v) −x−1, −y, −z+1; (vi) x+1/2, −y+1/2, z+1/2. |
Takusagawa & Shimada (1973) first determined the structure of pyrazine-2,3-dicarboxlic acid by single-crystal X-ray analysis. Almost at the same time, the first metal-organic compound of pyrazine-2,3-dicarboxylic acid was reported (Richard et al., 1973). Among many reported compounds containing pyrazine-2,3-dicarboxylic acid, most are complexes of transition metal ions, including manganese (Zou et al., 1999), copper (Konar et al., 2004), zinc (Li et al., 2003), iron (Xu et al., 2008) and cadmium (Ma et al., 2006). Also, there are many reported compounds of pyrazine-2,3-dicarboxylic acid with main group metals such as calcium (Ptasiewicz-Bak & Leciejewicz, 1997a; Starosta & Leciejewicz, 2005), magnesium (Ptasiewicz-Bak & Leciejewicz, 1997b) and sodium (Tombul et al., 2006) complexes. For further investigation of pyrazine-2,3-dicarboxylic acid, we synthesized the title compound, (I).
The asymmetric unit of the title compound, (Fig. 1), contains molecular sheets in which SrII ions are bridged by the carboxylate groups of the ligand molecules. Two bridging paths are evident. In the first, an N,O-bonding moiety formed by a hetero-ring nitrogen atom and the carboxylate oxygen atom nearest to it and both oxygen atoms of the second carboxylic group are active. The second path is formed by the other oxygen atom from the carboxylic group involved in the N,O-bonding moiety and an oxygen atom from the second carboxylic group. The latter atom is bidentate. A two-dimensional molecular pattern is formed. Each SrII ion is also coordinated by two water oxygen atoms, making the number of coordinated atoms eight. The coordination polyhedron is a distorted pentagonal bipyramid with an oxygen atom at the apex on one side of the equatorial plane and two oxygen atoms forming the apices on the other side. There is also one non-coordinated water molecule in the asymmetric unit. The Sr—O and Sr—N bond lengths are collected in Table 1.
Intermolecular O—H···O and O—H···N hydrogen bonds (Table 2) help to consolidate the crystal packing (Fig. 2).