Download citation
Download citation
link to html
The title compound, C11H13ClO3, has been obtained in the reaction of 2, 4-dihydroxy­lacetonephenone, potassium carbonate and 1-bromo-3-chloro-hexane. The hydr­oxy group is involved in an intra­molecular O—H...O hydrogen bond. The crystal packing exhibits no significantly short inter­molecular contacts

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536809051411/cv2661sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536809051411/cv2661Isup2.hkl
Contains datablock I

CCDC reference: 766742

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.042
  • wR factor = 0.103
  • Data-to-parameter ratio = 14.1

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.595 6 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT158_ALERT_4_C The Input Unitcell is NOT Standard/Reduced ..... ?
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.01 From the CIF: _reflns_number_total 1946 Count of symmetry unique reflns 1181 Completeness (_total/calc) 164.78% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 765 Fraction of Friedel pairs measured 0.648 Are heavy atom types Z>Si present yes
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The Williamson reaction is a very useful transformation in organic synthesis since the products are of value in both industrial and academic applications. It usually involves the employment of an alkali-metal salt of the hydroxy compound and an alkylhalide (Dermer, 1934).

In this paper, we present the title compound, (I), which was synthesized by the reaction of 2, 4-dihydroxylacetonephenone, potassium carbonate and 1-bromo-3-chloro-hexane. In (I) (Fig. 1), the bond lengths and angles are normal and comparable to those observed in the related structure (Schlemper, 1986). The dihedral angle between the benzene ring C3-C8 and the plane O3C9C10 is 3.82 (4)°. The crystal packing exhibits no significantly short intermolecular contacts

Related literature top

For background to the Williamson reaction in organic synthesis, see: Dermer (1934). For a related structure, see: Schlemper (1986).

Experimental top

2, 4-Dihydroxylacetonephenone (3 mmol), potassium carbonate (6 mmol), 1-bromo-3-chloro-hexane (3 mmol), and 10 ml acetone were mixed in 50 ml flask. After 4 h stirring at 373 K, the crude product was obtained. The crystals were obtained by recrystallization from n-hexane/ethyl acetate. Elemental analysis: calculated for C11H13ClO3: C 55.96, H 5.17%; found: C 55.88, H 5.25,%.

Refinement top

All H atoms were positioned geometrically, with O—H= 0.82 Å, C—H=0.93- 0.97 Å, and refined as riding, with Uiso(H)=1.2–1.5Ueq(C, O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with atomic numbering and 30% probability displacement ellipsoids.
1-[4-(3-Chloropropoxy)-2-hydroxyphenyl]ethanone top
Crystal data top
C11H13ClO3Dx = 1.357 Mg m3
Mr = 228.66Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P21212Cell parameters from 1957 reflections
a = 18.620 (2) Åθ = 2.2–25.7°
b = 11.963 (11) ŵ = 0.33 mm1
c = 5.0240 (6) ÅT = 298 K
V = 1119.1 (11) Å3Block, colourless
Z = 40.49 × 0.44 × 0.43 mm
F(000) = 480
Data collection top
Bruker Smart APEX CCD area-detector
diffractometer
1946 independent reflections
Radiation source: fine-focus sealed tube1556 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
phi and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1822
Tmin = 0.857, Tmax = 0.873k = 914
4851 measured reflectionsl = 55
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0468P)2 + 0.0435P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
1946 reflectionsΔρmax = 0.22 e Å3
138 parametersΔρmin = 0.19 e Å3
0 restraintsAbsolute structure: Flack (1983), 761 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.16 (10)
Crystal data top
C11H13ClO3V = 1119.1 (11) Å3
Mr = 228.66Z = 4
Orthorhombic, P21212Mo Kα radiation
a = 18.620 (2) ŵ = 0.33 mm1
b = 11.963 (11) ÅT = 298 K
c = 5.0240 (6) Å0.49 × 0.44 × 0.43 mm
Data collection top
Bruker Smart APEX CCD area-detector
diffractometer
1946 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1556 reflections with I > 2σ(I)
Tmin = 0.857, Tmax = 0.873Rint = 0.054
4851 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.103Δρmax = 0.22 e Å3
S = 1.03Δρmin = 0.19 e Å3
1946 reflectionsAbsolute structure: Flack (1983), 761 Friedel pairs
138 parametersAbsolute structure parameter: 0.16 (10)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.61841 (8)0.94594 (14)0.1602 (4)0.0460 (5)
O10.81896 (9)1.15126 (15)0.7343 (4)0.0551 (6)
O20.70120 (10)1.19429 (14)0.4881 (5)0.0556 (6)
H20.73201.20120.60360.083*
Cl10.48481 (5)0.70010 (7)0.1232 (2)0.0753 (3)
C10.89472 (15)0.9967 (2)0.6420 (7)0.0592 (8)
H1A0.92041.02540.79300.089*
H1B0.92500.99960.48750.089*
H1C0.88090.92070.67550.089*
C20.82884 (13)1.0662 (2)0.5953 (6)0.0419 (6)
C30.77663 (12)1.03407 (19)0.3905 (6)0.0356 (6)
C40.71379 (12)1.09934 (19)0.3463 (6)0.0387 (6)
C50.66330 (12)1.06801 (19)0.1590 (6)0.0412 (6)
H50.62271.11190.13210.049*
C60.67293 (12)0.97085 (19)0.0103 (6)0.0363 (6)
C70.73511 (12)0.9060 (2)0.0441 (6)0.0380 (6)
H70.74260.84240.05860.046*
C80.78500 (13)0.93830 (19)0.2325 (6)0.0385 (6)
H80.82590.89470.25550.046*
C90.62364 (13)0.8441 (2)0.3163 (6)0.0445 (7)
H9A0.62830.77970.20010.053*
H9B0.66530.84700.43200.053*
C100.55550 (14)0.8356 (2)0.4797 (6)0.0506 (7)
H10A0.55190.90120.59230.061*
H10B0.55910.77090.59530.061*
C110.48784 (15)0.8259 (2)0.3180 (7)0.0575 (8)
H11A0.44680.82740.43680.069*
H11B0.48430.88990.20020.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0445 (9)0.0458 (10)0.0476 (13)0.0035 (8)0.0070 (9)0.0095 (10)
O10.0589 (12)0.0490 (11)0.0575 (14)0.0072 (9)0.0084 (11)0.0082 (11)
O20.0588 (12)0.0425 (10)0.0654 (16)0.0090 (9)0.0098 (11)0.0183 (10)
Cl10.0772 (5)0.0724 (5)0.0764 (7)0.0267 (4)0.0077 (5)0.0137 (6)
C10.0450 (16)0.0682 (18)0.064 (2)0.0023 (12)0.0129 (17)0.005 (2)
C20.0448 (13)0.0394 (14)0.0414 (18)0.0095 (11)0.0003 (12)0.0055 (14)
C30.0362 (12)0.0317 (12)0.0389 (16)0.0042 (10)0.0019 (12)0.0060 (12)
C40.0444 (13)0.0289 (11)0.0427 (18)0.0007 (11)0.0035 (13)0.0005 (14)
C50.0403 (13)0.0369 (13)0.0463 (18)0.0063 (10)0.0026 (13)0.0026 (13)
C60.0392 (13)0.0358 (14)0.0338 (15)0.0029 (11)0.0041 (12)0.0016 (11)
C70.0449 (14)0.0301 (13)0.0389 (18)0.0003 (11)0.0053 (12)0.0023 (12)
C80.0390 (13)0.0312 (13)0.0454 (18)0.0021 (10)0.0023 (12)0.0052 (13)
C90.0467 (14)0.0460 (14)0.0408 (18)0.0031 (11)0.0053 (13)0.0104 (14)
C100.0570 (16)0.0529 (17)0.0418 (18)0.0021 (13)0.0083 (14)0.0059 (15)
C110.0468 (15)0.0565 (17)0.069 (2)0.0035 (12)0.0072 (16)0.0020 (16)
Geometric parameters (Å, º) top
O3—C61.361 (3)C5—C61.393 (3)
O3—C91.452 (3)C5—H50.9300
O1—C21.248 (3)C6—C71.404 (3)
O2—C41.361 (3)C7—C81.381 (4)
O2—H20.8200C7—H70.9300
Cl1—C111.796 (3)C8—H80.9300
C1—C21.500 (4)C9—C101.515 (4)
C1—H1A0.9600C9—H9A0.9700
C1—H1B0.9600C9—H9B0.9700
C1—H1C0.9600C10—C111.504 (4)
C2—C31.467 (4)C10—H10A0.9700
C3—C81.402 (4)C10—H10B0.9700
C3—C41.424 (3)C11—H11A0.9700
C4—C51.382 (3)C11—H11B0.9700
C6—O3—C9118.25 (18)C8—C7—H7120.5
C4—O2—H2109.5C6—C7—H7120.5
C2—C1—H1A109.5C7—C8—C3122.8 (2)
C2—C1—H1B109.5C7—C8—H8118.6
H1A—C1—H1B109.5C3—C8—H8118.6
C2—C1—H1C109.5O3—C9—C10107.02 (19)
H1A—C1—H1C109.5O3—C9—H9A110.3
H1B—C1—H1C109.5C10—C9—H9A110.3
O1—C2—C3120.6 (2)O3—C9—H9B110.3
O1—C2—C1119.0 (3)C10—C9—H9B110.3
C3—C2—C1120.4 (2)H9A—C9—H9B108.6
C8—C3—C4116.8 (2)C11—C10—C9114.5 (2)
C8—C3—C2122.5 (2)C11—C10—H10A108.6
C4—C3—C2120.7 (2)C9—C10—H10A108.6
O2—C4—C5117.7 (2)C11—C10—H10B108.6
O2—C4—C3121.2 (2)C9—C10—H10B108.6
C5—C4—C3121.1 (2)H10A—C10—H10B107.6
C4—C5—C6120.3 (2)C10—C11—Cl1112.67 (19)
C4—C5—H5119.9C10—C11—H11A109.1
C6—C5—H5119.9Cl1—C11—H11A109.1
O3—C6—C5115.1 (2)C10—C11—H11B109.1
O3—C6—C7124.8 (2)Cl1—C11—H11B109.1
C5—C6—C7120.1 (2)H11A—C11—H11B107.8
C8—C7—C6118.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.852.570 (3)146

Experimental details

Crystal data
Chemical formulaC11H13ClO3
Mr228.66
Crystal system, space groupOrthorhombic, P21212
Temperature (K)298
a, b, c (Å)18.620 (2), 11.963 (11), 5.0240 (6)
V3)1119.1 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.49 × 0.44 × 0.43
Data collection
DiffractometerBruker Smart APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.857, 0.873
No. of measured, independent and
observed [I > 2σ(I)] reflections
4851, 1946, 1556
Rint0.054
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.103, 1.03
No. of reflections1946
No. of parameters138
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.19
Absolute structureFlack (1983), 761 Friedel pairs
Absolute structure parameter0.16 (10)

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.821.852.570 (3)146.4
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds