Download citation
Download citation
link to html
In the title compound, C18H26O3S8, the two five-membered rings exhibit envelope conformations. The two S atoms in the 17-membered macrocycle deviate from the plane of the fused five-membered ring by 1.429 (3) and -1.434 (3) Å in opposite directions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053681001192X/cv2706sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053681001192X/cv2706Isup2.hkl
Contains datablock I

CCDC reference: 777957

Key indicators

  • Single-crystal X-ray study
  • T = 290 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.045
  • wR factor = 0.125
  • Data-to-parameter ratio = 21.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for S8 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang .. 5 PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 8 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 12 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 55
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Dithiacrown ether annulated tetrathiafulvalenes (TTF) have been received great attention as sensor molecules for various metal cations (Otsubo & Ogura, 1985; Moore et al., 2000). These sensors can recognize selectively the various metal cations to signal electrochemical information. We fused TTF unit with a extended dithiacrown ether to synthesize the title compound, (I). Herewith we report its crystal structure.

In (I) (Fig. 1), all bond lengths and angles are normal and comparable to those observed in the related structure (Hou et al., 2009). Two five-membered rings have an envelope conformation. Two S atoms in the 17-membered macrocycle deviate from the plane of the fused five-membered ring in opposite directions at 1.429 (3) and -1.434 (3) Å, respectively. The mean planes of two five-membered rings form a dihedral angle of 29.84 (10) °.

Related literature top

For background to dithiacrown ether annulated tetrathiafulvalenes, see: Otsubo & Ogura (1985); Moore et al. (2000). For details of the synthesis, see: Chen et al. (2005). For a related structure, see Hou et al. (2009)

Experimental top

The title compound was prepared according to the literature (Chen et al., 2005). Single crystals suitable for X-ray diffraction were prepared by slow evaporation a mixture of dichloromethane and petroleum (60-90 °C) at room temperature.

Refinement top

Carbon-bound H-atoms were placed in calculated positions (C—H 0.96 and 0.97 Å) and were included in the refinement in the riding model approximation, with Uiso(H) = 1.5 or 1.2 Ueq(C).

Structure description top

Dithiacrown ether annulated tetrathiafulvalenes (TTF) have been received great attention as sensor molecules for various metal cations (Otsubo & Ogura, 1985; Moore et al., 2000). These sensors can recognize selectively the various metal cations to signal electrochemical information. We fused TTF unit with a extended dithiacrown ether to synthesize the title compound, (I). Herewith we report its crystal structure.

In (I) (Fig. 1), all bond lengths and angles are normal and comparable to those observed in the related structure (Hou et al., 2009). Two five-membered rings have an envelope conformation. Two S atoms in the 17-membered macrocycle deviate from the plane of the fused five-membered ring in opposite directions at 1.429 (3) and -1.434 (3) Å, respectively. The mean planes of two five-membered rings form a dihedral angle of 29.84 (10) °.

For background to dithiacrown ether annulated tetrathiafulvalenes, see: Otsubo & Ogura (1985); Moore et al. (2000). For details of the synthesis, see: Chen et al. (2005). For a related structure, see Hou et al. (2009)

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC and Rigaku, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom numbering and 30% probability displacement ellipsoids.
6,7-Bis(methylsulfanyl)-2,3-[(3,6,9-trioxaundecane-1,11- diyl)bis(sulfanediylmethylene)]-1,4,5,8-tetrathiafulvalene top
Crystal data top
C18H26O3S8Z = 2
Mr = 546.87F(000) = 572
Triclinic, P1Dx = 1.482 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.715 (5) ÅCell parameters from 8201 reflections
b = 11.585 (7) Åθ = 3.1–27.5°
c = 12.548 (5) ŵ = 0.75 mm1
α = 98.37 (2)°T = 290 K
β = 112.112 (18)°Block, yellow
γ = 103.94 (2)°0.13 × 0.11 × 0.11 mm
V = 1225.3 (11) Å3
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5535 independent reflections
Radiation source: fine-focus sealed tube4519 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1211
Tmin = 0.909, Tmax = 0.922k = 1415
12067 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.6546P]
where P = (Fo2 + 2Fc2)/3
5535 reflections(Δ/σ)max = 0.004
264 parametersΔρmax = 1.19 e Å3
0 restraintsΔρmin = 0.84 e Å3
Crystal data top
C18H26O3S8γ = 103.94 (2)°
Mr = 546.87V = 1225.3 (11) Å3
Triclinic, P1Z = 2
a = 9.715 (5) ÅMo Kα radiation
b = 11.585 (7) ŵ = 0.75 mm1
c = 12.548 (5) ÅT = 290 K
α = 98.37 (2)°0.13 × 0.11 × 0.11 mm
β = 112.112 (18)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
5535 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4519 reflections with I > 2σ(I)
Tmin = 0.909, Tmax = 0.922Rint = 0.021
12067 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.09Δρmax = 1.19 e Å3
5535 reflectionsΔρmin = 0.84 e Å3
264 parameters
Special details top

Experimental. (See detailed section in the paper)

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8329 (4)0.2619 (3)0.0795 (3)0.0673 (8)
H1A0.91000.32810.01220.101*
H1B0.87970.20160.09630.101*
H1C0.74720.22430.06200.101*
C20.6741 (3)0.4211 (2)0.1600 (2)0.0461 (6)
C30.6468 (3)0.6002 (2)0.0284 (2)0.0378 (5)
C40.6879 (3)0.7034 (2)0.0568 (2)0.0375 (5)
C50.8608 (3)0.9048 (2)0.2248 (2)0.0377 (5)
C61.0049 (3)0.9939 (2)0.3263 (2)0.0453 (6)
H6A1.02220.96410.39700.054*
H6B0.98751.07240.34170.054*
C71.1338 (4)1.0744 (4)0.1696 (3)0.0672 (9)
H7A1.19461.05220.12870.081*
H7B1.02381.03240.11670.081*
C81.1631 (4)1.2111 (4)0.1912 (4)0.0809 (11)
H8A1.26681.25510.25480.097*
H8B1.15771.23620.11970.097*
C91.0704 (4)1.3669 (3)0.2552 (3)0.0717 (9)
H9A1.07451.40250.19060.086*
H9B1.16881.40800.32530.086*
C100.9373 (4)1.3834 (3)0.2801 (3)0.0631 (8)
H10A0.94451.46960.29480.076*
H10B0.83831.33650.21240.076*
C110.8268 (4)1.3533 (3)0.4170 (3)0.0631 (8)
H11A0.72451.31750.34970.076*
H11B0.84271.43960.44780.076*
C120.8366 (4)1.2872 (3)0.5112 (3)0.0684 (9)
H12A0.94381.31570.57240.082*
H12B0.77011.30600.54790.082*
C130.6293 (4)1.0953 (3)0.4346 (3)0.0646 (8)
H13A0.57001.15240.42050.077*
H13B0.62151.06420.50060.077*
C140.5624 (4)0.9902 (3)0.3249 (3)0.0579 (7)
H14A0.46590.93490.31910.070*
H14B0.63580.94450.33350.070*
C150.7020 (3)1.0495 (2)0.1709 (2)0.0424 (5)
H15A0.69481.07920.10110.051*
H15B0.78951.10950.23980.051*
C160.7328 (3)0.9291 (2)0.1574 (2)0.0369 (5)
C170.5549 (3)0.4512 (3)0.2335 (2)0.0542 (7)
C180.2899 (5)0.2958 (4)0.4241 (4)0.0993 (14)
H18A0.30420.23210.38390.149*
H18B0.23540.25980.50860.149*
H18C0.22960.33800.39830.149*
O11.0472 (3)1.2390 (2)0.2231 (2)0.0649 (6)
O20.9459 (2)1.3412 (2)0.38150 (17)0.0585 (5)
O30.7891 (2)1.1573 (2)0.46389 (19)0.0605 (5)
S10.76152 (11)0.32107 (7)0.20652 (7)0.0659 (2)
S20.75246 (8)0.49614 (6)0.00808 (5)0.04786 (17)
S30.85994 (8)0.75086 (6)0.19036 (5)0.04658 (17)
S41.18116 (8)1.01831 (8)0.30089 (7)0.0583 (2)
S50.52206 (8)1.03736 (6)0.18849 (6)0.04905 (17)
S60.57706 (7)0.80320 (6)0.04603 (6)0.04656 (17)
S70.48777 (8)0.55840 (7)0.16902 (6)0.05239 (18)
S80.47241 (13)0.40014 (12)0.39012 (7)0.0970 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.070 (2)0.0609 (19)0.077 (2)0.0254 (16)0.0397 (18)0.0044 (16)
C20.0520 (15)0.0406 (13)0.0391 (12)0.0002 (11)0.0261 (11)0.0012 (10)
C30.0382 (12)0.0360 (12)0.0364 (11)0.0085 (9)0.0153 (9)0.0096 (9)
C40.0378 (12)0.0352 (11)0.0389 (11)0.0118 (9)0.0159 (9)0.0096 (9)
C50.0369 (12)0.0373 (12)0.0380 (11)0.0115 (9)0.0178 (10)0.0038 (9)
C60.0406 (13)0.0497 (14)0.0390 (12)0.0129 (11)0.0150 (10)0.0013 (10)
C70.0522 (17)0.100 (3)0.0579 (17)0.0260 (17)0.0347 (15)0.0127 (17)
C80.059 (2)0.110 (3)0.091 (3)0.019 (2)0.0487 (19)0.045 (2)
C90.078 (2)0.0544 (18)0.069 (2)0.0044 (16)0.0316 (17)0.0209 (15)
C100.081 (2)0.0383 (14)0.0566 (16)0.0106 (14)0.0199 (15)0.0147 (12)
C110.0613 (19)0.0534 (17)0.0645 (18)0.0204 (15)0.0203 (15)0.0021 (14)
C120.064 (2)0.081 (2)0.0460 (15)0.0117 (17)0.0222 (14)0.0003 (14)
C130.0501 (16)0.091 (2)0.0611 (18)0.0179 (16)0.0329 (14)0.0263 (17)
C140.0535 (17)0.0573 (17)0.078 (2)0.0194 (14)0.0388 (15)0.0305 (15)
C150.0411 (13)0.0337 (12)0.0526 (14)0.0112 (10)0.0212 (11)0.0106 (10)
C160.0335 (11)0.0338 (11)0.0437 (12)0.0084 (9)0.0193 (10)0.0076 (9)
C170.0500 (15)0.0618 (17)0.0353 (12)0.0017 (13)0.0199 (12)0.0028 (11)
C180.090 (3)0.098 (3)0.070 (2)0.000 (2)0.016 (2)0.008 (2)
O10.0606 (13)0.0569 (12)0.0870 (15)0.0080 (10)0.0468 (12)0.0237 (11)
O20.0605 (12)0.0613 (12)0.0532 (11)0.0206 (10)0.0208 (10)0.0212 (9)
O30.0486 (11)0.0760 (14)0.0617 (12)0.0191 (10)0.0265 (10)0.0257 (11)
S10.0891 (6)0.0546 (4)0.0623 (4)0.0167 (4)0.0508 (4)0.0005 (3)
S20.0601 (4)0.0414 (3)0.0366 (3)0.0208 (3)0.0156 (3)0.0012 (2)
S30.0475 (4)0.0435 (3)0.0412 (3)0.0221 (3)0.0095 (3)0.0030 (2)
S40.0325 (3)0.0715 (5)0.0582 (4)0.0171 (3)0.0114 (3)0.0018 (3)
S50.0395 (3)0.0518 (4)0.0557 (4)0.0219 (3)0.0173 (3)0.0103 (3)
S60.0351 (3)0.0367 (3)0.0556 (4)0.0113 (2)0.0094 (3)0.0050 (3)
S70.0433 (4)0.0610 (4)0.0404 (3)0.0105 (3)0.0102 (3)0.0091 (3)
S80.0877 (7)0.1331 (10)0.0378 (4)0.0061 (6)0.0267 (4)0.0001 (5)
Geometric parameters (Å, º) top
C1—S11.790 (4)C10—O21.408 (3)
C1—H1A0.9600C10—H10A0.9700
C1—H1B0.9600C10—H10B0.9700
C1—H1C0.9600C11—O21.415 (4)
C2—C171.341 (4)C11—C121.485 (5)
C2—S11.748 (3)C11—H11A0.9700
C2—S21.753 (3)C11—H11B0.9700
C3—C41.345 (3)C12—O31.425 (4)
C3—S21.750 (3)C12—H12A0.9700
C3—S71.753 (2)C12—H12B0.9700
C4—S61.746 (2)C13—O31.420 (4)
C4—S31.756 (2)C13—C141.503 (5)
C5—C161.337 (3)C13—H13A0.9700
C5—C61.492 (3)C13—H13B0.9700
C5—S31.770 (3)C14—S51.803 (3)
C6—S41.821 (3)C14—H14A0.9700
C6—H6A0.9700C14—H14B0.9700
C6—H6B0.9700C15—C161.496 (3)
C7—C81.504 (5)C15—S51.818 (3)
C7—S41.798 (4)C15—H15A0.9700
C7—H7A0.9700C15—H15B0.9700
C7—H7B0.9700C16—S61.767 (3)
C8—O11.419 (4)C17—S81.761 (3)
C8—H8A0.9700C17—S71.765 (3)
C8—H8B0.9700C18—S81.742 (5)
C9—O11.416 (4)C18—H18A0.9600
C9—C101.487 (5)C18—H18B0.9600
C9—H9A0.9700C18—H18C0.9600
C9—H9B0.9700
S1—C1—H1A109.5O2—C11—H11B110.3
S1—C1—H1B109.5C12—C11—H11B110.3
H1A—C1—H1B109.5H11A—C11—H11B108.6
S1—C1—H1C109.5O3—C12—C11111.5 (2)
H1A—C1—H1C109.5O3—C12—H12A109.3
H1B—C1—H1C109.5C11—C12—H12A109.3
C17—C2—S1124.5 (2)O3—C12—H12B109.3
C17—C2—S2116.3 (2)C11—C12—H12B109.3
S1—C2—S2119.01 (17)H12A—C12—H12B108.0
C4—C3—S2121.99 (19)O3—C13—C14109.6 (2)
C4—C3—S7124.10 (19)O3—C13—H13A109.7
S2—C3—S7113.89 (13)C14—C13—H13A109.7
C3—C4—S6123.71 (19)O3—C13—H13B109.7
C3—C4—S3122.82 (19)C14—C13—H13B109.7
S6—C4—S3113.46 (13)H13A—C13—H13B108.2
C16—C5—C6126.9 (2)C13—C14—S5114.0 (2)
C16—C5—S3116.77 (18)C13—C14—H14A108.8
C6—C5—S3116.37 (18)S5—C14—H14A108.8
C5—C6—S4114.01 (17)C13—C14—H14B108.8
C5—C6—H6A108.7S5—C14—H14B108.8
S4—C6—H6A108.7H14A—C14—H14B107.7
C5—C6—H6B108.7C16—C15—S5112.39 (16)
S4—C6—H6B108.7C16—C15—H15A109.1
H6A—C6—H6B107.6S5—C15—H15A109.1
C8—C7—S4115.4 (2)C16—C15—H15B109.1
C8—C7—H7A108.4S5—C15—H15B109.1
S4—C7—H7A108.4H15A—C15—H15B107.9
C8—C7—H7B108.4C5—C16—C15127.2 (2)
S4—C7—H7B108.4C5—C16—S6116.68 (18)
H7A—C7—H7B107.5C15—C16—S6115.94 (18)
O1—C8—C7108.5 (3)C2—C17—S8124.0 (2)
O1—C8—H8A110.0C2—C17—S7117.57 (19)
C7—C8—H8A110.0S8—C17—S7118.18 (19)
O1—C8—H8B110.0S8—C18—H18A109.5
C7—C8—H8B110.0S8—C18—H18B109.5
H8A—C8—H8B108.4H18A—C18—H18B109.5
O1—C9—C10108.2 (2)S8—C18—H18C109.5
O1—C9—H9A110.1H18A—C18—H18C109.5
C10—C9—H9A110.1H18B—C18—H18C109.5
O1—C9—H9B110.1C9—O1—C8113.5 (3)
C10—C9—H9B110.1C10—O2—C11114.0 (2)
H9A—C9—H9B108.4C13—O3—C12113.9 (3)
O2—C10—C9107.8 (3)C2—S1—C1101.77 (14)
O2—C10—H10A110.2C3—S2—C295.28 (13)
C9—C10—H10A110.2C4—S3—C594.67 (11)
O2—C10—H10B110.2C7—S4—C6103.95 (13)
C9—C10—H10B110.2C14—S5—C15102.32 (13)
H10A—C10—H10B108.5C4—S6—C1694.86 (12)
O2—C11—C12107.1 (3)C3—S7—C1794.12 (13)
O2—C11—H11A110.3C18—S8—C17102.48 (18)
C12—C11—H11A110.3

Experimental details

Crystal data
Chemical formulaC18H26O3S8
Mr546.87
Crystal system, space groupTriclinic, P1
Temperature (K)290
a, b, c (Å)9.715 (5), 11.585 (7), 12.548 (5)
α, β, γ (°)98.37 (2), 112.112 (18), 103.94 (2)
V3)1225.3 (11)
Z2
Radiation typeMo Kα
µ (mm1)0.75
Crystal size (mm)0.13 × 0.11 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.909, 0.922
No. of measured, independent and
observed [I > 2σ(I)] reflections
12067, 5535, 4519
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.125, 1.09
No. of reflections5535
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.19, 0.84

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC and Rigaku, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds