Download citation
Download citation
link to html
In the title compound, C7H10N2·C7H6O2, the components are linked by an O—H...N hydrogen bond. The mean planes of two mol­ecules form a dihedral angle of 78.68 (5)°. The crystal packing exhibits weak non-classical C—H...O contacts.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810034185/cv2756sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536810034185/cv2756Isup2.hkl
Contains datablock I

CCDC reference: 792489

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.049
  • wR factor = 0.163
  • Data-to-parameter ratio = 17.5

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT029_ALERT_3_A _diffrn_measured_fraction_theta_full Low ....... 0.90
Author Response: According to a poor crystal quality and there was just no significant intensity at higher degree.

Alert level B PLAT911_ALERT_3_B Missing # FCF Refl Between THmin & STh/L= 0.600 190
Alert level C REFLT03_ALERT_3_C Reflection count < 95% complete From the CIF: _diffrn_reflns_theta_max 28.32 From the CIF: _diffrn_reflns_theta_full 28.32 From the CIF: _reflns_number_total 2913 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 3222 Completeness (_total/calc) 90.41% PLAT910_ALERT_3_C Missing # of FCF Reflections Below Th(Min) ..... 2 PLAT480_ALERT_4_C Long H...A H-Bond Reported H9 .. O1 .. 2.69 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H5 .. O1 .. 2.70 Ang. PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 C7 H6 O2 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 118
1 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 6 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 4 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Hydrogen bonding is the most important and the essential tool for both crystal engineering and supramolecular chemistry (Bosch, 2010; Desiraju, 1989 & Lehn, 1995). The non-classical C—H···N hydrogen bonds in pyridine and pyrimidine derivatives have remarkable potentials and patterns (Bosch, 2010; Desiraju, 1989; Lehn, 1995; Lo & Ng, 2009 & Vembu et al., 2003;). In order to investigate the hydrogen bonding patterns of 4-(dimethylamino)pyridine, the co-crystals with various derivatives of benzaldehyde were prepared.

We report here the structure of the title co-crystal compound (Fig.1), formed from salicylaldehyde and 4-(dimethylamino)pyridine. The asymmetric unit contains one molecule of salicylaldehyde and one molecule of 4-(dimethylamino)pyridine linked by O—H···N hydrogen bond (Table 1). The mean planes of two molecules form a dihedral angle of 78.68 (5)°. The crystal packing exhibits weak non-classical C—H···O contacts (Table 1).

Related literature top

For background to hydrogen bonding in crystal engineering, see: Bosch (2010); Desiraju (1989); Lehn (1995). For related structures, see: Bosch (2010); Vembu et al. (2003); Lo & Ng (2009).

Experimental top

The title cocrystal was crystallized by slow evaporation from the refluxed mixture of an equimolar solution of salicylaldehyde and 4-(dimethylamino)pyridine in a solution of methanol.

Refinement top

All H-atoms were geometrically positioned and refined using a riding model, with C—H = 0.93 Å (aromatic), 0.98 Å (CH3) and O–H = 0.82 Å, and Uiso(H) = 1.2Ueq (C) for aromatic and 1.5Ueq for O and Cmethyl.

Structure description top

Hydrogen bonding is the most important and the essential tool for both crystal engineering and supramolecular chemistry (Bosch, 2010; Desiraju, 1989 & Lehn, 1995). The non-classical C—H···N hydrogen bonds in pyridine and pyrimidine derivatives have remarkable potentials and patterns (Bosch, 2010; Desiraju, 1989; Lehn, 1995; Lo & Ng, 2009 & Vembu et al., 2003;). In order to investigate the hydrogen bonding patterns of 4-(dimethylamino)pyridine, the co-crystals with various derivatives of benzaldehyde were prepared.

We report here the structure of the title co-crystal compound (Fig.1), formed from salicylaldehyde and 4-(dimethylamino)pyridine. The asymmetric unit contains one molecule of salicylaldehyde and one molecule of 4-(dimethylamino)pyridine linked by O—H···N hydrogen bond (Table 1). The mean planes of two molecules form a dihedral angle of 78.68 (5)°. The crystal packing exhibits weak non-classical C—H···O contacts (Table 1).

For background to hydrogen bonding in crystal engineering, see: Bosch (2010); Desiraju (1989); Lehn (1995). For related structures, see: Bosch (2010); Vembu et al. (2003); Lo & Ng (2009).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXS97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit of the title compound showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as a dashed line.
2-Hydroxybenzaldehyde–4-(dimethylamino)pyridine (1/1) top
Crystal data top
C7H10N2·C7H6O2Z = 2
Mr = 244.29F(000) = 260
Triclinic, P1Dx = 1.255 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.540 (3) ÅCell parameters from 1563 reflections
b = 8.473 (3) Åθ = 2.8–27.8°
c = 10.413 (4) ŵ = 0.09 mm1
α = 85.370 (11)°T = 296 K
β = 77.371 (10)°Prism, yellow
γ = 87.203 (10)°0.4 × 0.4 × 0.38 mm
V = 646.7 (4) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2913 independent reflections
Radiation source: Mo Kα1882 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.02
φ and ω scansθmax = 28.3°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 109
Tmin = 0.967, Tmax = 0.968k = 511
4199 measured reflectionsl = 1313
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.049 w = 1/[σ2(Fo2) + (0.0815P)2 + 0.0644P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.163(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.20 e Å3
2913 reflectionsΔρmin = 0.15 e Å3
166 parameters
Crystal data top
C7H10N2·C7H6O2γ = 87.203 (10)°
Mr = 244.29V = 646.7 (4) Å3
Triclinic, P1Z = 2
a = 7.540 (3) ÅMo Kα radiation
b = 8.473 (3) ŵ = 0.09 mm1
c = 10.413 (4) ÅT = 296 K
α = 85.370 (11)°0.4 × 0.4 × 0.38 mm
β = 77.371 (10)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
2913 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1882 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.968Rint = 0.02
4199 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.163H-atom parameters constrained
S = 1.01Δρmax = 0.20 e Å3
2913 reflectionsΔρmin = 0.15 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.8429 (3)0.2372 (2)0.5097 (2)0.0720 (5)
H10.8680.14010.55130.086*
C20.7810 (3)0.3587 (2)0.58701 (17)0.0638 (5)
H20.76350.34220.67820.077*
C30.7433 (2)0.5084 (2)0.52993 (15)0.0521 (4)
C40.7680 (2)0.5182 (2)0.39168 (16)0.0604 (4)
H40.74260.61320.34690.072*
C50.8288 (3)0.3893 (3)0.32350 (18)0.0693 (5)
H50.84280.40030.23230.083*
C60.6562 (3)0.6217 (3)0.74452 (19)0.0879 (7)
H6A0.55480.55520.77950.132*
H6B0.62980.7250.7770.132*
H6C0.76240.57620.77170.132*
C70.6590 (3)0.7888 (3)0.5390 (2)0.0798 (6)
H7A0.76160.81310.46860.12*
H7B0.64450.86720.60240.12*
H7C0.55130.78850.50410.12*
C80.9510 (2)0.18638 (19)0.10290 (14)0.0500 (4)
C90.8248 (3)0.2663 (2)0.05460 (16)0.0603 (5)
H90.86410.35110.00290.072*
C100.6437 (3)0.2223 (3)0.08184 (19)0.0724 (5)
H100.56040.27640.04930.087*
C110.5875 (3)0.0964 (3)0.1584 (2)0.0754 (6)
H110.46520.0650.17630.09*
C120.7082 (2)0.0158 (2)0.20895 (18)0.0654 (5)
H120.66690.06870.26050.078*
C130.8914 (2)0.06070 (19)0.18288 (14)0.0515 (4)
C141.1435 (3)0.2309 (2)0.06846 (17)0.0631 (5)
H141.22350.16690.09510.076*
N10.8703 (2)0.2475 (2)0.37777 (17)0.0724 (5)
N20.6887 (2)0.63491 (19)0.60206 (13)0.0636 (4)
O11.2084 (2)0.34318 (19)0.00855 (16)0.0891 (5)
O21.01269 (17)0.01257 (16)0.23295 (13)0.0670 (4)
H2A0.9610.08440.27650.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0818 (13)0.0592 (12)0.0816 (13)0.0101 (9)0.0299 (10)0.0061 (9)
C20.0763 (12)0.0654 (12)0.0532 (9)0.0126 (9)0.0203 (8)0.0007 (8)
C30.0488 (8)0.0622 (11)0.0477 (8)0.0119 (7)0.0121 (7)0.0073 (7)
C40.0678 (10)0.0654 (11)0.0503 (9)0.0068 (8)0.0163 (8)0.0055 (8)
C50.0764 (12)0.0813 (15)0.0542 (10)0.0080 (10)0.0162 (9)0.0188 (9)
C60.1038 (16)0.1054 (19)0.0546 (11)0.0003 (13)0.0119 (10)0.0232 (11)
C70.0877 (14)0.0677 (14)0.0813 (13)0.0053 (10)0.0114 (11)0.0126 (10)
C80.0633 (10)0.0484 (9)0.0393 (7)0.0072 (7)0.0137 (7)0.0023 (6)
C90.0776 (12)0.0578 (11)0.0483 (9)0.0128 (8)0.0154 (8)0.0085 (7)
C100.0688 (12)0.0883 (15)0.0667 (11)0.0241 (10)0.0209 (9)0.0136 (10)
C110.0588 (11)0.0952 (16)0.0755 (12)0.0095 (10)0.0163 (9)0.0173 (11)
C120.0636 (11)0.0681 (12)0.0668 (11)0.0022 (9)0.0141 (8)0.0187 (9)
C130.0615 (10)0.0502 (9)0.0455 (8)0.0089 (7)0.0170 (7)0.0008 (7)
C140.0698 (11)0.0637 (12)0.0600 (10)0.0001 (9)0.0218 (8)0.0105 (8)
N10.0745 (10)0.0704 (12)0.0794 (11)0.0065 (8)0.0232 (8)0.0264 (8)
N20.0734 (9)0.0667 (10)0.0507 (8)0.0049 (7)0.0103 (7)0.0114 (7)
O10.0889 (10)0.0822 (11)0.1002 (11)0.0161 (8)0.0239 (8)0.0325 (8)
O20.0665 (8)0.0665 (9)0.0756 (8)0.0047 (6)0.0244 (6)0.0235 (6)
Geometric parameters (Å, º) top
C1—N11.340 (3)C7—H7B0.96
C1—C21.359 (3)C7—H7C0.96
C1—H10.93C8—C91.394 (2)
C2—C31.400 (3)C8—C131.401 (2)
C2—H20.93C8—C141.455 (3)
C3—N21.355 (2)C9—C101.372 (3)
C3—C41.407 (2)C9—H90.93
C4—C51.357 (3)C10—C111.378 (3)
C4—H40.93C10—H100.93
C5—N11.339 (3)C11—C121.378 (3)
C5—H50.93C11—H110.93
C6—N21.446 (2)C12—C131.389 (3)
C6—H6A0.96C12—H120.93
C6—H6B0.96C13—O21.3452 (18)
C6—H6C0.96C14—O11.205 (2)
C7—N21.442 (3)C14—H140.93
C7—H7A0.96O2—H2A0.82
N1—C1—C2124.69 (19)C9—C8—C13119.44 (16)
N1—C1—H1117.7C9—C8—C14120.36 (16)
C2—C1—H1117.7C13—C8—C14120.19 (14)
C1—C2—C3120.29 (17)C10—C9—C8121.25 (17)
C1—C2—H2119.9C10—C9—H9119.4
C3—C2—H2119.9C8—C9—H9119.4
N2—C3—C2122.62 (15)C9—C10—C11118.68 (17)
N2—C3—C4122.36 (16)C9—C10—H10120.7
C2—C3—C4115.02 (16)C11—C10—H10120.7
C5—C4—C3120.10 (18)C10—C11—C12121.63 (19)
C5—C4—H4120C10—C11—H11119.2
C3—C4—H4120C12—C11—H11119.2
N1—C5—C4124.86 (17)C11—C12—C13119.98 (18)
N1—C5—H5117.6C11—C12—H12120
C4—C5—H5117.6C13—C12—H12120
N2—C6—H6A109.5O2—C13—C12121.78 (16)
N2—C6—H6B109.5O2—C13—C8119.24 (15)
H6A—C6—H6B109.5C12—C13—C8118.99 (15)
N2—C6—H6C109.5O1—C14—C8125.87 (17)
H6A—C6—H6C109.5O1—C14—H14117.1
H6B—C6—H6C109.5C8—C14—H14117.1
N2—C7—H7A109.5C5—N1—C1114.99 (16)
N2—C7—H7B109.5C3—N2—C7120.92 (15)
H7A—C7—H7B109.5C3—N2—C6121.81 (17)
N2—C7—H7C109.5C7—N2—C6117.26 (16)
H7A—C7—H7C109.5C13—O2—H2A109.5
H7B—C7—H7C109.5
N1—C1—C2—C31.0 (3)C9—C8—C13—O2177.74 (14)
C1—C2—C3—N2177.17 (16)C14—C8—C13—O23.5 (2)
C1—C2—C3—C42.3 (2)C9—C8—C13—C121.9 (2)
N2—C3—C4—C5177.77 (16)C14—C8—C13—C12176.90 (16)
C2—C3—C4—C51.7 (2)C9—C8—C14—O16.8 (3)
C3—C4—C5—N10.3 (3)C13—C8—C14—O1174.44 (18)
C13—C8—C9—C101.3 (2)C4—C5—N1—C11.7 (3)
C14—C8—C9—C10177.51 (16)C2—C1—N1—C51.1 (3)
C8—C9—C10—C110.1 (3)C2—C3—N2—C7177.21 (17)
C9—C10—C11—C120.8 (3)C4—C3—N2—C72.2 (3)
C10—C11—C12—C130.2 (3)C2—C3—N2—C63.3 (3)
C11—C12—C13—O2178.43 (16)C4—C3—N2—C6177.28 (17)
C11—C12—C13—C81.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.821.822.637 (2)174
C9—H9···O1i0.932.693.456 (3)140
C5—H5···O1ii0.932.73.583 (3)158
Symmetry codes: (i) x+2, y1, z; (ii) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC7H10N2·C7H6O2
Mr244.29
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.540 (3), 8.473 (3), 10.413 (4)
α, β, γ (°)85.370 (11), 77.371 (10), 87.203 (10)
V3)646.7 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.4 × 0.4 × 0.38
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.967, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
4199, 2913, 1882
Rint0.02
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.163, 1.01
No. of reflections2913
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.15

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N10.821.822.637 (2)173.6
C9—H9···O1i0.932.693.456 (3)140.1
C5—H5···O1ii0.932.73.583 (3)158.1
Symmetry codes: (i) x+2, y1, z; (ii) x+2, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds