Download citation
Download citation
link to html
The asymmetric unit of the title compound, C12H14N2O4, contains two independent mol­ecules. In one independent mol­ecule, the furanyl fragment is rotationally disordered between two orientations in a 0.625 (6):0.375 (6) ratio. In the crystal, inter­molecular pyrimidine–pyrimidinone N—H...O hydrogen bonds link the mol­ecules into centrosymmetric tetra­mers, which are further associated into ribbons extending in [010] via weak inter­molecular pyrimidine–carboxyl N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810040456/cv2771sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536810040456/cv2771Isup2.hkl
Contains datablock I

CCDC reference: 799848

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.007 Å
  • Disorder in main residue
  • R factor = 0.071
  • wR factor = 0.237
  • Data-to-parameter ratio = 12.7

checkCIF/PLATON results

No syntax errors found



Alert level B SYMMS01_ALERT_1_B The cell setting should be one of the following * triclinic * monoclinic * orthorhombic * tetragonal * rhombohedral * trigonal * hexagonal * cubic Cell setting given = monoclinic'
Alert level C PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 45 Perc. PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O6 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C3 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C15 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang .. 7 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.595 13 PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ?
Alert level G PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large. 0.12 PLAT301_ALERT_3_G Note: Main Residue Disorder ................... 10.00 Perc. PLAT180_ALERT_4_G Check Cell Rounding: # of Values Ending with 0 = 3 PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle in CIF ...... 44.80 Deg. O2' -C3 -C4 1.555 1.555 1.555 PLAT779_ALERT_4_G Suspect or Irrelevant (Bond) Angle in CIF ...... 35.00 Deg. O2 -C3 -C4' 1.555 1.555 1.555 PLAT793_ALERT_4_G The Model has Chirality at C2 (Verify) .... R PLAT793_ALERT_4_G The Model has Chirality at C14 (Verify) .... S
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 7 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 6 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Biginelli reaction is a well known multicomponent reaction involving a one-pot cyclocondensation of an aldehyde, β-ketoester and urea/thiourea. It is the most important procedure in the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones (Biginelli, 1893). Herewith we report the crystal structure of the title compound, (I), obtained by the three-component reaction of furfuraldehyde, acetoacetate and urea.

In (I) (Fig. 1), the dihydropyrimidinone rings adopt flattened boat conformation. The asymmetric unit contains two independent molecules. In one independent molecule, the furanyl fragment is rotationally disordered in a ratio 0.625 (6):0.375 (6). The bond lengths an angles are normal and comparable to the values observed in similar compounds (Nizam Mohideen et al., 2008; Qing-Fang et al., 2007) The dihedral angles between the furan rings (C3—C6/O2, C15—C18/O6) and the mean planes of the dihydropyrimidinone rings (N1/C1/N2/C9/C8, N3/C13/N4/C21/C20) unit in two independent molecules are 88.79 (4) ° and 86.73 (2)°, respectively, indicating that the furan rings and the dihydropyrimidinone rings are nearly perpendicular.

In the crystal structure, intermolecular NH···Opyrimidinone hydrogen bonds (Table 1) link the molecules into centrosymmetric tetramers. Tetramers are further associated into ribbons extended in direction [010] via the weak intermolecular N—H···Ocarboxyl hydrogen bonds (Table 1).

Related literature top

Biginelli reaction is the most important procedure in the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones, see: Biginelli et al. (1893). For related structures, see: Nizam Mohideen et al. (2008); Qing-Fang et al. (2007).

Experimental top

A mixture of ethylacetoacetate (0.5 mol), furfural (0.5 mol) and urea (0.6 mol) was refluxed in 50.0 ml of ethanol for 2.0 hrs. The reaction completion was monitored through thin layer chromatography and the reaction mixture was quenched in ice cold water. The precipitate obtained was filtered, dried and crystallized from methanol to obtain the title compound.

Refinement top

All H atoms were placed in geometrically idealized positions (N—H 0.86 and C—H = 0.93–0.97 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2U-1.5eq(C, N). Atoms C4, C5, C6, O2 were treated as disordered between two positions, with refined occupancies of 0.375 (6) and 0.625 (6).

Structure description top

Biginelli reaction is a well known multicomponent reaction involving a one-pot cyclocondensation of an aldehyde, β-ketoester and urea/thiourea. It is the most important procedure in the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones (Biginelli, 1893). Herewith we report the crystal structure of the title compound, (I), obtained by the three-component reaction of furfuraldehyde, acetoacetate and urea.

In (I) (Fig. 1), the dihydropyrimidinone rings adopt flattened boat conformation. The asymmetric unit contains two independent molecules. In one independent molecule, the furanyl fragment is rotationally disordered in a ratio 0.625 (6):0.375 (6). The bond lengths an angles are normal and comparable to the values observed in similar compounds (Nizam Mohideen et al., 2008; Qing-Fang et al., 2007) The dihedral angles between the furan rings (C3—C6/O2, C15—C18/O6) and the mean planes of the dihydropyrimidinone rings (N1/C1/N2/C9/C8, N3/C13/N4/C21/C20) unit in two independent molecules are 88.79 (4) ° and 86.73 (2)°, respectively, indicating that the furan rings and the dihydropyrimidinone rings are nearly perpendicular.

In the crystal structure, intermolecular NH···Opyrimidinone hydrogen bonds (Table 1) link the molecules into centrosymmetric tetramers. Tetramers are further associated into ribbons extended in direction [010] via the weak intermolecular N—H···Ocarboxyl hydrogen bonds (Table 1).

Biginelli reaction is the most important procedure in the synthesis of 3,4-dihydropyrimidin-2-(1H)-ones, see: Biginelli et al. (1893). For related structures, see: Nizam Mohideen et al. (2008); Qing-Fang et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The content of asymmetric unit of the title compound showing the atomic numbering scheme and 30% probability displacement ellipsoids. Only major components of the disordered atoms are shown.
Ethyl 4-(furan-2-yl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate top
Crystal data top
C12H14N2O4F(000) = 1056
Mr = 250.25Dx = 1.361 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 12.1720 (14) ÅCell parameters from 1664 reflections
b = 13.3180 (15) Åθ = 2.3–22.3°
c = 17.116 (2) ŵ = 0.10 mm1
β = 118.300 (2)°T = 298 K
V = 2443.0 (5) Å3Block, yellow
Z = 80.48 × 0.45 × 0.17 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4298 independent reflections
Radiation source: fine-focus sealed tube1943 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
φ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1414
Tmin = 0.952, Tmax = 0.983k = 1415
11604 measured reflectionsl = 2019
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.071Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.237H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.1244P)2]
where P = (Fo2 + 2Fc2)/3
4298 reflections(Δ/σ)max = 0.001
338 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C12H14N2O4V = 2443.0 (5) Å3
Mr = 250.25Z = 8
Monoclinic, P21/cMo Kα radiation
a = 12.1720 (14) ŵ = 0.10 mm1
b = 13.3180 (15) ÅT = 298 K
c = 17.116 (2) Å0.48 × 0.45 × 0.17 mm
β = 118.300 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4298 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1943 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.983Rint = 0.069
11604 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0710 restraints
wR(F2) = 0.237H-atom parameters constrained
S = 0.94Δρmax = 0.30 e Å3
4298 reflectionsΔρmin = 0.23 e Å3
338 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.0677 (3)0.8975 (2)0.4632 (2)0.0478 (9)
H10.03510.95550.44370.057*
N20.0574 (3)0.7467 (2)0.5219 (2)0.0479 (8)
H20.04680.71350.56090.057*
N30.8736 (3)0.6124 (2)0.7072 (2)0.0499 (9)
H30.89880.55110.71820.060*
N40.8981 (3)0.7698 (2)0.6635 (2)0.0497 (8)
H40.91960.80750.63210.060*
O10.0199 (2)0.88634 (18)0.55364 (19)0.0574 (8)
O20.3239 (6)0.8613 (5)0.5879 (5)0.086 (2)0.625 (6)
C4'0.3192 (18)0.9228 (13)0.5941 (13)0.086 (2)0.375 (6)
H4'0.26720.94250.61730.103*0.375 (6)
O30.2203 (2)0.7669 (2)0.32562 (17)0.0565 (8)
O40.1728 (3)0.6108 (2)0.3447 (2)0.0686 (9)
O50.9657 (3)0.63333 (18)0.6200 (2)0.0600 (8)
O60.6054 (4)0.6411 (3)0.5976 (3)0.1107 (13)
O70.7327 (3)0.7358 (2)0.85737 (19)0.0690 (9)
O80.7471 (3)0.8936 (2)0.8223 (2)0.0780 (10)
C10.0329 (3)0.8474 (3)0.5145 (3)0.0456 (10)
C20.1585 (3)0.8589 (3)0.4384 (3)0.0429 (10)
H2A0.14380.89070.38260.052*
C30.2873 (4)0.8830 (3)0.5074 (3)0.0559 (11)
C40.3859 (8)0.9166 (7)0.4951 (7)0.079 (2)0.625 (6)
H4A0.38520.93490.44240.094*0.625 (6)
C50.4870 (15)0.9164 (9)0.5815 (12)0.086 (4)0.625 (6)
H50.56800.93590.59660.103*0.625 (6)
C60.448 (2)0.8828 (11)0.6403 (17)0.091 (4)0.625 (6)
H60.49430.87640.70160.109*0.625 (6)
O2'0.3875 (9)0.8450 (8)0.5162 (7)0.079 (2)0.375 (6)
C5'0.459 (4)0.924 (2)0.636 (3)0.091 (4)0.375 (6)
H5'0.51160.96190.68550.109*0.375 (6)
C6'0.492 (3)0.8685 (16)0.598 (2)0.086 (4)0.375 (6)
H6'0.57250.84450.61840.103*0.375 (6)
C70.1783 (3)0.6992 (3)0.3629 (2)0.0461 (9)
C80.1410 (3)0.7470 (2)0.4236 (2)0.0408 (9)
C90.0980 (3)0.6952 (3)0.4705 (2)0.0425 (9)
C100.0877 (4)0.5845 (3)0.4755 (3)0.0621 (12)
H10A0.00240.56460.43950.093*
H10B0.11490.56520.53590.093*
H10C0.13900.55230.45420.093*
C110.2614 (4)0.7310 (3)0.2650 (3)0.0666 (12)
H11A0.19380.69690.21550.080*
H11B0.32990.68420.29460.080*
C120.3030 (4)0.8203 (4)0.2328 (3)0.0828 (15)
H12A0.23440.86600.20370.124*
H12B0.33120.79880.19180.124*
H12C0.37000.85330.28230.124*
C130.9139 (3)0.6678 (3)0.6603 (3)0.0473 (10)
C140.7910 (3)0.6476 (3)0.7409 (3)0.0477 (10)
H140.81830.61610.79890.057*
C150.6605 (4)0.6159 (3)0.6829 (3)0.0588 (12)
C160.5810 (5)0.5651 (4)0.7005 (4)0.0925 (17)
H160.59690.53870.75520.111*
C170.4691 (6)0.5587 (5)0.6215 (6)0.113 (2)
H170.39610.52810.61410.136*
C180.4851 (6)0.6031 (6)0.5604 (6)0.126 (3)
H180.42540.60870.50110.151*
C190.7596 (4)0.8057 (3)0.8129 (3)0.0563 (11)
C200.8035 (3)0.7603 (3)0.7555 (2)0.0452 (9)
C210.8509 (3)0.8162 (3)0.7128 (2)0.0444 (9)
C220.8605 (4)0.9280 (3)0.7135 (3)0.0591 (12)
H22A0.77990.95620.67560.089*
H22B0.91780.94740.69240.089*
H22C0.89010.95240.77290.089*
C230.6852 (5)0.7708 (4)0.9158 (3)0.0831 (15)
H23A0.61480.81540.88390.100*
H23B0.74960.80740.96540.100*
C240.6464 (5)0.6833 (5)0.9477 (4)0.110 (2)
H24A0.57800.65080.89870.165*
H24B0.62060.70410.99030.165*
H24C0.71500.63730.97530.165*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.047 (2)0.0349 (18)0.072 (2)0.0098 (14)0.037 (2)0.0113 (15)
N20.058 (2)0.0331 (19)0.065 (2)0.0014 (15)0.0384 (19)0.0075 (14)
N30.053 (2)0.0363 (18)0.074 (2)0.0055 (14)0.041 (2)0.0085 (15)
N40.056 (2)0.0355 (19)0.068 (2)0.0017 (15)0.038 (2)0.0059 (15)
O10.0673 (18)0.0414 (16)0.088 (2)0.0067 (13)0.0563 (18)0.0067 (14)
O20.068 (3)0.082 (5)0.086 (4)0.010 (4)0.019 (3)0.002 (5)
C4'0.068 (3)0.082 (5)0.086 (4)0.010 (4)0.019 (3)0.002 (5)
O30.0712 (19)0.0502 (17)0.0654 (18)0.0097 (13)0.0466 (17)0.0051 (13)
O40.089 (2)0.0406 (18)0.097 (2)0.0088 (15)0.061 (2)0.0133 (15)
O50.0728 (19)0.0429 (17)0.091 (2)0.0006 (14)0.0604 (19)0.0001 (14)
O60.077 (3)0.116 (3)0.105 (3)0.018 (2)0.015 (3)0.006 (2)
O70.083 (2)0.070 (2)0.076 (2)0.0077 (16)0.055 (2)0.0078 (16)
O80.100 (3)0.052 (2)0.105 (3)0.0020 (17)0.066 (2)0.0134 (17)
C10.041 (2)0.041 (2)0.064 (3)0.0000 (17)0.032 (2)0.0031 (19)
C20.044 (2)0.037 (2)0.055 (2)0.0022 (17)0.030 (2)0.0033 (17)
C30.049 (3)0.041 (2)0.074 (3)0.001 (2)0.027 (3)0.004 (2)
C40.058 (3)0.084 (6)0.090 (5)0.003 (5)0.031 (4)0.011 (5)
C50.052 (4)0.090 (11)0.100 (9)0.006 (8)0.024 (6)0.015 (9)
C60.068 (6)0.081 (14)0.095 (6)0.007 (10)0.016 (5)0.005 (11)
O2'0.058 (3)0.084 (6)0.090 (5)0.003 (5)0.031 (4)0.011 (5)
C5'0.068 (6)0.081 (14)0.095 (6)0.007 (10)0.016 (5)0.005 (11)
C6'0.052 (4)0.090 (11)0.100 (9)0.006 (8)0.024 (6)0.015 (9)
C70.043 (2)0.045 (3)0.053 (2)0.0040 (18)0.025 (2)0.0023 (19)
C80.040 (2)0.033 (2)0.053 (2)0.0022 (16)0.025 (2)0.0002 (16)
C90.041 (2)0.037 (2)0.057 (2)0.0012 (16)0.029 (2)0.0004 (17)
C100.079 (3)0.035 (2)0.091 (3)0.009 (2)0.055 (3)0.005 (2)
C110.075 (3)0.070 (3)0.071 (3)0.005 (2)0.048 (3)0.004 (2)
C120.086 (4)0.094 (4)0.088 (4)0.023 (3)0.057 (3)0.005 (3)
C130.044 (2)0.039 (2)0.064 (3)0.0000 (17)0.029 (2)0.0050 (18)
C140.049 (2)0.044 (2)0.059 (3)0.0016 (18)0.033 (2)0.0051 (18)
C150.054 (3)0.049 (3)0.081 (4)0.005 (2)0.038 (3)0.007 (2)
C160.077 (4)0.106 (5)0.107 (5)0.027 (3)0.054 (4)0.013 (3)
C170.068 (4)0.110 (6)0.161 (7)0.021 (4)0.054 (5)0.043 (5)
C180.069 (5)0.127 (6)0.123 (7)0.007 (4)0.002 (5)0.019 (5)
C190.046 (3)0.059 (3)0.066 (3)0.005 (2)0.028 (2)0.003 (2)
C200.038 (2)0.041 (2)0.057 (2)0.0002 (17)0.022 (2)0.0021 (18)
C210.038 (2)0.037 (2)0.058 (3)0.0007 (16)0.022 (2)0.0011 (17)
C220.063 (3)0.039 (2)0.080 (3)0.0017 (19)0.037 (3)0.000 (2)
C230.103 (4)0.090 (4)0.082 (3)0.009 (3)0.065 (3)0.013 (3)
C240.122 (5)0.140 (6)0.106 (4)0.030 (4)0.084 (4)0.017 (4)
Geometric parameters (Å, º) top
N1—C11.322 (4)O2'—C6'1.41 (3)
N1—C21.454 (4)C5'—C6'1.17 (6)
N1—H10.8600C5'—H5'0.9300
N2—C11.365 (4)C6'—H6'0.9300
N2—C91.379 (4)C7—C81.462 (5)
N2—H20.8600C8—C91.339 (5)
N3—C131.343 (5)C9—C101.485 (5)
N3—C141.454 (4)C10—H10A0.9600
N3—H30.8600C10—H10B0.9600
N4—C211.373 (4)C10—H10C0.9600
N4—C131.377 (4)C11—C121.496 (6)
N4—H40.8600C11—H11A0.9700
O1—C11.241 (4)C11—H11B0.9700
O2—C31.263 (8)C12—H12A0.9600
O2—C61.37 (2)C12—H12B0.9600
C4'—C31.44 (2)C12—H12C0.9600
C4'—C5'1.50 (5)C14—C151.480 (5)
C4'—H4'0.9300C14—C201.518 (5)
O3—C71.338 (4)C14—H140.9800
O3—C111.430 (4)C15—C161.327 (6)
O4—C71.211 (4)C16—C171.395 (8)
O5—C131.224 (4)C16—H160.9300
O6—C151.330 (6)C17—C181.294 (9)
O6—C181.387 (7)C17—H170.9300
O7—C191.337 (5)C18—H180.9300
O7—C231.449 (5)C19—C201.455 (5)
O8—C191.201 (4)C20—C211.349 (5)
C2—C31.484 (5)C21—C221.494 (5)
C2—C81.509 (5)C22—H22A0.9600
C2—H2A0.9800C22—H22B0.9600
C3—O2'1.262 (10)C22—H22C0.9600
C3—C41.387 (10)C23—C241.458 (7)
C4—C51.405 (18)C23—H23A0.9700
C4—H4A0.9300C23—H23B0.9700
C5—C61.38 (3)C24—H24A0.9600
C5—H50.9300C24—H24B0.9600
C6—H60.9300C24—H24C0.9600
C1—N1—C2122.9 (3)H10A—C10—H10B109.5
C1—N1—H1118.6C9—C10—H10C109.5
C2—N1—H1118.6H10A—C10—H10C109.5
C1—N2—C9123.9 (3)H10B—C10—H10C109.5
C1—N2—H2118.0O3—C11—C12107.3 (4)
C9—N2—H2118.0O3—C11—H11A110.3
C13—N3—C14125.2 (3)C12—C11—H11A110.3
C13—N3—H3117.4O3—C11—H11B110.3
C14—N3—H3117.4C12—C11—H11B110.3
C21—N4—C13125.1 (3)H11A—C11—H11B108.5
C21—N4—H4117.5C11—C12—H12A109.5
C13—N4—H4117.5C11—C12—H12B109.5
C3—O2—C6112.1 (12)H12A—C12—H12B109.5
C3—C4'—C5'101 (2)C11—C12—H12C109.5
C3—C4'—H4'129.5H12A—C12—H12C109.5
C5'—C4'—H4'129.5H12B—C12—H12C109.5
C7—O3—C11117.6 (3)O5—C13—N3124.2 (4)
C15—O6—C18106.5 (5)O5—C13—N4120.8 (3)
C19—O7—C23117.0 (4)N3—C13—N4115.0 (4)
O1—C1—N1123.9 (4)N3—C14—C15111.5 (3)
O1—C1—N2120.4 (3)N3—C14—C20110.5 (3)
N1—C1—N2115.6 (3)C15—C14—C20112.6 (3)
N1—C2—C3110.7 (3)N3—C14—H14107.3
N1—C2—C8109.4 (3)C15—C14—H14107.3
C3—C2—C8111.0 (3)C20—C14—H14107.3
N1—C2—H2A108.5C16—C15—O6109.7 (5)
C3—C2—H2A108.5C16—C15—C14131.2 (5)
C8—C2—H2A108.5O6—C15—C14119.1 (4)
O2'—C3—O287.6 (7)C15—C16—C17107.0 (6)
O2'—C3—C444.8 (5)C15—C16—H16126.5
O2—C3—C4110.9 (6)C17—C16—H16126.5
O2'—C3—C4'104.6 (10)C18—C17—C16107.7 (6)
O2—C3—C4'35.0 (6)C18—C17—H17126.2
C4—C3—C4'101.9 (9)C16—C17—H17126.2
O2'—C3—C2127.2 (6)C17—C18—O6109.1 (7)
O2—C3—C2120.8 (5)C17—C18—H18125.4
C4—C3—C2127.8 (6)O6—C18—H18125.4
C4'—C3—C2124.4 (9)O8—C19—O7121.5 (4)
C3—C4—C5103.2 (10)O8—C19—C20127.3 (4)
C3—C4—H4A128.4O7—C19—C20111.3 (4)
C5—C4—H4A128.4C21—C20—C19121.7 (4)
C6—C5—C4109.5 (15)C21—C20—C14119.5 (3)
C6—C5—H5125.2C19—C20—C14118.8 (3)
C4—C5—H5125.2C20—C21—N4119.7 (3)
O2—C6—C5104.1 (18)C20—C21—C22126.7 (3)
O2—C6—H6127.9N4—C21—C22113.5 (3)
C5—C6—H6127.9C21—C22—H22A109.5
C3—O2'—C6'113.1 (15)C21—C22—H22B109.5
C6'—C5'—C4'110 (3)H22A—C22—H22B109.5
C6'—C5'—H5'125.2C21—C22—H22C109.5
C4'—C5'—H5'125.2H22A—C22—H22C109.5
C5'—C6'—O2'108 (3)H22B—C22—H22C109.5
C5'—C6'—H6'125.9O7—C23—C24107.9 (4)
O2'—C6'—H6'125.9O7—C23—H23A110.1
O4—C7—O3121.3 (3)C24—C23—H23A110.1
O4—C7—C8127.4 (3)O7—C23—H23B110.1
O3—C7—C8111.2 (3)C24—C23—H23B110.1
C9—C8—C7122.9 (3)H23A—C23—H23B108.4
C9—C8—C2118.2 (3)C23—C24—H24A109.5
C7—C8—C2118.9 (3)C23—C24—H24B109.5
C8—C9—N2119.1 (3)H24A—C24—H24B109.5
C8—C9—C10127.9 (3)C23—C24—H24C109.5
N2—C9—C10113.0 (3)H24A—C24—H24C109.5
C9—C10—H10A109.5H24B—C24—H24C109.5
C9—C10—H10B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.122.924 (4)156
N2—H2···O5ii0.862.022.851 (4)162
N3—H3···O4iii0.862.383.077 (4)138
N4—H4···O1iv0.862.102.952 (4)174
Symmetry codes: (i) x, y+2, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC12H14N2O4
Mr250.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)12.1720 (14), 13.3180 (15), 17.116 (2)
β (°) 118.300 (2)
V3)2443.0 (5)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.48 × 0.45 × 0.17
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.952, 0.983
No. of measured, independent and
observed [I > 2σ(I)] reflections
11604, 4298, 1943
Rint0.069
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.071, 0.237, 0.94
No. of reflections4298
No. of parameters338
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.23

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.122.924 (4)156.0
N2—H2···O5ii0.862.022.851 (4)161.6
N3—H3···O4iii0.862.383.077 (4)138.0
N4—H4···O1iv0.862.102.952 (4)174.3
Symmetry codes: (i) x, y+2, z+1; (ii) x1, y, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds