Download citation
Download citation
link to html
In the title compound, K3[Cu(C10H12N2O10P)]·2H2O, the CuII ion, one potassium cation and a P atom are situated on a twofold rotation axis. The CuII ion is coordinated by two N and four O atoms from one bis­{[bis­(carboxyl­atometh­yl)amino]­meth­yl}phosphinate ligand in a distorted octa­hedral coordination geometry. The two crystallographically independent potassium ions exhibit different coordination environments. The potassium ion in a general position is hepta­coordinated by five carboxyl­ate O atoms, one phosphinate O atom and one water mol­ecule [K—O = 2.718 (3)–3.040 (3) Å], and the potassium ion situated on the twofold rotation axis is hexa­coordinated by four carboxyl­ate O atoms and two water mol­ecules [K—O = 2.618 (3)–2.771 (3) Å]. The water mol­ecules are also involved in formation of inter­molecular O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536811053608/cv5214sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536811053608/cv5214Isup2.hkl
Contains datablock I

CCDC reference: 861709

Key indicators

  • Single-crystal X-ray study
  • T = 273 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.025
  • wR factor = 0.065
  • Data-to-parameter ratio = 12.0

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Cu1 -- O3 .. 13.8 su PLAT919_ALERT_3_B Reflection # Likely Affected by the Beamstop ... 1 PLAT934_ALERT_3_B Number of (Iobs-Icalc)/SigmaW .gt. 10 Outliers . 1
Alert level C PLAT042_ALERT_1_C Calc. and Reported MoietyFormula Strings Differ ? PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu1 -- O1 .. 9.9 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu1 -- N1 .. 7.8 su PLAT241_ALERT_2_C Check High Ueq as Compared to Neighbors for O3 PLAT733_ALERT_1_C Torsion Calc 51.0(3), Rep 50.96(7) ...... 4.29 su-Ra K2 -O6 -K1 -O6 3.656 1.555 1.555 2.665 38 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.595 2
Alert level G FORMU01_ALERT_1_G There is a discrepancy between the atom counts in the _chemical_formula_sum and _chemical_formula_moiety. This is usually due to the moiety formula being in the wrong format. Atom count from _chemical_formula_sum: C10 H16 Cu1 K3 N2 O12 P1 Atom count from _chemical_formula_moiety:C10 H16 Cu1 K6 N2 O12 P1 REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.03 From the CIF: _reflns_number_total 1686 Count of symmetry unique reflns 1002 Completeness (_total/calc) 168.26% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 684 Fraction of Friedel pairs measured 0.683 Are heavy atom types Z>Si present yes PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 3 PLAT004_ALERT_5_G Info: Polymeric Structure Found with Dimension . 1 PLAT005_ALERT_5_G No _iucr_refine_instructions_details in CIF .... ? PLAT158_ALERT_4_G The Input Unitcell is NOT Standard/Reduced ..... ? PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 273 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature 273 K PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 1 O1 -CU1 -N1 -C1 79.00 1.30 2.655 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 6 O1 -CU1 -N1 -C3 -38.00 1.30 2.655 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 11 O1 -CU1 -N1 -C5 -164.50 1.20 2.655 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 18 N1 -CU1 -O1 -C2 113.90 1.20 2.655 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 23 N1 -CU1 -O1 -K2 -111.00 1.20 2.655 1.555 1.555 1.554 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 30 O3 -CU1 -O3 -C4 -66.40 0.20 2.655 1.555 1.555 1.555 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 35 O3 -CU1 -O3 -K2 152.06 0.16 2.655 1.555 1.555 3.646 PLAT710_ALERT_4_G Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 117 N1 -C3 -C4 -K2 10.00 2.00 1.555 1.555 1.555 3.646 PLAT764_ALERT_4_G Overcomplete CIF Bond List Detected (Rep/Expd) . 1.34 Ratio PLAT794_ALERT_5_G Note: Tentative Bond Valency for Cu1 (II) 2.20 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2 PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) still 83 Perc.
0 ALERT level A = Most likely a serious problem - resolve or explain 3 ALERT level B = A potentially serious problem, consider carefully 6 ALERT level C = Check. Ensure it is not caused by an omission or oversight 20 ALERT level G = General information/check it is not something unexpected 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 5 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 11 ALERT type 4 Improvement, methodology, query or suggestion 3 ALERT type 5 Informative message, check

Comment top

The most famous chelating ligands are aminopolycarboxylic acids such as the ethylenediaminetetraacetic acid (edta). In the current continuing quest for new chelating ligands, some derivatives of edta, which have both similar chelating properties as edta and special chemical fragments, are discovered. Bis{[bis(carboxymethyl)amino]methyl}phosphinic acid (H5XT) is a good example which could be structurally looked as two equal half of edta connected by a phosphinate group. Previous research (Xu et al., 2001) has demonstrated that XT5- is able to form stable complexes with rare earth metal and cobalt ions. Herewith we present the crystal structure of the title compound (I).

In (I) (Fig. 1), the CuII ion exhibits a distorted octahedral coordination geometry, where two N and two carboxylate O atoms located at the equatorial positions. Other two carboxylate O atoms occupy the axial positions. The CuII ion, one potassium cation and a P atom are situated on a twofold axis. Two types of potassium ions with different coodination circumstances are distributed in the title complex (Fig. 2). K1 is hexacoordinated by four carboxylate O atoms and two water molecules; while K2 is heptacoordinated by five carboxylate O atoms, one phosphinate O atom and one water molecule. The bond distances and angles in the title coupound agree well with the corresponding bond distances and angles reported in related [Co(II)XT]3- complex (Xu et al., 2001).

Related literature top

For details of the synthesis of the ligand, see: Varga (1997); Tircsó et al. (2007). For the isotypic compound with Co(II), see: Xu et al. (2001).

Experimental top

The ligand, bis{[bis(carboxymethyl)amino]methyl}phosphinic acid(XT), was synthesized according to the known procedure (Varga, 1997; Tircsó et al., 2007).

The title complex was simply synthesized by mixing 0.4027 g XT, 0.1774 g CuCl2 and 5 ml water in a small beaker with sufficient stirring. When the solution became clear, KOH was used to adjust the pH value to 8. Then the beaker was transferred to a closed container of methanol. After methanol vapor diffusion for one week, blue transparent crystals were observed from the solution.

Refinement top

C-bound H atoms were geometrically positioned [C—H 0.97 Å], and refined as riding, with Uiso(H) = 1.2Ueq(C). O-bound H atoms were located in a difference Fourier map, and refined with restraint O—H = 0.93 (2) Å, and with Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A portion of the crystal structure of (I) showing a coordination environment of CuII, atomic numbering and 50% probability displacement ellipsoids [symmetry code: (A) 1 - x, -y, z]. H atoms omitted for clarity.
[Figure 2] Fig. 2. A portion of the crystal structure of (I) showing the positions of K+ [symmetry code: (A) 1 - x,-y, z; (B) 1/2 + x,1/2 - y, -z; (C) x,y, -1 + z; (D) -1/2 + x,1/2 - y, 1 - z; (E) 3/2 - x,-1/2 + y,1 - z; (F) 3/2 - x,1/2 + y, 1 - z; (G) x,-1 + y, z; (H) 1 - x,-y,-1 + z; (I) -1/2 + x,-1/2 - y,1 - z; (J) -1/2 + x,1/2 - y,-z]. O6 belongs to the water molecule. H atoms omitted for clarity.
Tripotassium (bis{[bis(carboxylatomethyl)amino]methyl}phosphinato)cuprate(II) dihydrate top
Crystal data top
K3[Cu(C10H12N2O10P)]·2H2OF(000) = 574
Mr = 568.06Dx = 1.969 Mg m3
Orthorhombic, P21212Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2 2abCell parameters from 376 reflections
a = 11.880 (7) Åθ = 2.6–22.8°
b = 8.332 (5) ŵ = 1.94 mm1
c = 9.681 (6) ÅT = 273 K
V = 958.2 (10) Å3Block, blue
Z = 20.25 × 0.20 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1686 independent reflections
Radiation source: fine-focus sealed tube1553 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
phi and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 147
Tmin = 0.643, Tmax = 0.760k = 99
3814 measured reflectionsl = 1111
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065 w = 1/[σ2(Fo2) + (0.0309P)2 + 0.1108P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
1686 reflectionsΔρmax = 0.42 e Å3
141 parametersΔρmin = 0.27 e Å3
2 restraintsAbsolute structure: Flack (1983), 671 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.016 (19)
Crystal data top
K3[Cu(C10H12N2O10P)]·2H2OV = 958.2 (10) Å3
Mr = 568.06Z = 2
Orthorhombic, P21212Mo Kα radiation
a = 11.880 (7) ŵ = 1.94 mm1
b = 8.332 (5) ÅT = 273 K
c = 9.681 (6) Å0.25 × 0.20 × 0.15 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1686 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
1553 reflections with I > 2σ(I)
Tmin = 0.643, Tmax = 0.760Rint = 0.041
3814 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.065Δρmax = 0.42 e Å3
S = 1.07Δρmin = 0.27 e Å3
1686 reflectionsAbsolute structure: Flack (1983), 671 Friedel pairs
141 parametersAbsolute structure parameter: 0.016 (19)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.00000.24820 (5)0.02067 (13)
N10.5819 (2)0.1559 (3)0.3846 (2)0.0241 (5)
O10.56779 (19)0.1530 (3)0.1064 (2)0.0350 (5)
O20.6252 (2)0.4027 (3)0.0863 (2)0.0439 (7)
O30.65208 (19)0.1264 (3)0.2638 (3)0.0431 (6)
O40.83096 (19)0.0736 (3)0.3018 (3)0.0480 (7)
O50.6061 (2)0.0298 (3)0.7037 (2)0.0451 (7)
O60.6136 (3)0.7735 (4)0.0772 (3)0.0451 (7)
K10.50000.50000.14025 (10)0.0354 (2)
K20.72836 (6)0.15198 (9)0.89192 (7)0.03197 (18)
P10.50000.00000.62460 (10)0.0294 (3)
C10.5802 (3)0.3100 (4)0.3092 (3)0.0309 (8)
H1A0.64030.37790.34350.037*
H1B0.50940.36410.32730.037*
C20.5938 (3)0.2890 (4)0.1561 (4)0.0279 (7)
C30.6992 (3)0.0996 (4)0.4033 (4)0.0314 (7)
H3A0.71040.07190.49970.038*
H3B0.75010.18710.38160.038*
C40.7300 (3)0.0441 (4)0.3151 (3)0.0300 (8)
C50.5181 (3)0.1745 (4)0.5159 (3)0.0279 (7)
H5B0.44390.21500.49300.033*
H5A0.55540.25650.57030.033*
H6A0.613 (3)0.835 (5)0.158 (3)0.059 (13)*
H6B0.569 (4)0.835 (6)0.017 (5)0.10 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0246 (2)0.0185 (2)0.0189 (2)0.0019 (2)0.0000.000
N10.0280 (12)0.0227 (13)0.0216 (13)0.0016 (11)0.0028 (11)0.0039 (13)
O10.0404 (13)0.0380 (13)0.0266 (12)0.0059 (11)0.0010 (10)0.0022 (12)
O20.0466 (15)0.0481 (16)0.0369 (14)0.0133 (12)0.0063 (11)0.0228 (13)
O30.0383 (12)0.0399 (15)0.0510 (16)0.0032 (12)0.0113 (12)0.0146 (13)
O40.0315 (13)0.0526 (16)0.0599 (17)0.0113 (13)0.0084 (12)0.0057 (14)
O50.0594 (15)0.0483 (18)0.0277 (11)0.0152 (14)0.0179 (11)0.0126 (11)
O60.0528 (17)0.0480 (16)0.0346 (16)0.0074 (13)0.0055 (13)0.0145 (13)
K10.0282 (4)0.0441 (6)0.0339 (5)0.0023 (6)0.0000.000
K20.0348 (3)0.0312 (4)0.0299 (4)0.0003 (3)0.0005 (3)0.0034 (3)
P10.0408 (6)0.0328 (6)0.0145 (5)0.0103 (6)0.0000.000
C10.044 (2)0.0214 (18)0.0277 (17)0.0030 (14)0.0002 (15)0.0030 (14)
C20.0219 (15)0.036 (2)0.0260 (17)0.0021 (15)0.0033 (13)0.0058 (16)
C30.0267 (16)0.0380 (19)0.0296 (18)0.0031 (14)0.0025 (13)0.0026 (16)
C40.0267 (15)0.033 (2)0.0299 (16)0.0030 (14)0.0044 (14)0.0098 (13)
C50.0336 (18)0.0290 (16)0.0209 (14)0.0030 (14)0.0033 (13)0.0010 (13)
Geometric parameters (Å, º) top
Cu1—O1i2.039 (3)K1—O4vi2.618 (3)
Cu1—O12.039 (3)K1—O4vii2.618 (3)
Cu1—N12.092 (3)K1—O6viii2.718 (3)
Cu1—N1i2.092 (3)K1—O2viii2.771 (3)
Cu1—O3i2.097 (3)K2—O2iv2.717 (3)
Cu1—O32.097 (3)K2—O3iii2.775 (3)
N1—C11.478 (4)K2—O6iv2.788 (3)
N1—C31.482 (4)K2—O1ix2.819 (3)
N1—C51.488 (4)K2—O4iii3.040 (3)
O1—C21.270 (4)K2—O2ix3.067 (3)
O1—K2ii2.819 (3)K2—C2ix3.225 (4)
O2—C21.222 (4)K2—C4iii3.267 (4)
O2—K2iii2.717 (3)P1—O5i1.496 (2)
O2—K12.771 (3)P1—C5i1.807 (3)
O2—K2ii3.067 (3)P1—C51.807 (3)
O3—C41.255 (4)C1—C21.501 (5)
O3—K2iv2.775 (3)C1—H1A0.9700
O4—C41.231 (4)C1—H1B0.9700
O4—K1v2.618 (3)C2—K2ii3.225 (4)
O4—K2iv3.040 (3)C3—C41.515 (5)
O5—P11.496 (2)C3—H3A0.9700
O5—K22.779 (3)C3—H3B0.9700
O6—K12.718 (3)C4—K2iv3.267 (4)
O6—K2iii2.788 (3)C5—H5B0.9700
O6—H6A0.932 (19)C5—H5A0.9700
O6—H6B0.94 (2)
O1i—Cu1—O195.35 (14)O3iii—K2—O1ix138.11 (8)
O1i—Cu1—N1175.30 (10)O5—K2—O1ix97.50 (9)
O1—Cu1—N181.57 (10)O6iv—K2—O1ix88.91 (9)
O1i—Cu1—N1i81.57 (10)O2iv—K2—O4iii140.46 (8)
O1—Cu1—N1i175.30 (10)O3iii—K2—O4iii44.19 (7)
N1—Cu1—N1i101.72 (14)O5—K2—O4iii83.36 (8)
O1i—Cu1—O3i91.27 (10)O6iv—K2—O4iii106.25 (9)
O1—Cu1—O3i94.30 (10)O1ix—K2—O4iii107.17 (8)
N1—Cu1—O3i92.50 (10)O2iv—K2—O2ix136.78 (5)
N1i—Cu1—O3i82.27 (10)O3iii—K2—O2ix94.85 (8)
O1i—Cu1—O394.30 (10)O5—K2—O2ix124.36 (8)
O1—Cu1—O391.27 (10)O6iv—K2—O2ix68.10 (9)
N1—Cu1—O382.27 (10)O1ix—K2—O2ix43.61 (7)
N1i—Cu1—O392.50 (10)O4iii—K2—O2ix76.91 (8)
O3i—Cu1—O3171.73 (14)O2iv—K2—C2ix121.76 (9)
C1—N1—C3110.4 (3)O3iii—K2—C2ix116.68 (9)
C1—N1—C5108.9 (3)O5—K2—C2ix116.98 (9)
C3—N1—C5114.1 (2)O6iv—K2—C2ix72.25 (9)
C1—N1—Cu1102.74 (19)O1ix—K2—C2ix23.02 (8)
C3—N1—Cu1108.5 (2)O4iii—K2—C2ix96.20 (9)
C5—N1—Cu1111.52 (19)O2ix—K2—C2ix22.22 (7)
C2—O1—Cu1113.5 (2)O2iv—K2—C4iii122.90 (9)
C2—O1—K2ii96.7 (2)O3iii—K2—C4iii22.10 (7)
Cu1—O1—K2ii139.57 (12)O5—K2—C4iii95.70 (9)
C2—O2—K2iii138.2 (2)O6iv—K2—C4iii90.64 (9)
C2—O2—K1120.0 (2)O1ix—K2—C4iii123.49 (8)
K2iii—O2—K1100.46 (8)O4iii—K2—C4iii22.13 (7)
C2—O2—K2ii86.2 (2)O2ix—K2—C4iii84.76 (8)
K2iii—O2—K2ii108.21 (9)C2ix—K2—C4iii106.68 (9)
K1—O2—K2ii85.89 (8)O2iv—K2—K1ix176.86 (6)
C4—O3—Cu1113.0 (2)O3iii—K2—K1ix79.73 (7)
C4—O3—K2iv101.58 (19)O5—K2—K1ix89.39 (7)
Cu1—O3—K2iv137.40 (12)O6iv—K2—K1ix104.17 (8)
C4—O4—K1v139.7 (2)O1ix—K2—K1ix66.08 (6)
C4—O4—K2iv89.3 (2)O4iii—K2—K1ix41.09 (5)
K1v—O4—K2iv89.16 (9)O2ix—K2—K1ix43.94 (5)
P1—O5—K2133.30 (16)C2ix—K2—K1ix57.76 (7)
K1—O6—K2iii100.04 (10)C4iii—K2—K1ix59.39 (6)
K1—O6—H6A106 (3)O2iv—K2—K1iv40.23 (5)
K2iii—O6—H6A138 (3)O3iii—K2—K1iv96.76 (7)
K1—O6—H6B109 (4)O5—K2—K1iv127.58 (7)
K2iii—O6—H6B100 (3)O6iv—K2—K1iv39.37 (7)
H6A—O6—H6B102 (4)O1ix—K2—K1iv95.67 (7)
O4vi—K1—O4vii106.63 (14)O4iii—K2—K1iv138.99 (5)
O4vi—K1—O6108.58 (9)O2ix—K2—K1iv99.24 (6)
O4vii—K1—O687.12 (9)C2ix—K2—K1iv91.93 (7)
O4vi—K1—O6viii87.12 (9)C4iii—K2—K1iv117.81 (7)
O4vii—K1—O6viii108.58 (9)K1ix—K2—K1iv141.64 (3)
O6—K1—O6viii154.05 (12)O2iv—K2—K2xii125.03 (7)
O4vi—K1—O2162.36 (8)O3iii—K2—K2xii66.12 (7)
O4vii—K1—O289.57 (9)O5—K2—K2xii146.49 (6)
O6—K1—O278.53 (9)O6iv—K2—K2xii46.87 (7)
O6viii—K1—O280.99 (9)O1ix—K2—K2xii75.11 (6)
O4vi—K1—O2viii89.57 (9)O4iii—K2—K2xii68.44 (7)
O4vii—K1—O2viii162.36 (8)O2ix—K2—K2xii33.39 (5)
O6—K1—O2viii80.99 (9)C2ix—K2—K2xii52.12 (7)
O6viii—K1—O2viii78.53 (9)C4iii—K2—K2xii64.45 (7)
O2—K1—O2viii75.37 (12)K1ix—K2—K2xii57.52 (3)
O4vi—K1—K2x49.75 (7)K1iv—K2—K2xii85.90 (3)
O4vii—K1—K2x137.69 (7)O5—P1—O5i118.4 (2)
O6—K1—K2x73.15 (8)O5—P1—C5i105.36 (15)
O6viii—K1—K2x104.76 (8)O5i—P1—C5i109.36 (14)
O2—K1—K2x121.11 (7)O5—P1—C5109.36 (14)
O2viii—K1—K2x50.17 (6)O5i—P1—C5105.37 (15)
O4vi—K1—K2ii137.69 (7)C5i—P1—C5108.8 (2)
O4vii—K1—K2ii49.75 (7)N1—C1—C2112.7 (3)
O6—K1—K2ii104.76 (8)N1—C1—H1A109.1
O6viii—K1—K2ii73.15 (8)C2—C1—H1A109.1
O2—K1—K2ii50.17 (6)N1—C1—H1B109.1
O2viii—K1—K2ii121.11 (7)C2—C1—H1B109.1
K2x—K1—K2ii171.03 (3)H1A—C1—H1B107.8
O4vi—K1—K2iii148.97 (7)O2—C2—O1123.8 (3)
O4vii—K1—K2iii79.86 (7)O2—C2—C1119.3 (3)
O6—K1—K2iii40.59 (6)O1—C2—C1116.9 (3)
O6viii—K1—K2iii120.23 (7)O2—C2—K2ii71.6 (2)
O2—K1—K2iii39.30 (6)O1—C2—K2ii60.27 (17)
O2viii—K1—K2iii82.64 (7)C1—C2—K2ii151.4 (2)
K2x—K1—K2iii104.95 (4)N1—C3—C4114.1 (3)
K2ii—K1—K2iii69.69 (4)N1—C3—H3A108.7
O4vi—K1—K2xi79.86 (7)C4—C3—H3A108.7
O4vii—K1—K2xi148.97 (7)N1—C3—H3B108.7
O6—K1—K2xi120.23 (7)C4—C3—H3B108.7
O6viii—K1—K2xi40.59 (6)H3A—C3—H3B107.6
O2—K1—K2xi82.64 (7)O4—C4—O3124.7 (3)
O2viii—K1—K2xi39.30 (6)O4—C4—C3116.8 (3)
K2x—K1—K2xi69.69 (4)O3—C4—C3118.5 (3)
K2ii—K1—K2xi104.95 (4)O4—C4—K2iv68.5 (2)
K2iii—K1—K2xi110.52 (5)O3—C4—K2iv56.32 (16)
O2iv—K2—O3iii102.89 (9)C3—C4—K2iv174.0 (2)
O2iv—K2—O588.23 (9)N1—C5—P1118.3 (2)
O3iii—K2—O5105.91 (9)N1—C5—H5B107.7
O2iv—K2—O6iv78.25 (9)P1—C5—H5B107.7
O3iii—K2—O6iv76.29 (9)N1—C5—H5A107.7
O5—K2—O6iv166.42 (9)P1—C5—H5A107.7
O2iv—K2—O1ix112.22 (8)H5B—C5—H5A107.1
O1i—Cu1—N1—C179.0 (13)K2iii—O2—K1—K2ii107.77 (9)
O1—Cu1—N1—C129.69 (19)C2—O2—K1—K2iii169.1 (3)
N1i—Cu1—N1—C1146.9 (2)K2ii—O2—K1—K2iii107.77 (9)
O3i—Cu1—N1—C164.3 (2)C2—O2—K1—K2xi33.3 (3)
O3—Cu1—N1—C1122.1 (2)K2iii—O2—K1—K2xi135.71 (8)
O1i—Cu1—N1—C338.0 (13)K2ii—O2—K1—K2xi116.52 (6)
O1—Cu1—N1—C387.3 (2)P1—O5—K2—O2iv179.09 (18)
N1i—Cu1—N1—C396.1 (2)P1—O5—K2—O3iii78.01 (19)
O3i—Cu1—N1—C3178.8 (2)P1—O5—K2—O6iv175.5 (3)
O3—Cu1—N1—C35.2 (2)P1—O5—K2—O1ix66.90 (19)
O1i—Cu1—N1—C5164.5 (12)P1—O5—K2—O4iii39.62 (17)
O1—Cu1—N1—C5146.2 (2)P1—O5—K2—O2ix29.5 (2)
N1i—Cu1—N1—C530.36 (16)P1—O5—K2—C2ix54.0 (2)
O3i—Cu1—N1—C552.3 (2)P1—O5—K2—C4iii58.02 (19)
O3—Cu1—N1—C5121.3 (2)P1—O5—K2—K1ix1.13 (17)
O1i—Cu1—O1—C2162.8 (3)P1—O5—K2—K1iv170.04 (14)
N1—Cu1—O1—C220.8 (2)P1—O5—K2—K2xii7.4 (3)
N1i—Cu1—O1—C2113.9 (12)K2—O5—P1—O5i60.87 (14)
O3i—Cu1—O1—C271.1 (2)K2—O5—P1—C5i176.51 (17)
O3—Cu1—O1—C2102.8 (2)K2—O5—P1—C559.7 (2)
O1i—Cu1—O1—K2ii62.18 (14)C3—N1—C1—C279.8 (4)
N1—Cu1—O1—K2ii114.25 (17)C5—N1—C1—C2154.1 (3)
N1i—Cu1—O1—K2ii111.0 (12)Cu1—N1—C1—C235.8 (3)
O3i—Cu1—O1—K2ii153.86 (17)K2iii—O2—C2—O1144.8 (3)
O3—Cu1—O1—K2ii32.26 (16)K1—O2—C2—O151.4 (4)
O1i—Cu1—O3—C4161.4 (2)K2ii—O2—C2—O131.6 (3)
O1—Cu1—O3—C465.9 (2)K2iii—O2—C2—C137.7 (5)
N1—Cu1—O3—C415.4 (2)K1—O2—C2—C1126.1 (3)
N1i—Cu1—O3—C4116.9 (2)K2ii—O2—C2—C1150.9 (3)
O3i—Cu1—O3—C466.4 (2)K2iii—O2—C2—K2ii113.2 (3)
O1i—Cu1—O3—K2iv19.87 (17)K1—O2—C2—K2ii83.01 (17)
O1—Cu1—O3—K2iv75.59 (17)Cu1—O1—C2—O2172.6 (3)
N1—Cu1—O3—K2iv156.91 (18)K2ii—O1—C2—O234.9 (3)
N1i—Cu1—O3—K2iv101.60 (17)Cu1—O1—C2—C15.0 (4)
O3i—Cu1—O3—K2iv152.06 (16)K2ii—O1—C2—C1147.5 (3)
K2iii—O6—K1—O4vi175.67 (8)Cu1—O1—C2—K2ii152.51 (19)
K2iii—O6—K1—O4vii77.75 (11)N1—C1—C2—O2159.6 (3)
K2iii—O6—K1—O6viii50.96 (7)N1—C1—C2—O122.7 (4)
K2iii—O6—K1—O212.40 (8)N1—C1—C2—K2ii53.8 (6)
K2iii—O6—K1—O2viii89.18 (10)C1—N1—C3—C4108.3 (3)
K2iii—O6—K1—K2x140.16 (9)C5—N1—C3—C4128.6 (3)
K2iii—O6—K1—K2ii30.77 (9)Cu1—N1—C3—C43.6 (3)
K2iii—O6—K1—K2xi86.76 (10)K1v—O4—C4—O392.5 (5)
C2—O2—K1—O4vi40.5 (5)K2iv—O4—C4—O34.6 (3)
K2iii—O2—K1—O4vi128.5 (3)K1v—O4—C4—C389.3 (4)
K2ii—O2—K1—O4vi123.7 (3)K2iv—O4—C4—C3177.2 (2)
C2—O2—K1—O4vii116.5 (3)K1v—O4—C4—K2iv87.9 (3)
K2iii—O2—K1—O4vii74.40 (9)Cu1—O3—C4—O4159.7 (3)
K2ii—O2—K1—O4vii33.37 (7)K2iv—O3—C4—O45.2 (4)
C2—O2—K1—O6156.3 (3)Cu1—O3—C4—C322.1 (3)
K2iii—O2—K1—O612.74 (9)K2iv—O3—C4—C3176.7 (2)
K2ii—O2—K1—O6120.52 (9)Cu1—O3—C4—K2iv154.5 (2)
C2—O2—K1—O6viii7.7 (3)N1—C3—C4—O4163.9 (3)
K2iii—O2—K1—O6viii176.70 (10)N1—C3—C4—O317.8 (4)
K2ii—O2—K1—O6viii75.52 (8)N1—C3—C4—K2iv10 (2)
C2—O2—K1—O2viii72.7 (3)C1—N1—C5—P1176.6 (2)
K2iii—O2—K1—O2viii96.30 (12)C3—N1—C5—P159.6 (3)
K2ii—O2—K1—O2viii155.92 (11)Cu1—N1—C5—P163.8 (3)
C2—O2—K1—K2x94.2 (3)O5—P1—C5—N178.5 (3)
K2iii—O2—K1—K2x74.84 (9)O5i—P1—C5—N1153.3 (2)
K2ii—O2—K1—K2x177.388 (15)C5i—P1—C5—N136.14 (18)
C2—O2—K1—K2ii83.2 (3)
Symmetry codes: (i) x+1, y, z; (ii) x, y, z1; (iii) x+3/2, y+1/2, z+1; (iv) x+3/2, y1/2, z+1; (v) x+3/2, y1/2, z; (vi) x1/2, y+1/2, z; (vii) x+3/2, y+1/2, z; (viii) x+1, y+1, z; (ix) x, y, z+1; (x) x+1, y+1, z1; (xi) x1/2, y+1/2, z+1; (xii) x+3/2, y+1/2, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O5xiii0.93 (2)1.75 (4)2.682 (4)173 (4)
O6—H6B···O1viii0.94 (2)2.02 (5)2.860 (4)148 (4)
Symmetry codes: (viii) x+1, y+1, z; (xiii) x, y+1, z1.

Experimental details

Crystal data
Chemical formulaK3[Cu(C10H12N2O10P)]·2H2O
Mr568.06
Crystal system, space groupOrthorhombic, P21212
Temperature (K)273
a, b, c (Å)11.880 (7), 8.332 (5), 9.681 (6)
V3)958.2 (10)
Z2
Radiation typeMo Kα
µ (mm1)1.94
Crystal size (mm)0.25 × 0.20 × 0.15
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2000)
Tmin, Tmax0.643, 0.760
No. of measured, independent and
observed [I > 2σ(I)] reflections
3814, 1686, 1553
Rint0.041
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.065, 1.07
No. of reflections1686
No. of parameters141
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.27
Absolute structureFlack (1983), 671 Friedel pairs
Absolute structure parameter0.016 (19)

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H6A···O5i0.93 (2)1.75 (4)2.682 (4)173 (4)
O6—H6B···O1ii0.94 (2)2.02 (5)2.860 (4)148 (4)
Symmetry codes: (i) x, y+1, z1; (ii) x+1, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds