Download citation
Download citation
link to html
The crystal structure of the title compound, C10H8N2·2C2H4O2, is built up from 4,4′-bipyridine and acetic acid mol­ecules linked by strong O—H...N hydrogen bonds. The 4,4′-bipyridine and the two acetic acid mol­ecules are further connected through weak C—H...O hydrogen bonds to form a supra­molecular two-dimensional network parallel to the (001) plane. The two pyridine rings make a dihedral angle of 31.8 (1)°.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807062319/dn2279sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807062319/dn2279Isup2.hkl
Contains datablock I

CCDC reference: 674396

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.006 Å
  • R factor = 0.050
  • wR factor = 0.119
  • Data-to-parameter ratio = 8.6

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT115_ALERT_5_B ADDSYM Detects Noncrystallographic Inversion ... 90 PerFi
Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.98 PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C12 PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C14 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 6 PLAT480_ALERT_4_C Long H...A H-Bond Reported H7 .. O1 .. 2.62 Ang. PLAT790_ALERT_4_C Centre of Gravity not Within Unit Cell: Resd. # 2 C2 H4 O2
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.46 From the CIF: _reflns_number_total 1595 Count of symmetry unique reflns 1628 Completeness (_total/calc) 97.97% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 0 Fraction of Friedel pairs measured 0.000 Are heavy atom types Z>Si present no PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

2,2-bipyridine is widely used to build up supramolecular network with carboxylic acid (Dai et al., 2005; Li et al., 2005; Pedireddi et al., 1998; Wang et al., 2006). Herein, we report the co-crystal structure of 2,2-bipyridine and acetic acid.

The asymmetric unit of (I) contains one 4,4-bipyridine molecule and two acetic acid molecules linked trough strong O—H···O hydogen bonds (Fig. 1). The two pyridine rings are both planar, with a RMS deviation of fitted atoms being 0.0033 Å and 0.0074 Å, respectively. The dihedral angle between them is 31.8 (1) °.

The 4,4-bipyridine and the two acetic acid molecules are further connected through C—H···O weak hydrogen bonds (PLATON, Spek, 2003) involving the carboxyl oxygen atoms (Table 1) to build up a supramolecular two dimensionnal network.parallel to the (0 0 1) plane (Fig. 2).

Related literature top

For related literature, see: Dai et al. (2005); Li et al. (2005); Pedireddi et al. (1998); Wang et al. (2006). For strutural analysis, se: Spek (2003).

Experimental top

A mixture of 2,2-bipyridine (5 mmol, 0.78 g) and acetic acid (10 mmol, 0.60 g) in water (10 ml) was stirred for 2 h, and filtrate was allowed to evaporate at room temperature. Colorless single crystals of the title compound were formed after two weeks.

Refinement top

All H atoms attached to C atoms and O atom were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.96 Å (methyl) and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(Caromatic or O) or Uiso(H) = 1.5Ueq(Cmethyl).

In the absence of significant anomalous scattering, the absolute structure could not be reliably determined and then the Friedel pairs were merged and any references to the Flack parameter were removed.

Structure description top

2,2-bipyridine is widely used to build up supramolecular network with carboxylic acid (Dai et al., 2005; Li et al., 2005; Pedireddi et al., 1998; Wang et al., 2006). Herein, we report the co-crystal structure of 2,2-bipyridine and acetic acid.

The asymmetric unit of (I) contains one 4,4-bipyridine molecule and two acetic acid molecules linked trough strong O—H···O hydogen bonds (Fig. 1). The two pyridine rings are both planar, with a RMS deviation of fitted atoms being 0.0033 Å and 0.0074 Å, respectively. The dihedral angle between them is 31.8 (1) °.

The 4,4-bipyridine and the two acetic acid molecules are further connected through C—H···O weak hydrogen bonds (PLATON, Spek, 2003) involving the carboxyl oxygen atoms (Table 1) to build up a supramolecular two dimensionnal network.parallel to the (0 0 1) plane (Fig. 2).

For related literature, see: Dai et al. (2005); Li et al. (2005); Pedireddi et al. (1998); Wang et al. (2006). For strutural analysis, se: Spek (2003).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The asymmetric unit, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. Hydrogen bonds are shown as dashed lines. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Packing view showing the Hydrogen bonding network. H atoms not involved in hydrogen bonds have been omitted for clarity.
4,4-Bipyridine acetic acid disolvate top
Crystal data top
C10H8N2·2C2H4O2F(000) = 292
Mr = 276.29Dx = 1.291 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 4188 reflections
a = 3.893 (2) Åθ = 3.1–27.5°
b = 8.181 (5) ŵ = 0.10 mm1
c = 22.563 (15) ÅT = 291 K
β = 98.46 (3)°Block, colorless
V = 710.7 (7) Å30.15 × 0.13 × 0.12 mm
Z = 2
Data collection top
Rigaku RAXIS-RAPID
diffractometer
1595 independent reflections
Radiation source: fine-focus sealed tube995 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 55
Tmin = 0.986, Tmax = 0.988k = 1010
6467 measured reflectionsl = 2924
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0545P)2 + 0.0575P]
where P = (Fo2 + 2Fc2)/3
1595 reflections(Δ/σ)max = 0.003
185 parametersΔρmax = 0.15 e Å3
2 restraintsΔρmin = 0.12 e Å3
Crystal data top
C10H8N2·2C2H4O2V = 710.7 (7) Å3
Mr = 276.29Z = 2
Monoclinic, PcMo Kα radiation
a = 3.893 (2) ŵ = 0.10 mm1
b = 8.181 (5) ÅT = 291 K
c = 22.563 (15) Å0.15 × 0.13 × 0.12 mm
β = 98.46 (3)°
Data collection top
Rigaku RAXIS-RAPID
diffractometer
1595 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
995 reflections with I > 2σ(I)
Tmin = 0.986, Tmax = 0.988Rint = 0.042
6467 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0502 restraints
wR(F2) = 0.119H-atom parameters constrained
S = 1.04Δρmax = 0.15 e Å3
1595 reflectionsΔρmin = 0.12 e Å3
185 parameters
Special details top

Experimental. (See detailed section in the paper)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C130.0181 (13)0.0149 (6)0.6249 (2)0.0728 (12)
H13A0.18300.06600.64700.109*
H13B0.16490.09680.60390.109*
H13C0.14370.04230.65210.109*
C140.0919 (10)0.1019 (5)0.5814 (2)0.0568 (10)
C10.4437 (12)0.3978 (5)0.47047 (19)0.0697 (11)
H10.45720.28610.46360.084*
C20.4896 (13)0.5031 (5)0.4247 (2)0.0640 (10)
H20.53060.46220.38790.077*
C30.4742 (9)0.6695 (4)0.43371 (16)0.0488 (9)
C40.4131 (11)0.7207 (5)0.48979 (19)0.0613 (11)
H40.40200.83160.49840.074*
C50.3695 (12)0.6071 (5)0.5321 (2)0.0690 (12)
H50.32850.64410.56940.083*
C60.5176 (9)0.7891 (4)0.38616 (17)0.0483 (9)
C70.4150 (11)0.7538 (5)0.32659 (19)0.0599 (11)
H70.32180.65200.31520.072*
C80.4513 (11)0.8706 (5)0.2839 (2)0.0654 (11)
H80.37700.84490.24400.078*
C90.6937 (12)1.0494 (5)0.35465 (19)0.0649 (11)
H90.79421.15070.36460.078*
C100.6649 (11)0.9422 (5)0.39995 (18)0.0599 (10)
H100.74260.97090.43950.072*
N10.3818 (10)0.4468 (4)0.52352 (16)0.0655 (9)
O10.9176 (9)1.3967 (4)0.29266 (15)0.0859 (11)
O30.0627 (10)0.0786 (4)0.52832 (15)0.0938 (11)
C110.8647 (13)1.5081 (6)0.1948 (2)0.0764 (14)
H11A1.01551.59260.21310.115*
H11B0.64381.55450.17890.115*
H11C0.96641.45850.16300.115*
C120.8156 (11)1.3817 (4)0.2405 (2)0.0565 (10)
N20.5861 (9)1.0176 (4)0.29663 (16)0.0631 (9)
O20.6441 (8)1.2545 (3)0.21698 (13)0.0698 (8)
H2A0.62941.18640.24320.105*
O40.2338 (8)0.2354 (3)0.60567 (13)0.0711 (9)
H4A0.29020.29470.57940.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C130.074 (3)0.066 (3)0.075 (3)0.009 (2)0.001 (2)0.010 (2)
C140.056 (2)0.051 (2)0.061 (3)0.0012 (18)0.0008 (19)0.005 (2)
C10.097 (3)0.050 (2)0.063 (3)0.005 (2)0.013 (2)0.004 (2)
C20.082 (3)0.053 (2)0.057 (2)0.002 (2)0.0112 (19)0.000 (2)
C30.049 (2)0.0470 (19)0.049 (2)0.0035 (17)0.0013 (16)0.0002 (17)
C40.078 (3)0.048 (2)0.058 (3)0.0023 (19)0.012 (2)0.0001 (19)
C50.083 (3)0.070 (3)0.054 (2)0.003 (2)0.013 (2)0.001 (2)
C60.0467 (19)0.0427 (18)0.055 (2)0.0021 (16)0.0050 (16)0.0016 (17)
C70.075 (3)0.048 (2)0.054 (2)0.0082 (19)0.003 (2)0.002 (2)
C80.080 (3)0.056 (2)0.058 (2)0.009 (2)0.004 (2)0.000 (2)
C90.075 (3)0.048 (2)0.070 (3)0.0104 (19)0.003 (2)0.002 (2)
C100.069 (3)0.051 (2)0.056 (2)0.0030 (19)0.001 (2)0.0051 (19)
N10.077 (2)0.058 (2)0.062 (2)0.0027 (17)0.0123 (17)0.0040 (18)
O10.119 (3)0.072 (2)0.062 (2)0.0298 (19)0.0012 (19)0.0039 (17)
O30.143 (3)0.076 (2)0.059 (2)0.021 (2)0.002 (2)0.0126 (18)
C110.079 (3)0.067 (3)0.083 (4)0.012 (2)0.008 (2)0.015 (2)
C120.067 (3)0.044 (2)0.059 (3)0.0042 (19)0.010 (2)0.000 (2)
N20.076 (2)0.0469 (19)0.065 (2)0.0092 (16)0.0076 (17)0.0014 (17)
O20.096 (2)0.0558 (17)0.0559 (18)0.0206 (16)0.0061 (16)0.0045 (13)
O40.098 (2)0.0591 (18)0.0567 (19)0.0146 (16)0.0117 (16)0.0058 (14)
Geometric parameters (Å, º) top
C13—C141.478 (6)C6—C101.393 (5)
C13—H13A0.9600C7—C81.378 (6)
C13—H13B0.9600C7—H70.9300
C13—H13C0.9600C8—N21.326 (5)
C14—O31.201 (5)C8—H80.9300
C14—O41.307 (5)C9—N21.340 (5)
C1—N11.317 (6)C9—C101.364 (6)
C1—C21.377 (6)C9—H90.9300
C1—H10.9300C10—H100.9300
C2—C31.380 (5)O1—C121.191 (5)
C2—H20.9300C11—C121.493 (6)
C3—C41.386 (6)C11—H11A0.9600
C3—C61.480 (5)C11—H11B0.9600
C4—C51.361 (6)C11—H11C0.9600
C4—H40.9300C12—O21.306 (4)
C5—N11.328 (5)O2—H2A0.8200
C5—H50.9300O4—H4A0.8200
C6—C71.375 (5)
C14—C13—H13A109.5C10—C6—C3121.3 (3)
C14—C13—H13B109.5C6—C7—C8119.5 (4)
H13A—C13—H13B109.5C6—C7—H7120.3
C14—C13—H13C109.5C8—C7—H7120.3
H13A—C13—H13C109.5N2—C8—C7123.8 (4)
H13B—C13—H13C109.5N2—C8—H8118.1
O3—C14—O4121.5 (4)C7—C8—H8118.1
O3—C14—C13124.4 (4)N2—C9—C10124.0 (4)
O4—C14—C13114.0 (4)N2—C9—H9118.0
N1—C1—C2123.6 (4)C10—C9—H9118.0
N1—C1—H1118.2C9—C10—C6119.2 (4)
C2—C1—H1118.2C9—C10—H10120.4
C1—C2—C3119.5 (4)C6—C10—H10120.4
C1—C2—H2120.2C1—N1—C5116.6 (4)
C3—C2—H2120.2C12—C11—H11A109.5
C2—C3—C4116.8 (4)C12—C11—H11B109.5
C2—C3—C6122.2 (3)H11A—C11—H11B109.5
C4—C3—C6121.0 (3)C12—C11—H11C109.5
C5—C4—C3119.4 (4)H11A—C11—H11C109.5
C5—C4—H4120.3H11B—C11—H11C109.5
C3—C4—H4120.3O1—C12—O2124.1 (4)
N1—C5—C4124.1 (4)O1—C12—C11123.6 (4)
N1—C5—H5117.9O2—C12—C11112.3 (4)
C4—C5—H5117.9C8—N2—C9116.3 (4)
C7—C6—C10117.3 (3)C12—O2—H2A109.5
C7—C6—C3121.4 (3)C14—O4—H4A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N20.821.862.675 (5)175
O4—H4A···N10.821.842.659 (5)173
C7—H7···O1i0.932.623.526 (5)165
C10—H10···O3ii0.932.373.273 (5)164
C4—H4···O3iii0.932.563.397 (6)150
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC10H8N2·2C2H4O2
Mr276.29
Crystal system, space groupMonoclinic, Pc
Temperature (K)291
a, b, c (Å)3.893 (2), 8.181 (5), 22.563 (15)
β (°) 98.46 (3)
V3)710.7 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.15 × 0.13 × 0.12
Data collection
DiffractometerRigaku RAXIS-RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.986, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
6467, 1595, 995
Rint0.042
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.119, 1.04
No. of reflections1595
No. of parameters185
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.12

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996); ORTEP-3 for Windows (Farrugia, 1997), SHELXL97.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2A···N20.821.862.675 (5)174.5
O4—H4A···N10.821.842.659 (5)173.1
C7—H7···O1i0.932.623.526 (5)165.2
C10—H10···O3ii0.932.373.273 (5)164.3
C4—H4···O3iii0.932.563.397 (6)150.0
Symmetry codes: (i) x1, y1, z; (ii) x+1, y+1, z; (iii) x, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds