Download citation
Download citation
link to html
In the title compound, C14H10N6, the pyridine and tetra­zole rings are nearly coplanar and are twisted from each other by a dihedral angle of only 0.86 (9)°. The benzene ring makes a dihedral angle of 70.55 (6)° with the tetra­zole ring.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536808009550/dn2333sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536808009550/dn2333Isup2.hkl
Contains datablock I

CCDC reference: 690891

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.050
  • wR factor = 0.124
  • Data-to-parameter ratio = 15.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 3000 Deg. PLAT230_ALERT_2_C Hirshfeld Test Diff for C11 - C14 .. 6.19 su PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C11 - C14 ... 1.44 Ang.
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In the past five years, we have focused on the chemistry of tetrazole derivatives because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Wang et al., 2005; Xiong et al., 2002). We report here the crystal structure of the title compound, 4-((5-(pyridin-3-yl)-2H-tetrazol-2-yl)methyl)benzonitrile.

There are three rings in the title compound (Fig. 1). The pyridine and tetrazole rings are nearly coplanar and are twisted from each other by a dihedral angle of only 0.86 (0.09) °.The benzene ring makes a dihedral angle of 70.55 (0.06) ° with the tetrazole ring owing to the methylene bridge which forces the two rings to be twisted twisted from each other. In the pyridine ring, the C1=N1 and C5=N1 bond distance of 1.322 and 1.332Å conforms to the value for a C=N double bond, while the C14—N6 bond length of 1.140 Å conforms to the value for a CN bond. The bond distances and bond angles of the tetrazole rings are within the usual ranges (Wang et al., 2005; Arp et al., 2000; Hu et al., 2007).

Related literature top

For use of tetrazole derivatives in coordination chemisty, see: Arp et al. (2000); Hu et al. (2007); Wang et al. (2005); Xiong et al. (2002).

Experimental top

4-((5-(pyridin-3-yl)-2H-tetrazol-2-yl)methyl)benzonitrile (3 mmol) was dissolved in ethanol (20 ml) and evaporated in the air affording colorless block crystals of this compound suitable for X-ray analysis were obtained.

Refinement top

All H atoms were fixed geometrically and treated as riding with C–H = 0.93 Å (aromatic) and 0.97 Å (methylene) with Uiso(H) =1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii.
4-[5-(3-Pyridyl)-2H-tetrazol-2-ylmethyl]benzonitrile top
Crystal data top
C14H10N6Z = 2
Mr = 262.28F(000) = 272
Triclinic, P1Dx = 1.382 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0452 (16) ÅCell parameters from 2882 reflections
b = 8.7081 (17) Åθ = 3.4–27.5°
c = 10.171 (2) ŵ = 0.09 mm1
α = 94.61 (3)°T = 293 K
β = 104.95 (3)°Block, colourless
γ = 111.11 (3)°0.4 × 0.35 × 0.35 mm
V = 630.3 (3) Å3
Data collection top
Rigaku Mercury2
diffractometer
2882 independent reflections
Radiation source: fine-focus sealed tube2063 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1111
Tmin = 0.962, Tmax = 0.968l = 1313
6638 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.0983P]
where P = (Fo2 + 2Fc2)/3
2882 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C14H10N6γ = 111.11 (3)°
Mr = 262.28V = 630.3 (3) Å3
Triclinic, P1Z = 2
a = 8.0452 (16) ÅMo Kα radiation
b = 8.7081 (17) ŵ = 0.09 mm1
c = 10.171 (2) ÅT = 293 K
α = 94.61 (3)°0.4 × 0.35 × 0.35 mm
β = 104.95 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2882 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2063 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.968Rint = 0.035
6638 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.04Δρmax = 0.17 e Å3
2882 reflectionsΔρmin = 0.20 e Å3
181 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1058 (3)0.1591 (2)0.5558 (2)0.0572 (5)
H10.02530.25120.58010.069*
C20.2506 (3)0.0395 (2)0.65976 (19)0.0573 (5)
H20.26610.04970.75200.069*
C30.3732 (2)0.0965 (2)0.62507 (17)0.0492 (4)
H30.47360.17900.69360.059*
C40.3447 (2)0.10834 (19)0.48717 (15)0.0379 (3)
C50.1926 (2)0.0186 (2)0.39132 (18)0.0503 (4)
H50.17170.01090.29830.060*
C60.4708 (2)0.24879 (19)0.44434 (15)0.0389 (4)
C70.6451 (3)0.4856 (2)0.2136 (2)0.0558 (5)
H7A0.71760.60530.24540.067*
H7B0.53090.46980.14200.067*
C80.7564 (2)0.4087 (2)0.15309 (17)0.0443 (4)
C90.9485 (2)0.4701 (2)0.21250 (18)0.0493 (4)
H91.00700.55780.28880.059*
C101.0544 (2)0.4029 (2)0.16004 (17)0.0474 (4)
H101.18350.44450.20110.057*
C110.9677 (2)0.2733 (2)0.04600 (16)0.0417 (4)
C120.7746 (2)0.2088 (2)0.01356 (17)0.0513 (4)
H120.71620.12010.08920.062*
C130.6696 (2)0.2767 (2)0.03990 (18)0.0523 (4)
H130.54030.23400.00000.063*
C141.0826 (2)0.2107 (2)0.01146 (17)0.0490 (4)
N10.0737 (2)0.15148 (18)0.42275 (17)0.0583 (4)
N20.45326 (18)0.26697 (17)0.31385 (13)0.0448 (3)
N30.59763 (19)0.41048 (17)0.32955 (14)0.0455 (3)
N40.6996 (2)0.47768 (19)0.45939 (16)0.0551 (4)
N50.61961 (19)0.37565 (18)0.53498 (14)0.0514 (4)
N61.1781 (2)0.1676 (2)0.05615 (16)0.0654 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0591 (11)0.0495 (10)0.0713 (13)0.0216 (9)0.0306 (10)0.0206 (9)
C20.0666 (12)0.0641 (12)0.0495 (10)0.0281 (10)0.0255 (9)0.0203 (9)
C30.0496 (10)0.0522 (10)0.0430 (9)0.0188 (8)0.0125 (8)0.0065 (7)
C40.0371 (8)0.0419 (8)0.0386 (8)0.0188 (7)0.0144 (7)0.0053 (6)
C50.0526 (10)0.0491 (10)0.0444 (9)0.0150 (8)0.0159 (8)0.0054 (7)
C60.0354 (8)0.0438 (9)0.0394 (8)0.0169 (7)0.0140 (7)0.0029 (7)
C70.0618 (11)0.0595 (11)0.0698 (12)0.0333 (10)0.0402 (10)0.0299 (9)
C80.0468 (9)0.0490 (9)0.0487 (9)0.0224 (8)0.0255 (8)0.0201 (8)
C90.0491 (10)0.0486 (10)0.0475 (9)0.0146 (8)0.0186 (8)0.0044 (8)
C100.0364 (8)0.0534 (10)0.0496 (9)0.0144 (8)0.0144 (8)0.0074 (8)
C110.0406 (9)0.0491 (9)0.0384 (8)0.0182 (7)0.0154 (7)0.0109 (7)
C120.0438 (9)0.0598 (11)0.0427 (9)0.0165 (8)0.0093 (8)0.0009 (8)
C130.0371 (9)0.0664 (11)0.0541 (10)0.0197 (8)0.0157 (8)0.0137 (9)
C140.0450 (9)0.0571 (10)0.0426 (9)0.0189 (8)0.0125 (8)0.0064 (8)
N10.0565 (9)0.0442 (8)0.0663 (10)0.0107 (7)0.0201 (8)0.0074 (7)
N20.0430 (8)0.0487 (8)0.0437 (8)0.0157 (6)0.0188 (6)0.0089 (6)
N30.0428 (8)0.0474 (8)0.0531 (8)0.0184 (7)0.0246 (7)0.0121 (7)
N40.0447 (8)0.0538 (9)0.0591 (9)0.0095 (7)0.0194 (7)0.0059 (7)
N50.0437 (8)0.0523 (8)0.0502 (8)0.0097 (7)0.0162 (7)0.0055 (7)
N60.0581 (10)0.0839 (12)0.0611 (10)0.0351 (9)0.0227 (8)0.0040 (9)
Geometric parameters (Å, º) top
C1—N11.322 (2)C7—H7B0.9700
C1—C21.369 (3)C8—C91.382 (2)
C1—H10.9300C8—C131.389 (3)
C2—C31.381 (3)C9—C101.377 (2)
C2—H20.9300C9—H90.9300
C3—C41.380 (2)C10—C111.383 (2)
C3—H30.9300C10—H100.9300
C4—C51.381 (2)C11—C121.389 (2)
C4—C61.461 (2)C11—C141.443 (2)
C5—N11.332 (2)C12—C131.380 (2)
C5—H50.9300C12—H120.9300
C6—N21.3265 (19)C13—H130.9300
C6—N51.348 (2)C14—N61.140 (2)
C7—N31.464 (2)N2—N31.3277 (19)
C7—C81.509 (2)N3—N41.315 (2)
C7—H7A0.9700N4—N51.322 (2)
N1—C1—C2123.89 (17)C9—C8—C7119.23 (16)
N1—C1—H1118.1C13—C8—C7121.38 (16)
C2—C1—H1118.1C10—C9—C8120.79 (16)
C1—C2—C3118.73 (17)C10—C9—H9119.6
C1—C2—H2120.6C8—C9—H9119.6
C3—C2—H2120.6C9—C10—C11119.63 (15)
C4—C3—C2119.00 (17)C9—C10—H10120.2
C4—C3—H3120.5C11—C10—H10120.2
C2—C3—H3120.5C10—C11—C12120.21 (15)
C3—C4—C5117.22 (15)C10—C11—C14118.62 (15)
C3—C4—C6121.38 (15)C12—C11—C14121.14 (15)
C5—C4—C6121.40 (14)C13—C12—C11119.73 (16)
N1—C5—C4124.61 (16)C13—C12—H12120.1
N1—C5—H5117.7C11—C12—H12120.1
C4—C5—H5117.7C12—C13—C8120.24 (16)
N2—C6—N5112.35 (14)C12—C13—H13119.9
N2—C6—C4124.60 (14)C8—C13—H13119.9
N5—C6—C4123.05 (14)N6—C14—C11177.31 (19)
N3—C7—C8111.58 (13)C1—N1—C5116.53 (16)
N3—C7—H7A109.3C6—N2—N3101.60 (13)
C8—C7—H7A109.3N4—N3—N2114.04 (13)
N3—C7—H7B109.3N4—N3—C7122.32 (15)
C8—C7—H7B109.3N2—N3—C7123.60 (15)
H7A—C7—H7B108.0N3—N4—N5106.02 (13)
C9—C8—C13119.38 (16)N4—N5—C6105.98 (13)

Experimental details

Crystal data
Chemical formulaC14H10N6
Mr262.28
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.0452 (16), 8.7081 (17), 10.171 (2)
α, β, γ (°)94.61 (3), 104.95 (3), 111.11 (3)
V3)630.3 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.4 × 0.35 × 0.35
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.962, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
6638, 2882, 2063
Rint0.035
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.123, 1.04
No. of reflections2882
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.20

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds