The structure of the title compound, [Sm2(C4O4)3(H2O)4]n, consists of infinite-chain structural units, built from edge-sharing samarium SmO7(H2O)2 polyhedra and linked via bis-monodendate squarate (sq1) groups. The chains extend along [100] in a zigzag mode and are interconnected by bis-chelating squarate (sq2) ligands into layers parallel to (101). Interlayer hydrogen bonds strengthen the cohesion of the three-dimensional network. The samarium cation is coordinated by four O atoms from sq1 units and three O atoms from sq2 units, in addition to two water O atoms. The best representation of the samarium SmO7(H2O)2 polyhedron is distorted tricapped trigonal-prismatic. The sq1 ligand has one metal-free O atom and relates three Sm atoms in a bis-monodentate and chelation fashion, the second squarate, sq2, is strictly centrosymmetric and acts as a bis-chelating ligand.
Supporting information
CCDC reference: 712315
Key indicators
- Single-crystal X-ray study
- T = 296 K
- Mean
(C-C) = 0.004 Å
- R factor = 0.023
- wR factor = 0.058
- Data-to-parameter ratio = 15.8
checkCIF/PLATON results
No syntax errors found
Alert level C
Value of measurement temperature given = 296.000
Value of melting point given = 0.000
PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Sm1 -- O3_a .. 5.35 su
PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Sm1 -- O4_a .. 6.10 su
PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Sm1 -- O5_e .. 7.02 su
PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ?
PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ?
PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 2.00 Ratio
Alert level G
PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 6
PLAT180_ALERT_4_G Check Cell Rounding: # of Values Ending with 0 = 3
PLAT720_ALERT_4_G Number of Unusual/Non-Standard Labels .......... 4
0 ALERT level A = In general: serious problem
0 ALERT level B = Potentially serious problem
6 ALERT level C = Check and explain
3 ALERT level G = General alerts; check
3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
3 ALERT type 2 Indicator that the structure model may be wrong or deficient
1 ALERT type 3 Indicator that the structure quality may be low
2 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check
For convenience, 3,4-dihydroxy-3-cyclobutene-1,2-dione (H2C4O4) is named
squaric acid hereafter. Pale yellow single crystals of the title compound were
hydrothermally synthesized during an attempt to synthesize open frameworks of
lanthanide squarates. A mixture of samarium chloride, SmCl3.6H2O, and
squaric acid in molar ratio 2/3/704 were dissolved in 10 ml distilled water
while stirring. The resulting
mixture (pH = 2) was transferred into was transferred into a Teflon-lined acid
digestion bomb (Parr) and heated at 150 °C for two days under autogenous
pressure. Then the autoclave was cooled to room temperature by turning off the
power. The pH after treatment remains unchanged. Products were filtered off,
washed with distilled water and dried at room temperature. Crystals with cubic
morphology were selected for single-crystal diffraction after checking under a
polarizing microscope and identifying by X-ray powder diffraction.
All non-H atoms were refined with anisotropic atomic displacement parameters.
All H atoms were localized on Fourier maps and refined isotropically with soft
constraints on the distances to their relevant parent water oxygen atom.
Within a molecule, the O–H and H–H distances were restrained to 0.96 Å and
1.55 Å, respectively, so that the H–O–H angle fitted the ideal value of
the tetrahedral angle.
Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2003); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia,1997) and DIAMOND (Brandenburg & Berndt,2001); software used to prepare material for publication: WinGX (Farrugia, 1999).
Poly[tetraaqua-µ
4-squarato-di-µ
3-squarato-disamarium(III)]
top
Crystal data top
[Sm2(C4O4)3(H2O)4] | F(000) = 664 |
Mr = 708.88 | Dx = 2.929 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5454 reflections |
a = 7.0824 (1) Å | θ = 2.6–42.1° |
b = 16.7725 (3) Å | µ = 7.33 mm−1 |
c = 6.9066 (1) Å | T = 296 K |
β = 101.585 (1)° | Cube, yellow |
V = 803.72 (2) Å3 | 0.15 × 0.14 × 0.14 mm |
Z = 2 | |
Data collection top
Nonius KappaCCD diffractometer | 2199 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.029 |
Graphite monochromator | θmax = 30.0°, θmin = 2.9° |
ϕ scans, and ω scans with κ offsets | h = −9→9 |
3906 measured reflections | k = −23→22 |
2340 independent reflections | l = −9→9 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.058 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.103P)2 + 0.3358P] where P = (Fo2 + 2Fc2)/3 |
2340 reflections | (Δ/σ)max = 0.002 |
148 parameters | Δρmax = 1.54 e Å−3 |
6 restraints | Δρmin = −1.96 e Å−3 |
Crystal data top
[Sm2(C4O4)3(H2O)4] | V = 803.72 (2) Å3 |
Mr = 708.88 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 7.0824 (1) Å | µ = 7.33 mm−1 |
b = 16.7725 (3) Å | T = 296 K |
c = 6.9066 (1) Å | 0.15 × 0.14 × 0.14 mm |
β = 101.585 (1)° | |
Data collection top
Nonius KappaCCD diffractometer | 2199 reflections with I > 2σ(I) |
3906 measured reflections | Rint = 0.029 |
2340 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.023 | 6 restraints |
wR(F2) = 0.058 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 1.54 e Å−3 |
2340 reflections | Δρmin = −1.96 e Å−3 |
148 parameters | |
Special details top
Geometry. Bond distances, angles etc. have been calculated using the rounded
fractional coordinates. All su's are estimated from the variances of the
(full) variance-covariance matrix. The cell e.s.d.'s are taken into account in
the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Sm1 | −0.26067 (2) | 0.42004 (1) | 0.48851 (2) | 0.0098 (1) | |
O1 | 0.0020 (3) | 0.34943 (13) | 0.6725 (3) | 0.0183 (6) | |
O1W | −0.1467 (3) | 0.32226 (14) | 0.2658 (4) | 0.0255 (7) | |
O2 | 0.2263 (3) | 0.18597 (13) | 0.6602 (3) | 0.0207 (6) | |
O2W | −0.4770 (3) | 0.41711 (14) | 0.1649 (3) | 0.0208 (6) | |
O3 | 0.5958 (3) | 0.29019 (13) | 0.5489 (3) | 0.0183 (6) | |
O4 | 0.3785 (3) | 0.44362 (12) | 0.5380 (3) | 0.0154 (5) | |
O5 | −0.0375 (3) | 0.48117 (13) | 0.3160 (3) | 0.0183 (6) | |
O6 | −0.2690 (3) | 0.43098 (13) | 0.8510 (3) | 0.0166 (6) | |
C1 | 0.1656 (3) | 0.33329 (16) | 0.6427 (4) | 0.0129 (7) | |
C2 | 0.2704 (4) | 0.25667 (17) | 0.6407 (4) | 0.0134 (7) | |
C3 | 0.4325 (4) | 0.30194 (16) | 0.5902 (4) | 0.0134 (7) | |
C4 | 0.3272 (4) | 0.37486 (16) | 0.5872 (4) | 0.0127 (7) | |
C5 | −0.0241 (4) | 0.48952 (17) | 0.1381 (4) | 0.0135 (7) | |
C6 | −0.1238 (4) | 0.46752 (17) | 0.9388 (4) | 0.0135 (7) | |
H2W2 | −0.587 (5) | 0.385 (3) | 0.161 (7) | 0.0500* | |
H1W1 | −0.025 (3) | 0.315 (3) | 0.241 (7) | 0.0500* | |
H1W2 | −0.422 (7) | 0.411 (3) | 0.053 (5) | 0.0500* | |
H2W1 | −0.233 (5) | 0.285 (2) | 0.196 (7) | 0.0500* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Sm1 | 0.0083 (1) | 0.0107 (1) | 0.0115 (1) | 0.0004 (1) | 0.0045 (1) | 0.0009 (1) |
O1 | 0.0085 (8) | 0.0229 (11) | 0.0246 (11) | 0.0029 (7) | 0.0059 (7) | 0.0039 (9) |
O1W | 0.0188 (10) | 0.0266 (12) | 0.0334 (13) | −0.0030 (9) | 0.0111 (9) | −0.0144 (10) |
O2 | 0.0163 (9) | 0.0158 (10) | 0.0320 (12) | 0.0001 (8) | 0.0094 (9) | 0.0051 (9) |
O2W | 0.0163 (10) | 0.0300 (12) | 0.0162 (10) | −0.0024 (8) | 0.0033 (8) | −0.0031 (8) |
O3 | 0.0103 (8) | 0.0179 (10) | 0.0293 (11) | 0.0016 (7) | 0.0100 (8) | 0.0042 (8) |
O4 | 0.0128 (9) | 0.0122 (9) | 0.0221 (10) | −0.0009 (7) | 0.0057 (7) | 0.0031 (8) |
O5 | 0.0218 (10) | 0.0253 (11) | 0.0093 (9) | −0.0052 (8) | 0.0069 (7) | −0.0004 (8) |
O6 | 0.0117 (9) | 0.0258 (11) | 0.0127 (10) | −0.0063 (8) | 0.0034 (7) | −0.0032 (8) |
C1 | 0.0094 (10) | 0.0133 (12) | 0.0164 (12) | 0.0022 (9) | 0.0034 (9) | 0.0018 (10) |
C2 | 0.0116 (11) | 0.0165 (12) | 0.0130 (12) | 0.0002 (9) | 0.0046 (9) | 0.0044 (10) |
C3 | 0.0101 (10) | 0.0147 (12) | 0.0158 (12) | 0.0014 (9) | 0.0037 (9) | 0.0020 (10) |
C4 | 0.0102 (10) | 0.0137 (12) | 0.0143 (12) | 0.0001 (9) | 0.0030 (9) | 0.0014 (9) |
C5 | 0.0130 (11) | 0.0180 (13) | 0.0099 (11) | −0.0019 (9) | 0.0034 (9) | −0.0008 (9) |
C6 | 0.0126 (11) | 0.0176 (12) | 0.0107 (11) | −0.0007 (9) | 0.0033 (9) | 0.0003 (10) |
Geometric parameters (Å, º) top
Sm1—O1 | 2.351 (2) | O5—C5 | 1.259 (3) |
Sm1—O1W | 2.491 (2) | O6—C6 | 1.245 (4) |
Sm1—O2W | 2.443 (2) | O1W—H2W1 | 0.94 (4) |
Sm1—O5 | 2.393 (2) | O1W—H1W1 | 0.92 (2) |
Sm1—O6 | 2.523 (2) | O2W—H2W2 | 0.94 (4) |
Sm1—O3i | 2.474 (2) | O2W—H1W2 | 0.94 (4) |
Sm1—O4i | 2.675 (2) | C1—C2 | 1.486 (4) |
Sm1—O4ii | 2.429 (2) | C1—C4 | 1.456 (4) |
Sm1—O5ii | 2.808 (2) | C2—C3 | 1.476 (4) |
O1—C1 | 1.247 (3) | C3—C4 | 1.431 (4) |
O2—C2 | 1.241 (4) | C5—C6iii | 1.463 (4) |
O3—C3 | 1.261 (4) | C5—C6ii | 1.457 (4) |
O4—C4 | 1.276 (3) | | |
| | | |
Sm1···Sm1iv | 4.3507 (2) | O6···O1 | 2.833 (3) |
Sm1···O2Wiv | 4.293 (2) | O6···O5ii | 3.036 (3) |
Sm1···O2v | 4.266 (2) | O6···C3i | 3.297 (3) |
Sm1···H2W1vi | 3.72 (4) | O6···C6xii | 3.335 (4) |
O1···O1W | 2.832 (3) | O6···O4i | 2.964 (3) |
O1···O2 | 3.178 (3) | O6···C5ii | 2.456 (4) |
O1···O3i | 3.001 (3) | O6···O2Wxiii | 2.865 (3) |
O1···O6 | 2.833 (3) | O6···O2Wiv | 3.108 (3) |
O1···C6 | 2.959 (4) | O6···O3i | 3.169 (3) |
O1···O5ii | 2.852 (3) | O1···H2W1vi | 2.83 (3) |
O1···C5ii | 2.992 (4) | O1···H1W1vi | 2.81 (5) |
O1···O1Wvi | 3.176 (3) | O1W···H1W2 | 2.65 (5) |
O1W···C5 | 3.116 (4) | O2···H2W2viii | 1.78 (4) |
O1W···C6iii | 3.348 (4) | O2···H1W1vi | 1.97 (3) |
O1W···O1 | 2.832 (3) | O2W···H2W1 | 2.79 (3) |
O1W···O2W | 2.799 (3) | O3···H2W1viii | 1.90 (4) |
O1W···O3i | 2.978 (3) | O4···H2W2ix | 2.84 (5) |
O1W···O5 | 2.778 (3) | O5···H1W1 | 2.84 (5) |
O1W···C1 | 3.064 (4) | O6···H1W2xiii | 1.96 (4) |
O1W···O1vii | 3.176 (3) | C1···C5ii | 3.569 (4) |
O1W···O2vii | 2.882 (3) | C2···C2vi | 3.461 (4) |
O1W···O3v | 2.834 (3) | C2···O3vi | 3.357 (3) |
O2···O1Wvi | 2.882 (3) | C2···O2vii | 3.409 (3) |
O2···O2Wviii | 2.716 (3) | C2···O2Wviii | 3.407 (4) |
O2···C3vi | 3.042 (3) | C2···C3vi | 3.239 (4) |
O2···O1 | 3.178 (3) | C2···C2vii | 3.461 (4) |
O2···Sm1viii | 4.266 (2) | C3···O2vii | 3.042 (3) |
O2···C4vi | 3.066 (3) | C3···C2vii | 3.239 (4) |
O2···C2vi | 3.409 (3) | C4···O2vii | 3.066 (3) |
O2W···O6iii | 2.865 (3) | C5···C5xi | 2.035 (4) |
O2W···O2v | 2.716 (3) | C5···O5xi | 3.289 (3) |
O2W···C2v | 3.407 (4) | C5···C1ii | 3.569 (4) |
O2W···Sm1iv | 4.293 (2) | C6···C6xii | 2.093 (4) |
O2W···O4ii | 3.095 (3) | C6···O2Wxiii | 3.314 (4) |
O2W···O1W | 2.799 (3) | C6···O6xii | 3.335 (4) |
O2W···O4i | 2.991 (3) | C6···O1Wxiii | 3.348 (4) |
O2W···C6iv | 3.382 (4) | C6···O2Wiv | 3.382 (4) |
O2W···C6iii | 3.314 (4) | C1···H1W1vi | 2.97 (4) |
O2W···O6iv | 3.108 (3) | C1···H1W1 | 2.85 (5) |
O3···C2vii | 3.357 (3) | C2···H2W2viii | 2.58 (5) |
O3···O6ix | 3.169 (3) | C2···H1W1vi | 2.62 (3) |
O3···O1ix | 3.001 (3) | C3···H2W1viii | 2.75 (4) |
O3···O4 | 2.992 (3) | C5···H1W2 | 3.06 (5) |
O3···O1Wix | 2.978 (3) | C5···H1W1 | 3.01 (5) |
O3···O1Wviii | 2.834 (3) | C6···H1W2xiii | 2.58 (5) |
O4···O5ii | 3.069 (3) | H2W2···O2v | 1.78 (4) |
O4···O3 | 2.992 (3) | H2W2···C2v | 2.58 (5) |
O4···O5 | 3.101 (3) | H1W1···C1 | 2.85 (5) |
O4···O6ix | 2.964 (3) | H1W1···C5 | 3.01 (5) |
O4···O2Wix | 2.991 (3) | H1W1···O1vii | 2.81 (5) |
O4···O4x | 2.679 (3) | H1W1···O2vii | 1.97 (3) |
O4···O2Wii | 3.095 (3) | H1W1···C1vii | 2.97 (5) |
O5···O6ii | 3.036 (3) | H1W1···C2vii | 2.62 (3) |
O5···C4ii | 3.322 (4) | H1W2···O6iii | 1.96 (4) |
O5···O5ii | 2.569 (3) | H1W2···C5 | 3.06 (5) |
O5···O1ii | 2.852 (3) | H1W2···C6iii | 2.58 (5) |
O5···C5xi | 3.289 (3) | H1W2···H2W1 | 2.59 (6) |
O5···C4 | 3.379 (4) | H2W1···H1W2 | 2.59 (6) |
O5···O4ii | 3.069 (3) | H2W1···Sm1vii | 3.72 (4) |
O5···C1ii | 3.270 (3) | H2W1···O1vii | 2.83 (3) |
O5···O1W | 2.778 (3) | H2W1···O3v | 1.90 (4) |
O5···O4 | 3.101 (3) | H2W1···C3v | 2.75 (4) |
O6···C4i | 3.208 (4) | | |
| | | |
O1—Sm1—O1W | 71.51 (8) | O4ii—Sm1—O5ii | 72.21 (7) |
O1—Sm1—O2W | 140.08 (7) | Sm1—O1—C1 | 132.91 (18) |
O1—Sm1—O5 | 87.41 (7) | Sm1ix—O3—C3 | 109.09 (17) |
O1—Sm1—O6 | 70.97 (7) | Sm1ix—O4—C4 | 103.35 (17) |
O1—Sm1—O3i | 76.87 (7) | Sm1ii—O4—C4 | 139.42 (19) |
O1—Sm1—O4i | 132.68 (7) | Sm1ix—O4—Sm1ii | 116.89 (8) |
O1—Sm1—O4ii | 137.53 (7) | Sm1—O5—C5 | 136.09 (19) |
O1—Sm1—O5ii | 66.44 (7) | Sm1—O5—Sm1ii | 121.45 (8) |
O1W—Sm1—O2W | 69.11 (8) | Sm1ii—O5—C5 | 101.94 (17) |
O1W—Sm1—O5 | 69.29 (7) | Sm1—O6—C6 | 109.72 (18) |
O1W—Sm1—O6 | 137.37 (8) | Sm1—O1W—H1W1 | 129 (3) |
O1W—Sm1—O3i | 73.72 (7) | Sm1—O1W—H2W1 | 120 (2) |
O1W—Sm1—O4i | 127.78 (7) | H1W1—O1W—H2W1 | 111 (4) |
O1W—Sm1—O4ii | 136.25 (8) | Sm1—O2W—H1W2 | 118 (3) |
O1W—Sm1—O5ii | 112.32 (7) | H2W2—O2W—H1W2 | 113 (4) |
O2W—Sm1—O5 | 84.76 (7) | Sm1—O2W—H2W2 | 114 (3) |
O2W—Sm1—O6 | 140.71 (7) | C2—C1—C4 | 89.5 (2) |
O2W—Sm1—O3i | 86.17 (7) | O1—C1—C2 | 132.2 (2) |
O2W—Sm1—O4i | 71.35 (7) | O1—C1—C4 | 138.2 (3) |
O2W—Sm1—O4ii | 78.88 (7) | O2—C2—C3 | 137.9 (3) |
O2W—Sm1—O5ii | 136.44 (7) | C1—C2—C3 | 88.3 (2) |
O5—Sm1—O6 | 127.76 (7) | O2—C2—C1 | 133.5 (3) |
O3i—Sm1—O5 | 142.75 (7) | C2—C3—C4 | 90.9 (2) |
O4i—Sm1—O5 | 138.06 (7) | O3—C3—C2 | 140.0 (3) |
O4ii—Sm1—O5 | 79.07 (7) | O3—C3—C4 | 129.0 (3) |
O5—Sm1—O5ii | 58.56 (7) | O4—C4—C3 | 127.0 (3) |
O3i—Sm1—O6 | 78.72 (7) | O4—C4—C1 | 141.7 (3) |
O4i—Sm1—O6 | 69.46 (7) | C1—C4—C3 | 91.3 (2) |
O4ii—Sm1—O6 | 86.00 (7) | O5—C5—C6ii | 127.7 (3) |
O5ii—Sm1—O6 | 69.21 (6) | O5—C5—C6iii | 140.7 (3) |
O3i—Sm1—O4i | 70.92 (7) | C6iii—C5—C6ii | 91.6 (2) |
O3i—Sm1—O4ii | 134.03 (7) | C5xiii—C6—C5ii | 88.4 (2) |
O3i—Sm1—O5ii | 137.16 (6) | O6—C6—C5xiii | 141.1 (3) |
O4i—Sm1—O4ii | 63.11 (7) | O6—C6—C5ii | 130.5 (3) |
O4i—Sm1—O5ii | 119.80 (6) | | |
| | | |
O1W—Sm1—O1—C1 | 49.0 (2) | O5—Sm1—O4ii—C4ii | −10.5 (3) |
O2W—Sm1—O1—C1 | 58.6 (3) | O6—Sm1—O4ii—C4ii | 119.2 (3) |
O5—Sm1—O1—C1 | −20.1 (3) | O1—Sm1—O5ii—Sm1ii | 102.06 (11) |
O6—Sm1—O1—C1 | −151.7 (3) | O1—Sm1—O5ii—C5ii | −70.85 (18) |
O3i—Sm1—O1—C1 | 125.9 (3) | O1W—Sm1—O5ii—Sm1ii | 45.64 (12) |
O4i—Sm1—O1—C1 | 173.7 (2) | O1W—Sm1—O5ii—C5ii | −127.27 (18) |
O4ii—Sm1—O1—C1 | −90.8 (3) | O2W—Sm1—O5ii—Sm1ii | −37.02 (15) |
O5ii—Sm1—O1—C1 | −76.7 (3) | O2W—Sm1—O5ii—C5ii | 150.07 (17) |
O1—Sm1—O5—C5 | 126.2 (3) | O5—Sm1—O5ii—Sm1ii | 0.00 (10) |
O1—Sm1—O5—Sm1ii | −63.81 (10) | O5—Sm1—O5ii—C5ii | −172.9 (2) |
O1W—Sm1—O5—C5 | 55.0 (3) | O6—Sm1—O5ii—Sm1ii | 179.65 (12) |
O1W—Sm1—O5—Sm1ii | −135.00 (12) | O6—Sm1—O5ii—C5ii | 6.74 (17) |
O2W—Sm1—O5—C5 | −14.6 (3) | Sm1—O1—C1—C4 | 50.2 (5) |
O2W—Sm1—O5—Sm1ii | 155.38 (10) | Sm1—O1—C1—C2 | −125.6 (3) |
O6—Sm1—O5—C5 | −170.4 (3) | Sm1ix—O3—C3—C4 | 5.9 (4) |
O6—Sm1—O5—Sm1ii | −0.42 (14) | Sm1ix—O3—C3—C2 | 179.9 (3) |
O3i—Sm1—O5—C5 | 62.0 (3) | Sm1ix—O4—C4—C3 | −6.7 (3) |
O3i—Sm1—O5—Sm1ii | −128.01 (10) | Sm1ii—O4—C4—C1 | 6.3 (6) |
O4i—Sm1—O5—C5 | −69.0 (3) | Sm1ix—O4—C4—C1 | 178.9 (3) |
O4i—Sm1—O5—Sm1ii | 101.01 (11) | Sm1ii—O4—C4—C3 | −179.2 (2) |
O4ii—Sm1—O5—C5 | −94.3 (3) | Sm1—O5—C5—C6iii | −2.1 (6) |
O4ii—Sm1—O5—Sm1ii | 75.72 (10) | Sm1—O5—C5—C6ii | 177.5 (2) |
O5ii—Sm1—O5—C5 | −170.0 (3) | Sm1ii—O5—C5—C6ii | 6.2 (3) |
O5ii—Sm1—O5—Sm1ii | −0.02 (12) | Sm1ii—O5—C5—C6iii | −173.4 (4) |
O1—Sm1—O6—C6 | 63.89 (19) | Sm1—O6—C6—C5xiii | −172.7 (3) |
O1W—Sm1—O6—C6 | 93.4 (2) | Sm1—O6—C6—C5ii | 8.8 (4) |
O2W—Sm1—O6—C6 | −146.84 (18) | O1—C1—C2—C3 | 178.7 (3) |
O5—Sm1—O6—C6 | −7.0 (2) | C4—C1—C2—O2 | −174.0 (3) |
O3i—Sm1—O6—C6 | 143.7 (2) | O1—C1—C2—O2 | 3.2 (5) |
O4i—Sm1—O6—C6 | −142.6 (2) | O1—C1—C4—O4 | −2.9 (7) |
O4ii—Sm1—O6—C6 | −79.85 (19) | O1—C1—C4—C3 | −178.5 (3) |
O5ii—Sm1—O6—C6 | −7.37 (18) | C2—C1—C4—O4 | 174.0 (4) |
O1—Sm1—O3i—C3i | 138.84 (19) | C2—C1—C4—C3 | −1.6 (2) |
O1W—Sm1—O3i—C3i | −146.90 (19) | C4—C1—C2—C3 | 1.5 (2) |
O2W—Sm1—O3i—C3i | −77.56 (18) | O2—C2—C3—C4 | 173.6 (4) |
O5—Sm1—O3i—C3i | −153.71 (17) | C1—C2—C3—O3 | −176.9 (4) |
O6—Sm1—O3i—C3i | 65.99 (18) | O2—C2—C3—O3 | −1.7 (6) |
O1—Sm1—O4i—C4i | −43.5 (2) | C1—C2—C3—C4 | −1.6 (2) |
O1W—Sm1—O4i—C4i | 56.25 (19) | O3—C3—C4—C1 | 177.7 (3) |
O2W—Sm1—O4i—C4i | 98.70 (17) | C2—C3—C4—O4 | −175.0 (3) |
O5—Sm1—O4i—C4i | 157.38 (16) | O3—C3—C4—O4 | 1.2 (5) |
O6—Sm1—O4i—C4i | −78.46 (17) | C2—C3—C4—C1 | 1.6 (2) |
O1—Sm1—O4ii—C4ii | 63.3 (3) | O5—C5—C6iii—O6iii | 0.9 (7) |
O1W—Sm1—O4ii—C4ii | −54.2 (3) | O5—C5—C6ii—O6ii | 1.2 (5) |
O2W—Sm1—O4ii—C4ii | −97.3 (3) | | |
Symmetry codes: (i) x−1, y, z; (ii) −x, −y+1, −z+1; (iii) x, y, z−1; (iv) −x−1, −y+1, −z+1; (v) x−1, −y+1/2, z−1/2; (vi) x, −y+1/2, z+1/2; (vii) x, −y+1/2, z−1/2; (viii) x+1, −y+1/2, z+1/2; (ix) x+1, y, z; (x) −x+1, −y+1, −z+1; (xi) −x, −y+1, −z; (xii) −x, −y+1, −z+2; (xiii) x, y, z+1. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O2W—H2W2···O2v | 0.94 (4) | 1.78 (4) | 2.716 (3) | 173 (4) |
O1W—H1W1···O2vii | 0.92 (2) | 1.97 (3) | 2.882 (3) | 171 (4) |
O2W—H1W2···O6iii | 0.94 (4) | 1.96 (4) | 2.865 (3) | 162 (4) |
O1W—H2W1···O3v | 0.94 (4) | 1.90 (4) | 2.834 (3) | 179 (5) |
Symmetry codes: (iii) x, y, z−1; (v) x−1, −y+1/2, z−1/2; (vii) x, −y+1/2, z−1/2. |
Experimental details
Crystal data |
Chemical formula | [Sm2(C4O4)3(H2O)4] |
Mr | 708.88 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 7.0824 (1), 16.7725 (3), 6.9066 (1) |
β (°) | 101.585 (1) |
V (Å3) | 803.72 (2) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 7.33 |
Crystal size (mm) | 0.15 × 0.14 × 0.14 |
|
Data collection |
Diffractometer | Nonius KappaCCD diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3906, 2340, 2199 |
Rint | 0.029 |
(sin θ/λ)max (Å−1) | 0.703 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.023, 0.058, 1.08 |
No. of reflections | 2340 |
No. of parameters | 148 |
No. of restraints | 6 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.54, −1.96 |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O2W—H2W2···O2i | 0.94 (4) | 1.78 (4) | 2.716 (3) | 173 (4) |
O1W—H1W1···O2ii | 0.92 (2) | 1.97 (3) | 2.882 (3) | 171 (4) |
O2W—H1W2···O6iii | 0.94 (4) | 1.96 (4) | 2.865 (3) | 162 (4) |
O1W—H2W1···O3i | 0.94 (4) | 1.90 (4) | 2.834 (3) | 179 (5) |
Symmetry codes: (i) x−1, −y+1/2, z−1/2; (ii) x, −y+1/2, z−1/2; (iii) x, y, z−1. |
A family of weakly hydrated lanthanide(III) squarates, [Ln(H2O)2]2 (C4O4)3 (Ln= La, Ce, Pr, Nd, Sm, Eu) was synthesized hydrothermally (Trombe et al., 1988; Trombe et al., 1990) starting from heating hydrated lanthanide(III) squarates (Petit et al., 1990) in water inside a closed vessel. Unit-cell parameters of the whole compounds were determined from X-ray powder patterns. However, only crystal structure of cerium compound was determined using single-crystal X-ray techniques. Accordingly, much effort was given to experimental conditions in order to obtain single-crystals of the other lanthanides. Unfortunately, up to now no other single-crystal of lanthanide(III) squarate tetrahydrates could be obtained. Therefore herein we report on crystal structure of Di(samarium(III)diaqua) trisquarate, [Sm(H2O)2]2(C4O4)3 (I).
The compound (I) was synthesized during one of our attempts to create novel lanthanide(III) squarates. However, only [Sm(H2O)2]2(C4O4)3 separated from solution and a view of the molecular structure is given in Fig. 1. Trombe et al. reported the structure of cerium(III) squarate tetrahydrate (Trombe et al., 1988; Trombe et al., 1990). The samarium analog is isostructural, the compound crystallizing with similar unit-cell dimensions. Its molecular structure displays a layered structure based on infinite chains structural units, built from edge sharing distorted tricapped trigonal prism polyhedra SmO7(H2O)2 (Fig. 2). These polyhedra are connected via regular squarate sq1 groups along [100] in zigzag mode and interconnected by bis-chelating squarate anions sq2 into layers parallel to (101) plan (Fig. 2). Hydrogen bonds strengthen the structure (table 1, Fig. 2). The two crystallographically independent squarate anions present a case of chelation. One (sq1) has no imposed symmetry. One of its oxygen atoms, namely O2, is not bound to any samarium atom. The oxygen atoms O3 and O4 chelate one samarium atom. The atom O4 binds also another samarium atom while the atom O3 binds only one samarium atom. Thus, the squarate sq1 ligand relates three metal centers. The second symmetric squarate sq2 ligand chelates on both side one samarium atom, and one more Sm atom is also bounded to the oxygen atom O5 of each bite , so that four metal centers are related.