Download citation
Download citation
link to html
In the title compound, C16H12FIO2S, the 4-fluoro­phenyl ring is rotated slightly out of the benzofuran plane, as indicated by the dihedral angle of 4.48 (5)°. In the crystal structure, pairs of I...O halogen bonds [I...O = 3.123 (1) Å] link the mol­ecules into centrosymmetric dimers. These dimers are further linked via aromatic π–π inter­actions between the benzene and 4-fluoro­phenyl rings of neighbouring mol­ecules [centroid–centroid distance = 3.620 (3) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810012717/ds2026sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536810012717/ds2026Isup2.hkl
Contains datablock I

CCDC reference: 777956

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.019
  • wR factor = 0.052
  • Data-to-parameter ratio = 17.5

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT431_ALERT_2_B Short Inter HL..A Contact I .. O2 .. 3.12 Ang.
Author Response: : Explained as halogen bond in the Abstract & Comment.

Alert level C PLAT913_ALERT_3_C Missing # of Very Strong Reflections in FCF .... 1 PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 7
Alert level G PLAT154_ALERT_1_G The su's on the Cell Angles are Equal (x 10000) 200 Deg.
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Compounds containing benzofuran moiety show interesting pharmacological activities such as antifungal (Aslam et al., 2006), antitumor and antiviral (Galal et al., 2009), antimicrobial (Khan et al., 2005) properties. These compounds are widely occurring in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 3-ethylsulfinyl-2-(4-fluorophenyl)-5-halo-1-benzofuran analogues (Choi et al., 2010a,b,c), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.009 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the benzofuran plane and the 4-fluorophenyl ring is 4.48 (5)°. The crystal packing (Fig. 2) is stabilized by I···O halogen bondings between the iodine and the oxygen of the SO unit [I···O2i = 3.123 (1) Å; C–I···O2i = 167.88 (5)°] (Politzer et al., 2007). The molecular packing (Fig. 2) is further stabilized by aromatic ππ interactions between the benzene and the 4-fluorophenyl rings of adjacent molecules, with a Cg1···Cg2ii distance of 3.620 (3) Å (Cg1 and Cg2 are the centroids of the the C2-C7 benzene ring and the C9-C14 4-fluorophenyl ring, respectively).

Related literature top

For the crystal structures of similar 3-ethylsulfinyl-2-(4-fluorophenyl)-5-halo-1-benzofuran derivatives, see: Choi et al. (2010a,b,c). For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For a review of halogen bonding, see: Politzer et al. (2007).

Experimental top

77% 3-Chloroperoxybenzoic acid (202 mg, 0.9 mmol) was added in small portions to a stirred solution of 3-ethylsulfanyl-2-(4-fluorophenyl)-5-iodo-1-benzofuran (358 mg, 0.9 mmol) in dichloromethane (30 mL) at 273 K. After being stirred at room temperature for 4h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 1:1 v/v) to afford the title compound as a colorless solid [yield 80%, m.p. 446-447 K; Rf = 0.51 (hexane-ethyl acetate, 1:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in chloroform at room temperature.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with C-H = 0.95 Å for aryl, 0.98 Å for methylene, and 0.00 Å for methyl H atoms. Uiso(H)= 1.2Ueq(C) for aryl and methylene H atoms, and 1.5Ueq(C) for methyl H atoms.

Structure description top

Compounds containing benzofuran moiety show interesting pharmacological activities such as antifungal (Aslam et al., 2006), antitumor and antiviral (Galal et al., 2009), antimicrobial (Khan et al., 2005) properties. These compounds are widely occurring in nature (Akgul & Anil, 2003; Soekamto et al., 2003). As a part of our ongoing studies of the effect of side chain substituents on the solid state structures of 3-ethylsulfinyl-2-(4-fluorophenyl)-5-halo-1-benzofuran analogues (Choi et al., 2010a,b,c), we report the crystal structure of the title compound (Fig. 1).

The benzofuran unit is essentially planar, with a mean deviation of 0.009 (1) Å from the least-squares plane defined by the nine constituent atoms. The dihedral angle formed by the benzofuran plane and the 4-fluorophenyl ring is 4.48 (5)°. The crystal packing (Fig. 2) is stabilized by I···O halogen bondings between the iodine and the oxygen of the SO unit [I···O2i = 3.123 (1) Å; C–I···O2i = 167.88 (5)°] (Politzer et al., 2007). The molecular packing (Fig. 2) is further stabilized by aromatic ππ interactions between the benzene and the 4-fluorophenyl rings of adjacent molecules, with a Cg1···Cg2ii distance of 3.620 (3) Å (Cg1 and Cg2 are the centroids of the the C2-C7 benzene ring and the C9-C14 4-fluorophenyl ring, respectively).

For the crystal structures of similar 3-ethylsulfinyl-2-(4-fluorophenyl)-5-halo-1-benzofuran derivatives, see: Choi et al. (2010a,b,c). For the pharmacological activity of benzofuran compounds, see: Aslam et al. (2006); Galal et al. (2009); Khan et al. (2005). For natural products with benzofuran rings, see: Akgul & Anil (2003); Soekamto et al. (2003). For a review of halogen bonding, see: Politzer et al. (2007).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. I···O and ππ interactions (dotted lines) in the crystal structure of the title compound. Cg denotes the ring centroids. [Symmetry codes: (i) - x, - y + 1, - z + 2; (ii) - x + 1, - y + 1, - z + 1.]
3-Ethylsulfinyl-2-(4-fluorophenyl)-5-iodo-1-benzofuran top
Crystal data top
C16H12FIO2SZ = 2
Mr = 414.22F(000) = 404
Triclinic, P1Dx = 1.911 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2942 (4) ÅCell parameters from 9908 reflections
b = 9.6312 (5) Åθ = 2.6–27.6°
c = 11.0132 (6) ŵ = 2.38 mm1
α = 100.637 (2)°T = 173 K
β = 97.947 (2)°Block, colourless
γ = 105.086 (2)°0.38 × 0.18 × 0.11 mm
V = 719.91 (7) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
3342 independent reflections
Radiation source: Rotating Anode3237 reflections with I > 2σ(I)
Bruker HELIOS graded multilayer optics monochromatorRint = 0.029
Detector resolution: 10.0 pixels mm-1θmax = 27.6°, θmin = 1.9°
φ and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
k = 1212
Tmin = 0.548, Tmax = 0.746l = 1414
12738 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: difference Fourier map
wR(F2) = 0.052H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0269P)2 + 0.2687P]
where P = (Fo2 + 2Fc2)/3
3342 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.63 e Å3
Crystal data top
C16H12FIO2Sγ = 105.086 (2)°
Mr = 414.22V = 719.91 (7) Å3
Triclinic, P1Z = 2
a = 7.2942 (4) ÅMo Kα radiation
b = 9.6312 (5) ŵ = 2.38 mm1
c = 11.0132 (6) ÅT = 173 K
α = 100.637 (2)°0.38 × 0.18 × 0.11 mm
β = 97.947 (2)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
3342 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3237 reflections with I > 2σ(I)
Tmin = 0.548, Tmax = 0.746Rint = 0.029
12738 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0190 restraints
wR(F2) = 0.052H-atom parameters constrained
S = 1.11Δρmax = 0.37 e Å3
3342 reflectionsΔρmin = 0.63 e Å3
191 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I0.226555 (16)0.736460 (12)1.062556 (10)0.02602 (5)
S0.04077 (6)0.19740 (5)0.59260 (4)0.02146 (9)
F0.23547 (19)0.15061 (15)0.01197 (11)0.0389 (3)
O10.29054 (17)0.57530 (13)0.50405 (11)0.0205 (2)
O20.0999 (2)0.20821 (16)0.67760 (14)0.0322 (3)
C10.1561 (2)0.37895 (18)0.57995 (16)0.0197 (3)
C20.2016 (2)0.51016 (18)0.68023 (16)0.0190 (3)
C30.1835 (2)0.53995 (19)0.80655 (16)0.0207 (3)
H30.12870.46300.84550.025*
C40.2487 (2)0.68639 (19)0.87246 (16)0.0213 (3)
C50.3272 (3)0.8028 (2)0.81686 (18)0.0246 (4)
H50.36830.90180.86520.030*
C60.3448 (3)0.77340 (19)0.69133 (17)0.0231 (3)
H60.39720.85020.65170.028*
C70.2821 (2)0.62657 (18)0.62715 (16)0.0193 (3)
C80.2123 (2)0.42343 (18)0.47623 (16)0.0189 (3)
C90.2136 (2)0.35025 (19)0.34774 (16)0.0199 (3)
C100.1546 (3)0.1962 (2)0.30668 (18)0.0255 (4)
H100.11130.13710.36320.031*
C110.1583 (3)0.1286 (2)0.18520 (19)0.0290 (4)
H110.11520.02400.15710.035*
C120.2255 (3)0.2160 (2)0.10629 (17)0.0269 (4)
C130.2847 (3)0.3683 (2)0.14173 (18)0.0282 (4)
H130.32990.42580.08460.034*
C140.2767 (3)0.4354 (2)0.26295 (17)0.0252 (3)
H140.31440.54020.28870.030*
C150.2486 (3)0.1670 (2)0.68306 (18)0.0267 (4)
H15A0.31050.25320.75470.032*
H15B0.20470.07890.71780.032*
C160.3954 (3)0.1442 (2)0.6025 (2)0.0296 (4)
H16A0.33590.05650.53350.044*
H16B0.50690.13040.65430.044*
H16C0.43840.23100.56760.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I0.03240 (8)0.02619 (8)0.01896 (8)0.01017 (5)0.00499 (5)0.00175 (5)
S0.02080 (19)0.01889 (19)0.0227 (2)0.00112 (15)0.00640 (15)0.00498 (15)
F0.0464 (7)0.0480 (7)0.0218 (6)0.0179 (6)0.0109 (5)0.0020 (5)
O10.0239 (6)0.0181 (6)0.0198 (6)0.0050 (5)0.0068 (4)0.0052 (4)
O20.0285 (7)0.0332 (7)0.0361 (8)0.0043 (6)0.0180 (6)0.0092 (6)
C10.0184 (7)0.0185 (8)0.0214 (8)0.0039 (6)0.0045 (6)0.0039 (6)
C20.0166 (7)0.0191 (7)0.0213 (8)0.0052 (6)0.0045 (6)0.0043 (6)
C30.0193 (7)0.0226 (8)0.0208 (8)0.0057 (6)0.0060 (6)0.0051 (6)
C40.0202 (7)0.0247 (8)0.0197 (8)0.0090 (6)0.0045 (6)0.0027 (6)
C50.0254 (8)0.0193 (8)0.0279 (9)0.0069 (7)0.0041 (7)0.0027 (7)
C60.0254 (8)0.0186 (8)0.0261 (9)0.0062 (6)0.0068 (7)0.0065 (6)
C70.0189 (7)0.0205 (8)0.0200 (8)0.0072 (6)0.0052 (6)0.0050 (6)
C80.0172 (7)0.0168 (7)0.0222 (8)0.0046 (6)0.0039 (6)0.0040 (6)
C90.0171 (7)0.0246 (8)0.0190 (8)0.0076 (6)0.0039 (6)0.0048 (6)
C100.0271 (9)0.0231 (8)0.0258 (9)0.0056 (7)0.0084 (7)0.0046 (7)
C110.0297 (9)0.0254 (9)0.0284 (9)0.0077 (7)0.0053 (7)0.0013 (7)
C120.0251 (8)0.0363 (10)0.0189 (8)0.0131 (8)0.0040 (6)0.0000 (7)
C130.0304 (9)0.0360 (10)0.0222 (9)0.0126 (8)0.0079 (7)0.0102 (8)
C140.0277 (9)0.0251 (9)0.0236 (9)0.0082 (7)0.0055 (7)0.0061 (7)
C150.0295 (9)0.0243 (9)0.0266 (9)0.0068 (7)0.0040 (7)0.0096 (7)
C160.0249 (8)0.0261 (9)0.0375 (11)0.0073 (7)0.0039 (8)0.0085 (8)
Geometric parameters (Å, º) top
I—C42.098 (2)C6—H60.9500
I—O2i3.123 (1)C8—C91.462 (2)
S—O21.492 (1)C9—C101.399 (2)
S—C11.772 (2)C9—C141.401 (2)
S—C151.816 (2)C10—C111.383 (3)
F—C121.358 (2)C10—H100.9500
O1—C71.370 (2)C11—C121.370 (3)
O1—C81.382 (2)C11—H110.9500
C1—C81.369 (2)C12—C131.379 (3)
C1—C21.446 (2)C13—C141.388 (3)
C2—C71.392 (2)C13—H130.9500
C2—C31.399 (2)C14—H140.9500
C3—C41.386 (2)C15—C161.515 (3)
C3—H30.9500C15—H15A0.9900
C4—C51.406 (3)C15—H15B0.9900
C5—C61.390 (3)C16—H16A0.9800
C5—H50.9500C16—H16B0.9800
C6—C71.383 (2)C16—H16C0.9800
C4—I—O2i167.88 (5)C10—C9—C8121.74 (16)
O2—S—C1107.52 (8)C14—C9—C8119.67 (15)
O2—S—C15107.08 (9)C11—C10—C9121.07 (17)
C1—S—C1597.46 (8)C11—C10—H10119.5
C7—O1—C8107.01 (13)C9—C10—H10119.5
C8—C1—C2107.24 (14)C12—C11—C10118.44 (17)
C8—C1—S127.97 (13)C12—C11—H11120.8
C2—C1—S124.75 (13)C10—C11—H11120.8
C7—C2—C3119.36 (16)F—C12—C11118.94 (17)
C7—C2—C1105.00 (15)F—C12—C13118.20 (18)
C3—C2—C1135.64 (16)C11—C12—C13122.86 (17)
C4—C3—C2117.18 (16)C12—C13—C14118.37 (18)
C4—C3—H3121.4C12—C13—H13120.8
C2—C3—H3121.4C14—C13—H13120.8
C3—C4—C5122.70 (16)C13—C14—C9120.64 (17)
C3—C4—I118.59 (13)C13—C14—H14119.7
C5—C4—I118.71 (13)C9—C14—H14119.7
C6—C5—C4120.18 (16)C16—C15—S111.38 (13)
C6—C5—H5119.9C16—C15—H15A109.4
C4—C5—H5119.9S—C15—H15A109.4
C7—C6—C5116.55 (16)C16—C15—H15B109.4
C7—C6—H6121.7S—C15—H15B109.4
C5—C6—H6121.7H15A—C15—H15B108.0
O1—C7—C6125.25 (15)C15—C16—H16A109.5
O1—C7—C2110.72 (14)C15—C16—H16B109.5
C6—C7—C2124.02 (16)H16A—C16—H16B109.5
C1—C8—O1110.02 (14)C15—C16—H16C109.5
C1—C8—C9135.88 (16)H16A—C16—H16C109.5
O1—C8—C9114.08 (14)H16B—C16—H16C109.5
C10—C9—C14118.59 (16)
O2—S—C1—C8143.28 (16)C2—C1—C8—O10.15 (18)
C15—S—C1—C8106.12 (17)S—C1—C8—O1177.70 (12)
O2—S—C1—C234.22 (16)C2—C1—C8—C9177.97 (17)
C15—S—C1—C276.38 (15)S—C1—C8—C94.2 (3)
C8—C1—C2—C70.56 (18)C7—O1—C8—C10.33 (18)
S—C1—C2—C7177.37 (12)C7—O1—C8—C9178.90 (13)
C8—C1—C2—C3179.12 (18)C1—C8—C9—C103.3 (3)
S—C1—C2—C32.9 (3)O1—C8—C9—C10174.74 (15)
C7—C2—C3—C40.2 (2)C1—C8—C9—C14177.15 (19)
C1—C2—C3—C4179.41 (18)O1—C8—C9—C144.8 (2)
C2—C3—C4—C51.1 (2)C14—C9—C10—C110.1 (3)
C2—C3—C4—I179.54 (12)C8—C9—C10—C11179.44 (16)
C3—C4—C5—C61.0 (3)C9—C10—C11—C121.5 (3)
I—C4—C5—C6179.69 (13)C10—C11—C12—F177.94 (16)
C4—C5—C6—C70.1 (3)C10—C11—C12—C131.8 (3)
C8—O1—C7—C6179.49 (16)F—C12—C13—C14179.32 (16)
C8—O1—C7—C20.71 (17)C11—C12—C13—C140.4 (3)
C5—C6—C7—O1178.78 (15)C12—C13—C14—C91.3 (3)
C5—C6—C7—C21.0 (3)C10—C9—C14—C131.5 (3)
C3—C2—C7—O1178.96 (14)C8—C9—C14—C13178.04 (16)
C1—C2—C7—O10.79 (18)O2—S—C15—C16176.25 (13)
C3—C2—C7—C60.8 (2)C1—S—C15—C1672.79 (14)
C1—C2—C7—C6179.41 (16)
Symmetry code: (i) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC16H12FIO2S
Mr414.22
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)7.2942 (4), 9.6312 (5), 11.0132 (6)
α, β, γ (°)100.637 (2), 97.947 (2), 105.086 (2)
V3)719.91 (7)
Z2
Radiation typeMo Kα
µ (mm1)2.38
Crystal size (mm)0.38 × 0.18 × 0.11
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.548, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
12738, 3342, 3237
Rint0.029
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.019, 0.052, 1.11
No. of reflections3342
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.63

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 1998).

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds