Download citation
Download citation
link to html
In the crystal structure of the title compound, C6H9N2+·ClCH2COO, prepared by the reaction of OPDA (orthophenelynediamine) with chloro­acetic ­acid, N—H...O hydrogen bonds generate ladder-like chains and very weak inter­molecular C—H...Cl hydrogen-bonding inter­actions between the anions and cations lead to a supra­molecular network. C—H...O inter­actions also occur.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536810024554/ds2035sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536810024554/ds2035Isup2.hkl
Contains datablock I

CCDC reference: 788344

Key indicators

  • Single-crystal X-ray study
  • T = 298 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.047
  • wR factor = 0.137
  • Data-to-parameter ratio = 15.3

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT480_ALERT_4_B Long H...A H-Bond Reported H3 .. CL1 .. 3.24 Ang.
Alert level C PLAT420_ALERT_2_C D-H Without Acceptor N2 - H2A ... ? PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.600 4 PLAT480_ALERT_4_C Long H...A H-Bond Reported H4 .. O1 .. 2.66 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H2A .. N2 .. 2.77 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H8A .. CL1 .. 3.10 Ang. PLAT480_ALERT_4_C Long H...A H-Bond Reported H8B .. O1 .. 2.71 Ang. PLAT481_ALERT_4_C Long D...A H-Bond Reported C3 .. CL1 .. 3.98 Ang. PLAT912_ALERT_4_C Missing # of FCF Reflections Above STh/L= 0.600 14
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 7 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

We have reported here the synthesis and structural characterization of a hitherto unknown organic ion pair compound 1, consisting of orthophenylenediammonium cation and chloroacetate anion, that provides a good supramolecular information. The ladder-type one-dimensional chainlike arrangement has been generated because of N—H···O hydrogen bonding interaction in the crystal of compound 1, as shown in Fig. 3.

Related literature top

For hydrogen bonding with chlorine, see: Brammer et al. (2008); Metrangolo et al. (2006, 2009). For ladder-like networks, see: Kinbara, Hashimoto et al. (1996); Kinbara, Kai et al. (1996).

Experimental top

OPDA (Orthophenelynediamine)(0.108 g, 1 mmol) was dissolved in 20 ml of acetonitrile solution and which was added the solution of 25 ml of methanol containing chloroaceticacid (0.23 g, 1 mmol); this reaction mixture was stirred for 5 min and kept for crystalization at room temperature. Colorless needle-like crystals were formed after 3 days (yield: 0.145 g, 72% based on OPDA).

Refinement top

All H atoms were found on difference maps, with C—H=0.93 Å and included in the final cycles of refinement using a riding model, with Uiso(H)=1.2Ueq(C)

Structure description top

We have reported here the synthesis and structural characterization of a hitherto unknown organic ion pair compound 1, consisting of orthophenylenediammonium cation and chloroacetate anion, that provides a good supramolecular information. The ladder-type one-dimensional chainlike arrangement has been generated because of N—H···O hydrogen bonding interaction in the crystal of compound 1, as shown in Fig. 3.

For hydrogen bonding with chlorine, see: Brammer et al. (2008); Metrangolo et al. (2006, 2009). For ladder-like networks, see: Kinbara, Hashimoto et al. (1996); Kinbara, Kai et al. (1996).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SMAIT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP diagram of the compound 1 (Thermal ellipsoids are at 50% probability level).
[Figure 2] Fig. 2. Interactions of C—H···cl in the compound 1 give rise to diverse supramolecular network and all the inetractions arround the cation and anion respectively with symetry codes All the symetry codes for hyderogen bonding were written in the Table 1
[Figure 3] Fig. 3. The ladder-type one-dimensional chainlike arrangement generated by N—H···O hydrogen bonding interactions.
[Figure 4] Fig. 4. Hydrogen bonding situation around the cation.
[Figure 5] Fig. 5. Hydrogen bonding situation around the anion.
[Figure 6] Fig. 6. The formation of the title compound.
2-Aminoanilinium 2-chloroacetate top
Crystal data top
C6H9N2+·C2H2ClO2F(000) = 424
Mr = 202.64Dx = 1.400 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5050 reflections
a = 11.371 (3) Åθ = 2.3–26.1°
b = 4.4852 (11) ŵ = 0.37 mm1
c = 20.115 (4) ÅT = 298 K
β = 110.439 (12)°Needle, colorless
V = 961.3 (4) Å30.36 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
1922 independent reflections
Radiation source: fine-focus sealed tube1651 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
phi and ω scansθmax = 26.2°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
h = 1414
Tmin = 0.879, Tmax = 0.944k = 55
9366 measured reflectionsl = 2424
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0676P)2 + 0.3616P]
where P = (Fo2 + 2Fc2)/3
1922 reflections(Δ/σ)max = 0.001
126 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C6H9N2+·C2H2ClO2V = 961.3 (4) Å3
Mr = 202.64Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.371 (3) ŵ = 0.37 mm1
b = 4.4852 (11) ÅT = 298 K
c = 20.115 (4) Å0.36 × 0.20 × 0.16 mm
β = 110.439 (12)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1922 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2003)
1651 reflections with I > 2σ(I)
Tmin = 0.879, Tmax = 0.944Rint = 0.025
9366 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.33 e Å3
1922 reflectionsΔρmin = 0.29 e Å3
126 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.38338 (15)0.3513 (3)0.89834 (8)0.0425 (4)
H1A0.46960.35850.90560.051*
H1B0.36870.19140.92490.051*
H1C0.36250.51140.91890.051*
N20.4570 (2)0.0303 (6)0.80725 (13)0.0819 (7)
H2A0.47580.14280.78090.098*
H2B0.52010.03940.84280.098*
C10.1923 (2)0.4640 (5)0.79778 (11)0.0539 (5)
H10.16950.59540.82690.065*
C20.1128 (2)0.4187 (6)0.72902 (12)0.0641 (6)
H20.03600.51670.71170.077*
C30.1485 (3)0.2267 (6)0.68631 (12)0.0655 (7)
H30.09500.19320.64000.079*
C40.2628 (2)0.0833 (6)0.71141 (12)0.0630 (6)
H40.28610.04220.68130.076*
C50.3443 (2)0.1229 (5)0.78112 (11)0.0499 (5)
C60.30556 (18)0.3157 (4)0.82373 (10)0.0422 (4)
Cl10.88856 (6)0.20415 (18)1.05309 (4)0.0787 (3)
O10.63853 (15)0.3221 (4)0.92605 (9)0.0630 (5)
O20.65904 (16)0.1467 (3)1.03239 (8)0.0563 (4)
C70.69161 (19)0.1690 (4)0.97966 (10)0.0453 (5)
C80.8017 (2)0.0074 (7)0.97533 (13)0.0612 (6)
H8A0.855 (3)0.122 (8)0.9661 (16)0.090 (10)*
H8B0.767 (3)0.161 (9)0.938 (2)0.118 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0520 (9)0.0381 (8)0.0424 (8)0.0007 (7)0.0229 (7)0.0024 (6)
N20.0660 (13)0.0873 (16)0.0926 (16)0.0075 (12)0.0278 (12)0.0425 (13)
C10.0615 (13)0.0508 (12)0.0534 (12)0.0014 (10)0.0250 (10)0.0040 (9)
C20.0615 (13)0.0702 (15)0.0563 (13)0.0000 (12)0.0150 (11)0.0151 (12)
C30.0715 (15)0.0782 (16)0.0434 (12)0.0223 (13)0.0160 (11)0.0026 (11)
C40.0819 (17)0.0650 (14)0.0515 (12)0.0217 (13)0.0351 (12)0.0159 (11)
C50.0571 (12)0.0476 (11)0.0528 (11)0.0117 (9)0.0290 (10)0.0088 (9)
C60.0515 (11)0.0379 (9)0.0421 (10)0.0073 (8)0.0228 (8)0.0004 (7)
Cl10.0550 (4)0.0965 (6)0.0777 (5)0.0095 (3)0.0146 (3)0.0200 (4)
O10.0545 (9)0.0749 (11)0.0602 (10)0.0028 (8)0.0207 (8)0.0171 (8)
O20.0803 (10)0.0421 (8)0.0640 (9)0.0001 (7)0.0472 (8)0.0018 (6)
C70.0480 (11)0.0445 (10)0.0471 (11)0.0094 (8)0.0214 (9)0.0046 (8)
C80.0584 (13)0.0771 (17)0.0549 (13)0.0100 (12)0.0285 (11)0.0064 (12)
Geometric parameters (Å, º) top
N1—C61.461 (2)C3—C41.378 (4)
N1—H1A0.9402C3—H30.9300
N1—H1B0.9425C4—C51.396 (3)
N1—H1C0.9015C4—H40.9300
N2—C51.385 (3)C5—C61.393 (3)
N2—H2A0.8138Cl1—C81.767 (3)
N2—H2B0.8747O1—C71.243 (3)
C1—C21.378 (3)O2—C71.244 (2)
C1—C61.380 (3)C7—C81.509 (3)
C1—H10.9300C8—H8A0.90 (3)
C2—C31.374 (4)C8—H8B0.99 (4)
C2—H20.9300
C6—N1—H1A112.9C3—C4—C5121.3 (2)
C6—N1—H1B109.6C3—C4—H4119.4
H1A—N1—H1B108.6C5—C4—H4119.4
C6—N1—H1C113.4N2—C5—C6121.6 (2)
H1A—N1—H1C109.2N2—C5—C4121.3 (2)
H1B—N1—H1C102.6C6—C5—C4117.1 (2)
C5—N2—H2A118.7C1—C6—C5121.37 (19)
C5—N2—H2B121.3C1—C6—N1119.11 (17)
H2A—N2—H2B115.2C5—C6—N1119.45 (18)
C2—C1—C6120.5 (2)O1—C7—O2125.8 (2)
C2—C1—H1119.8O1—C7—C8113.63 (18)
C6—C1—H1119.8O2—C7—C8120.5 (2)
C3—C2—C1119.1 (2)C7—C8—Cl1115.41 (16)
C3—C2—H2120.4C7—C8—H8A107 (2)
C1—C2—H2120.4Cl1—C8—H8A107 (2)
C2—C3—C4120.7 (2)C7—C8—H8B107 (2)
C2—C3—H3119.7Cl1—C8—H8B106 (2)
C4—C3—H3119.7H8A—C8—H8B114 (3)
C6—C1—C2—C30.8 (3)N2—C5—C6—C1178.9 (2)
C1—C2—C3—C40.7 (4)C4—C5—C6—C10.9 (3)
C2—C3—C4—C51.5 (4)N2—C5—C6—N11.8 (3)
C3—C4—C5—N2177.4 (2)C4—C5—C6—N1176.18 (18)
C3—C4—C5—C60.7 (3)O1—C7—C8—Cl1174.88 (19)
C2—C1—C6—C51.6 (3)O2—C7—C8—Cl17.3 (3)
C2—C1—C6—N1175.42 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O2i0.901.882.777 (2)173
N1—H1B···O2ii0.941.822.763 (2)173
N2—H2B···O10.872.163.004 (3)163
C4—H4···O1iii0.932.663.527 (3)156
C3—H3···Cl1iv0.933.243.985 (3)138
N2—H2A···N2iii0.812.773.587 (4)179
C8—H8A···Cl1v0.90 (3)3.10 (3)3.878 (3)146 (3)
C8—H8B···O1vi0.99 (4)2.71 (4)3.491 (4)136 (3)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+2; (iii) x+1, y1/2, z+3/2; (iv) x1, y1/2, z1/2; (v) x+2, y, z+2; (vi) x, y1, z.

Experimental details

Crystal data
Chemical formulaC6H9N2+·C2H2ClO2
Mr202.64
Crystal system, space groupMonoclinic, P21/c
Temperature (K)298
a, b, c (Å)11.371 (3), 4.4852 (11), 20.115 (4)
β (°) 110.439 (12)
V3)961.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.36 × 0.20 × 0.16
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2003)
Tmin, Tmax0.879, 0.944
No. of measured, independent and
observed [I > 2σ(I)] reflections
9366, 1922, 1651
Rint0.025
(sin θ/λ)max1)0.621
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.137, 1.09
No. of reflections1922
No. of parameters126
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.33, 0.29

Computer programs: SMART (Bruker, 2003), SMAIT (Bruker, 2003), SAINT (Bruker, 2003), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O2i0.901.882.777 (2)172.7
N1—H1B···O2ii0.941.822.763 (2)173.2
N2—H2B···O10.872.163.004 (3)163.0
C4—H4···O1iii0.932.663.527 (3)155.9
C3—H3···Cl1iv0.933.243.985 (3)138.3
N2—H2A···N2iii0.812.773.587 (4)179.1
C8—H8A···Cl1v0.90 (3)3.10 (3)3.878 (3)146 (3)
C8—H8B···O1vi0.99 (4)2.71 (4)3.491 (4)136 (3)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z+2; (iii) x+1, y1/2, z+3/2; (iv) x1, y1/2, z1/2; (v) x+2, y, z+2; (vi) x, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds