The asymmetric unit of the title compound (C
6H
14N
2)[CdCl
4]·H
2O contained one 1,4-diazabicyclo[2.2.2]octane dication, a tetrahedral CdCl
42− anion and a lattice water molecule. In the crystal, the solvate water molecule interacts with the cationic and anionic species
via N—H

O and O—H

Cl [O

Cl = 3.289 (7) Å] hydrogen-bond interactions, respectively, leading to a layered supramolecular structure extending parallel to (011).
Supporting information
CCDC reference: 967916
Key indicators
- Single-crystal X-ray study
- T = 298 K
- Mean
(C-C) = 0.010 Å
- R factor = 0.048
- wR factor = 0.134
- Data-to-parameter ratio = 21.0
checkCIF/PLATON results
No syntax errors found
Alert level B
PLAT306_ALERT_2_B Isolated Oxygen Atom (H-atoms Missing ?) ....... O Check
Alert level C
PLAT034_ALERT_1_C No Flack Parameter Given. Z > Si, NonCentro .... Please Do !
PLAT342_ALERT_3_C Low Bond Precision on C-C Bonds ............... 0.0103 Ang.
PLAT934_ALERT_3_C Number of (Iobs-Icalc)/SigmaW > 10 Outliers .... 1 Check
Alert level G
PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 16 Note
PLAT005_ALERT_5_G No _iucr_refine_instructions_details in the CIF Please Do !
PLAT164_ALERT_4_G Nr. of Refined C-H H-Atoms in Heavy-Atom Struct. 12 Note
PLAT794_ALERT_5_G Tentative Bond Valency for Cd (II) ..... 2.01 Note
PLAT860_ALERT_3_G Number of Least-Squares Restraints ............. 10 Note
0 ALERT level A = Most likely a serious problem - resolve or explain
1 ALERT level B = A potentially serious problem, consider carefully
3 ALERT level C = Check. Ensure it is not caused by an omission or oversight
5 ALERT level G = General information/check it is not something unexpected
1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
2 ALERT type 2 Indicator that the structure model may be wrong or deficient
3 ALERT type 3 Indicator that the structure quality may be low
1 ALERT type 4 Improvement, methodology, query or suggestion
2 ALERT type 5 Informative message, check
The title compound (C6H14N2) [CdCl4]·H2O, (I), was obtained by
the reaction of cadmium iodide CdI2 (0.19 g, 0.5 mmol) with DABCO
(1,4-diazabicyclo[2.2.2]octane) (0.112 g, 1 mmol) in aqueous hydrochloric acid
solution with pH ranging between 3 and 4. The mixture was stirred for several
minutes. Colorless crystals suitable for X-ray diffraction analysis were
obtained by slow evaporation at room temperature over 2 weeks.
Hydrogen water molecules are omited. The C—H and N—H hydrogen atoms
positions are generated geometrically by HFIX SHELXL command.
Data collection: CAD-4 EXPRESS (Duisenberg, 1992); cell refinement: CAD-4 EXPRESS (Duisenberg, 1992); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).
1,4-Diazoniabicyclo[2.2.2]octane tetrachloridocadmate(II) monohydrate
top
Crystal data top
(C6H14N2)[CdCl4]·H2O | F(000) = 752 |
Mr = 386.40 | Dx = 1.959 Mg m−3 |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 2837 reflections |
a = 8.528 (5) Å | θ = 2.4–27° |
b = 11.653 (2) Å | µ = 2.47 mm−1 |
c = 13.114 (6) Å | T = 298 K |
V = 1303.2 (10) Å3 | Prism, colorless |
Z = 4 | 0.54 × 0.43 × 0.29 mm |
Data collection top
Enraf–Nonius CAD-4 diffractometer | 2632 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.075 |
Graphite monochromator | θmax = 27.0°, θmin = 2.3° |
non–profiled ω/2θ scans | h = −10→6 |
Absorption correction: ψ scan (North et al. (1968) | k = −14→1 |
Tmin = 0.283, Tmax = 0.536 | l = −16→16 |
5639 measured reflections | 2 standard reflections every 120 min |
2837 independent reflections | intensity decay: 1% |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.134 | H-atom parameters not refined |
S = 1.19 | w = 1/[σ2(Fo2) + (0.0587P)2 + 1.6133P] where P = (Fo2 + 2Fc2)/3 |
2837 reflections | (Δ/σ)max = 0.001 |
135 parameters | Δρmax = 1.58 e Å−3 |
10 restraints | Δρmin = −1.44 e Å−3 |
Crystal data top
(C6H14N2)[CdCl4]·H2O | V = 1303.2 (10) Å3 |
Mr = 386.40 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 8.528 (5) Å | µ = 2.47 mm−1 |
b = 11.653 (2) Å | T = 298 K |
c = 13.114 (6) Å | 0.54 × 0.43 × 0.29 mm |
Data collection top
Enraf–Nonius CAD-4 diffractometer | 2632 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al. (1968) | Rint = 0.075 |
Tmin = 0.283, Tmax = 0.536 | 2 standard reflections every 120 min |
5639 measured reflections | intensity decay: 1% |
2837 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.048 | 10 restraints |
wR(F2) = 0.134 | H-atom parameters not refined |
S = 1.19 | Δρmax = 1.58 e Å−3 |
2837 reflections | Δρmin = −1.44 e Å−3 |
135 parameters | |
Special details top
Experimental. Number of psi-scan sets used was 5
Theta correction was applied.
Averaged transmission function was used.
No Fourier smoothing was applied. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cd | 0.74636 (5) | 0.52500 (4) | 0.50315 (3) | 0.04606 (17) | |
Cl1 | 0.52000 (18) | 0.40196 (13) | 0.46103 (13) | 0.0465 (3) | |
Cl2 | 0.7583 (2) | 0.53068 (14) | 0.69230 (11) | 0.0544 (4) | |
Cl3 | 0.9940 (2) | 0.43346 (15) | 0.46078 (15) | 0.0557 (4) | |
Cl4 | 0.6884 (2) | 0.71103 (15) | 0.41831 (12) | 0.0542 (4) | |
C1 | 0.4091 (7) | 0.6836 (5) | 0.2060 (5) | 0.0457 (13) | |
H1A | 0.498 (5) | 0.6620 (12) | 0.153 (3) | 0.055* | |
H1B | 0.4419 (18) | 0.761 (4) | 0.2435 (19) | 0.055* | |
C2 | 0.2540 (8) | 0.6998 (6) | 0.1512 (5) | 0.0514 (13) | |
H2A | 0.2282 (17) | 0.776 (5) | 0.1496 (5) | 0.062* | |
H2B | 0.2617 (9) | 0.6741 (16) | 0.086 (4) | 0.062* | |
C3 | 0.2824 (8) | 0.6248 (7) | 0.3636 (6) | 0.0583 (18) | |
H3A | 0.3266 (11) | 0.6796 (11) | 0.4005 (8) | 0.070* | |
H3B | 0.2613 (9) | 0.5660 (12) | 0.4042 (9) | 0.070* | |
C4 | 0.1319 (9) | 0.6690 (6) | 0.3149 (6) | 0.065 (2) | |
H4A | 0.0481 (16) | 0.6394 (8) | 0.3470 (8) | 0.078* | |
H4B | 0.1274 (9) | 0.7458 (14) | 0.3198 (7) | 0.078* | |
C5 | 0.3284 (9) | 0.4857 (5) | 0.2294 (6) | 0.0519 (16) | |
H5A | 0.3330 (9) | 0.4244 (11) | 0.2713 (9) | 0.062* | |
H5B | 0.3874 (13) | 0.4708 (6) | 0.1738 (11) | 0.062* | |
C6 | 0.1623 (9) | 0.5077 (6) | 0.1985 (7) | 0.0586 (18) | |
H6A | 0.0970 (14) | 0.4692 (9) | 0.2392 (9) | 0.070* | |
H6B | 0.1468 (9) | 0.4843 (7) | 0.1344 (12) | 0.070* | |
N1 | 0.3888 (6) | 0.5887 (5) | 0.2823 (4) | 0.0431 (11) | |
H1 | 0.477 (2) | 0.5730 (6) | 0.3082 (7) | 0.052* | |
N2 | 0.1318 (6) | 0.6341 (5) | 0.2067 (5) | 0.0554 (15) | |
H2 | 0.043 (2) | 0.6488 (6) | 0.1811 (8) | 0.067* | |
O | 0.1563 (8) | 0.2409 (6) | 0.3238 (6) | 0.0861 (19) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cd | 0.0463 (3) | 0.0409 (2) | 0.0510 (3) | 0.00213 (18) | −0.0028 (2) | 0.00245 (17) |
Cl1 | 0.0486 (8) | 0.0402 (7) | 0.0508 (8) | −0.0018 (6) | 0.0024 (6) | −0.0039 (6) |
Cl2 | 0.0613 (8) | 0.0530 (8) | 0.0490 (7) | 0.0058 (9) | −0.0041 (8) | −0.0042 (6) |
Cl3 | 0.0519 (8) | 0.0515 (8) | 0.0635 (9) | 0.0105 (7) | 0.0063 (7) | 0.0105 (8) |
Cl4 | 0.0684 (9) | 0.0423 (7) | 0.0520 (8) | 0.0014 (7) | −0.0163 (7) | 0.0047 (7) |
C1 | 0.042 (3) | 0.034 (3) | 0.061 (3) | −0.005 (2) | 0.004 (3) | 0.007 (3) |
C2 | 0.049 (3) | 0.048 (3) | 0.057 (3) | −0.006 (3) | −0.001 (3) | 0.020 (3) |
C3 | 0.063 (5) | 0.057 (4) | 0.056 (3) | −0.006 (3) | 0.006 (3) | −0.005 (3) |
C4 | 0.062 (4) | 0.046 (4) | 0.087 (5) | 0.012 (3) | 0.032 (4) | 0.012 (4) |
C5 | 0.055 (4) | 0.026 (2) | 0.075 (4) | 0.001 (3) | −0.008 (3) | 0.002 (3) |
C6 | 0.061 (4) | 0.041 (3) | 0.075 (5) | −0.008 (3) | −0.016 (4) | 0.006 (3) |
N1 | 0.042 (2) | 0.040 (2) | 0.047 (3) | 0.002 (2) | −0.005 (2) | 0.004 (2) |
N2 | 0.038 (3) | 0.044 (3) | 0.084 (4) | 0.004 (2) | −0.004 (3) | 0.027 (3) |
O | 0.085 (4) | 0.070 (4) | 0.103 (5) | −0.014 (3) | 0.008 (4) | −0.009 (4) |
Geometric parameters (Å, º) top
Cd—Cl3 | 2.430 (2) | C3—H3B | 0.8860 |
Cd—Cl1 | 2.4673 (18) | C4—N2 | 1.476 (11) |
Cd—Cl2 | 2.4835 (19) | C4—H4A | 0.8977 |
Cd—Cl4 | 2.4864 (17) | C4—H4B | 0.8977 |
C1—N1 | 1.502 (8) | C5—N1 | 1.479 (9) |
C1—C2 | 1.517 (9) | C5—C6 | 1.496 (10) |
C1—H1A | 1.0614 | C5—H5A | 0.9026 |
C1—H1B | 1.0614 | C5—H5B | 0.9026 |
C2—N2 | 1.485 (8) | C6—N2 | 1.499 (9) |
C2—H2A | 0.9127 | C6—H6A | 0.8931 |
C2—H2B | 0.9127 | C6—H6B | 0.8931 |
C3—N1 | 1.461 (9) | N1—H1 | 0.8477 |
C3—C4 | 1.524 (10) | N2—H2 | 0.8420 |
C3—H3A | 0.8860 | | |
| | | |
Cl3—Cd—Cl1 | 111.93 (7) | N2—C4—H4B | 110.1 |
Cl3—Cd—Cl2 | 101.80 (6) | C3—C4—H4B | 110.1 |
Cl1—Cd—Cl2 | 105.73 (6) | H4A—C4—H4B | 108.4 |
Cl3—Cd—Cl4 | 116.95 (6) | N1—C5—C6 | 108.5 (5) |
Cl1—Cd—Cl4 | 104.53 (6) | N1—C5—H5A | 110.0 |
Cl2—Cd—Cl4 | 115.58 (6) | C6—C5—H5A | 110.0 |
N1—C1—C2 | 107.9 (5) | N1—C5—H5B | 110.0 |
N1—C1—H1A | 110.1 | C6—C5—H5B | 110.0 |
C2—C1—H1A | 110.1 | H5A—C5—H5B | 108.4 |
N1—C1—H1B | 110.1 | C5—C6—N2 | 108.3 (5) |
C2—C1—H1B | 110.1 | C5—C6—H6A | 110.0 |
H1A—C1—H1B | 108.4 | N2—C6—H6A | 110.0 |
N2—C2—C1 | 108.4 (5) | C5—C6—H6B | 110.0 |
N2—C2—H2A | 110.0 | N2—C6—H6B | 110.0 |
C1—C2—H2A | 110.0 | H6A—C6—H6B | 108.4 |
N2—C2—H2B | 110.0 | C3—N1—C5 | 111.1 (6) |
C1—C2—H2B | 110.0 | C3—N1—C1 | 110.2 (5) |
H2A—C2—H2B | 108.4 | C5—N1—C1 | 109.0 (5) |
N1—C3—C4 | 108.4 (6) | C3—N1—H1 | 108.8 |
N1—C3—H3A | 110.0 | C5—N1—H1 | 108.8 |
C4—C3—H3A | 110.0 | C1—N1—H1 | 108.8 |
N1—C3—H3B | 110.0 | C4—N2—C2 | 109.2 (6) |
C4—C3—H3B | 110.0 | C4—N2—C6 | 109.9 (6) |
H3A—C3—H3B | 108.4 | C2—N2—C6 | 110.5 (6) |
N2—C4—C3 | 108.0 (5) | C4—N2—H2 | 109.1 |
N2—C4—H4A | 110.1 | C2—N2—H2 | 109.1 |
C3—C4—H4A | 110.1 | C6—N2—H2 | 109.1 |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···Oi | 0.84 | 2.01 | 2.783 (1) | 151 |
Symmetry code: (i) −x, y+1/2, −z+1/2. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2···Oi | 0.84 | 2.01 | 2.783 (1) | 151 |
Symmetry code: (i) −x, y+1/2, −z+1/2. |
In recent years, a significant number of organic–inorganic hybrid materials based on metal halide units have been prepared and studied (Lemmerer & Billing, 2012). It has been shown that their structures can vary considerably, ranging from systems based on isolated polyhydra to ones containing extended chains and up to two- or three-dimensional networks (Ben Rhaiem et al., 2013; Samet et al., 2010; Billing & Lemmerer, 2009). Generally, the organic cations contain ammonium groups linked to the anionic framework by hydrogen bonds via halogenous tetrahedral vertices (Sun & Qu, 2005) and (Zhang & Zhu, 2012). In pseudopolymorphic cases, the water molecules can be able to coordinate the charged components strengthening the crystal cohesion as it was observed in (dabcoH2)CuCl4 and (dabcoH2)CuCl4·H2O (Wei & Willett, 2002).
The new chloridocadmate(II) compound, (C6H14N2) [CdCl4]·H2O (I), is self-assembled into alternating organic and inorganic layered structure. the organic part is made up of 1,4-diazabicyclo[2.2.2]octane cations and water molecules. The inorganic component contains isolated [CdCl4]2- units. The layers are stacked along the c axis, as illustrated in Fig. 1.
The asymmetric unit of (I) comprises one 1,4-diazabicyclo[2.2.2]octane cation, one [CdCl4]2- anion and a lattice occluded water molecule (Fig. 2).
The [CdCl4]2- unit possesses a configuration of distorted tetrahedron, so that the central cadmium (II) ion is surrounded by four chlorine atoms. The Cd–Cl bond lengths vary from 2.430 (2) Å to 2.4864 (17) Å and the Cl–Cd–Cl angles fall in the range 101.80 (6)°–116.95 (6)°.
The protonated N2 atom of the organic cation interacts via a simple hydrogen bond with oxygen atom of the water molecule (Fig. 3 and Tab. 1).