Download citation
Download citation
link to html
Pyridinium chlorochromate, [C5H5NH]+[ClCrO3] (hereafter referred to as PyClCrO3), was studied by X-ray diffraction, differential scanning calorimetry (DSC) and dielectric methods. Studies reveal three reversible phase transitions at 346, 316 and 170 K with the following phase sequence: R\bar 3m (I) → R3m (II) → Cm (III) → Cc (IV), c′ = 2c. PyClCrO3 is the first pyridinium salt in which all four phases have been successfully characterized by a single-crystal X-ray diffraction method. Structural results together with dielectric and calorimetric studies allow the classification of the two intermediate phases (II) and (III) as ferroelectric with the Curie point at 346 K, and the lowest phase (IV) as most probably ferroelectric. The ferroelectric hysteresis loop was observed only in phase (III). The high ionic conductivity hindered its observation in phase (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768112005782/eb5013sup1.cif
Contains datablocks r-3m, r3m, exp_181, 120_enan

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768112005782/eb5013r-3msup2.hkl
Contains datablock r-3m

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768112005782/eb5013r3msup3.hkl
Contains datablock r3m

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768112005782/eb5013exp_181sup4.hkl
Contains datablock exp_181

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768112005782/eb5013120_enansup5.hkl
Contains datablock 120_enan

CCDC references: 879414; 879415; 879416; 879417

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction,2009) for r-3m, r3m; CrysAlis PRO, Oxford Diffraction Ltd., 2010 for exp_181, 120_enan. Cell refinement: CrysAlis CCD (Oxford Diffraction,2009) for r-3m, r3m; CrysAlis PRO, Oxford Diffraction Ltd., 2010 for exp_181, 120_enan. Data reduction: CrysAlis RED (Oxford Diffraction,2009) for r-3m, r3m; CrysAlis PRO, Oxford Diffraction Ltd., 2010 for exp_181, 120_enan. For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
(r-3m) pyridinium chlorochromate top
Crystal data top
[C5H5NH]+[ClCrO3]Dx = 1.626 Mg m3
Mr = 215.56Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3mCell parameters from 175 reflections
a = 9.021 (2) Åθ = 3.4–32.8°
c = 9.369 (4) ŵ = 1.56 mm1
V = 660.2 (4) Å3T = 355 K
Z = 3Prism, orange
F(000) = 3240.5 × 0.3 × 0.3 mm
Data collection top
Xcalibur, Atlas, Gemini ultra
diffractometer
44 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray SourceRint = 0.055
Graphite monochromatorθmax = 32.8°, θmin = 3.4°
Detector resolution: 10.3200 pixels mm-1h = 1313
ω scank = 1313
1606 measured reflectionsl = 138
305 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.268H-atom parameters constrained
S = 0.75 w = 1/[σ2(Fo2) + (0.121P)2]
where P = (Fo2 + 2Fc2)/3
305 reflections(Δ/σ)max = 0.897
18 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.10 e Å3
Crystal data top
[C5H5NH]+[ClCrO3]Z = 3
Mr = 215.56Mo Kα radiation
Trigonal, R3mµ = 1.56 mm1
a = 9.021 (2) ÅT = 355 K
c = 9.369 (4) Å0.5 × 0.3 × 0.3 mm
V = 660.2 (4) Å3
Data collection top
Xcalibur, Atlas, Gemini ultra
diffractometer
44 reflections with I > 2σ(I)
1606 measured reflectionsRint = 0.055
305 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0720 restraints
wR(F2) = 0.268H-atom parameters constrained
S = 0.75(Δ/σ)max = 0.897
305 reflectionsΔρmax = 0.23 e Å3
18 parametersΔρmin = 0.10 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cr10.00000.00000.046 (2)0.247 (15)0.50
O0.0908 (11)0.182 (2)0.103 (2)0.291 (7)0.50
Cl0.00000.00000.157 (4)0.58 (6)0.50
C0.00000.1477 (7)0.50000.213 (4)0.83
N0.00000.1477 (7)0.50000.213 (4)0.17
H0A0.00000.25080.50000.255*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.184 (3)0.184 (3)0.37 (5)0.0922 (16)0.0000.000
O0.334 (15)0.201 (15)0.295 (19)0.101 (8)0.011 (5)0.022 (10)
Cl0.75 (8)0.75 (8)0.25 (2)0.38 (4)0.0000.000
C0.259 (8)0.205 (5)0.193 (6)0.129 (4)0.002 (4)0.0012 (19)
N0.259 (8)0.205 (5)0.193 (6)0.129 (4)0.002 (4)0.0012 (19)
Geometric parameters (Å, º) top
Cr1—Cr1i0.87 (4)O—Cl1.511 (18)
Cr1—Cl1.04 (3)O—Cr1i1.99 (2)
Cr1—Oii1.52 (2)Cl—Oii1.511 (18)
Cr1—O1.52 (2)Cl—Oiii1.511 (18)
Cr1—Oiii1.52 (2)Cl—Cr1i1.91 (5)
Cr1—Cli1.91 (5)C—Nvi1.332 (6)
Cr1—Oiv1.99 (2)C—Cvi1.332 (6)
Cr1—Ov1.99 (2)C—Cvii1.332 (6)
Cr1—Oi1.99 (2)C—Nvii1.332 (6)
Cr1i—Cr1—Cl180.000 (1)Cr1i—Cr1—Oi45.5 (5)
Cr1i—Cr1—Oii110.5 (11)Cl—Cr1—Oi134.5 (5)
Cl—Cr1—Oii69.5 (11)Oii—Cr1—Oi84.9 (10)
Cr1i—Cr1—O110.5 (11)O—Cr1—Oi156.0 (12)
Cl—Cr1—O69.5 (11)Oiii—Cr1—Oi84.9 (10)
Oii—Cr1—O108.5 (12)Cli—Cr1—Oi45.5 (5)
Cr1i—Cr1—Oiii110.5 (11)Oiv—Cr1—Oi76.3 (8)
Cl—Cr1—Oiii69.5 (11)Ov—Cr1—Oi76.3 (8)
Oii—Cr1—Oiii108.5 (12)Cl—O—Cr140.2 (14)
O—Cr1—Oiii108.5 (12)Cl—O—Cr1i64 (2)
Cr1i—Cr1—Cli0.000 (1)Cr1—O—Cr1i24.0 (12)
Cl—Cr1—Cli180.000 (1)Cr1—Cl—O70.3 (19)
Oii—Cr1—Cli110.5 (11)Cr1—Cl—Oii70.3 (19)
O—Cr1—Cli110.5 (11)O—Cl—Oii109.2 (19)
Oiii—Cr1—Cli110.5 (11)Cr1—Cl—Oiii70.3 (19)
Cr1i—Cr1—Oiv45.5 (5)O—Cl—Oiii109.2 (19)
Cl—Cr1—Oiv134.5 (5)Oii—Cl—Oiii109.2 (19)
Oii—Cr1—Oiv84.9 (10)Cr1—Cl—Cr1i0.000 (1)
O—Cr1—Oiv84.9 (10)O—Cl—Cr1i70.3 (19)
Oiii—Cr1—Oiv156.0 (12)Oii—Cl—Cr1i70.3 (19)
Cli—Cr1—Oiv45.5 (5)Oiii—Cl—Cr1i70.3 (19)
Cr1i—Cr1—Ov45.5 (5)Nvi—C—Cvi0.0 (4)
Cl—Cr1—Ov134.5 (5)Nvi—C—Cvii120.000 (2)
Oii—Cr1—Ov156.0 (12)Cvi—C—Cvii120.000 (2)
O—Cr1—Ov84.9 (10)Nvi—C—Nvii120.000 (2)
Oiii—Cr1—Ov84.9 (10)Cvi—C—Nvii120.000 (2)
Cli—Cr1—Ov45.5 (5)Cvii—C—Nvii0.0 (4)
Oiv—Cr1—Ov76.3 (8)
Symmetry codes: (i) x, y, z; (ii) y, xy, z; (iii) x+y, x, z; (iv) xy, x, z; (v) y, x+y, z; (vi) xy, x, z+1; (vii) y, x+y, z+1.
(r3m) pyridinium chlorochromate top
Crystal data top
[C5H5NH]+[ClCrO3]Dx = 1.691 Mg m3
Mr = 215.56Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3mCell parameters from 835 reflections
a = 8.8349 (12) Åθ = 3.4–28.9°
c = 9.3960 (16) ŵ = 1.62 mm1
V = 635.15 (16) Å3T = 320 K
Z = 3Prism, orange
F(000) = 3240.70 × 0.25 × 0.15 mm
Data collection top
Xcalibur, Atlas, Gemini ultra
diffractometer
401 independent reflections
Radiation source: Enhance (Mo) X-ray Source194 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 10.3200 pixels mm-1θmax = 28.9°, θmin = 3.4°
ω scanh = 812
Absorption correction: multi-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.33.64 (release 22-03-2010 CrysAlis171 .NET) (compiled Mar 22 2010,13:57:49) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1110
Tmin = 0.667, Tmax = 1.000l = 1111
1845 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0992P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.016
401 reflectionsΔρmax = 0.91 e Å3
22 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (7)
Crystal data top
[C5H5NH]+[ClCrO3]Z = 3
Mr = 215.56Mo Kα radiation
Trigonal, R3mµ = 1.62 mm1
a = 8.8349 (12) ÅT = 320 K
c = 9.3960 (16) Å0.70 × 0.25 × 0.15 mm
V = 635.15 (16) Å3
Data collection top
Xcalibur, Atlas, Gemini ultra
diffractometer
401 independent reflections
Absorption correction: multi-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.33.64 (release 22-03-2010 CrysAlis171 .NET) (compiled Mar 22 2010,13:57:49) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
194 reflections with I > 2σ(I)
Tmin = 0.667, Tmax = 1.000Rint = 0.033
1845 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.049H-atom parameters constrained
wR(F2) = 0.115Δρmax = 0.91 e Å3
S = 0.98Δρmin = 0.25 e Å3
401 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
22 parametersAbsolute structure parameter: 0.01 (7)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cr10.00000.00000.20070.1002 (7)
Cl0.00000.00000.0245 (4)0.1506 (16)
O10.0980 (4)0.0980 (4)0.2533 (6)0.152 (2)
C0.0003 (7)0.1504 (6)0.6195 (5)0.1068 (14)0.83
N0.0003 (7)0.1504 (6)0.6195 (5)0.1068 (14)0.17
H0A0.00030.25890.61950.128*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr10.0924 (8)0.0924 (8)0.1158 (14)0.0462 (4)0.0000.000
Cl0.176 (2)0.176 (2)0.101 (2)0.0878 (12)0.0000.000
O10.162 (4)0.162 (4)0.167 (6)0.108 (4)0.0233 (19)0.0233 (19)
C0.142 (3)0.098 (3)0.096 (2)0.071 (2)0.007 (2)0.008 (2)
N0.142 (3)0.098 (3)0.096 (2)0.071 (2)0.007 (2)0.008 (2)
Geometric parameters (Å, º) top
Cr1—O1i1.578 (5)C—Niii1.334 (10)
Cr1—O1ii1.578 (5)C—Ciii1.334 (10)
Cr1—O11.578 (5)C—Civ1.326 (11)
Cr1—Cl2.116 (4)C—Niv1.326 (11)
O1i—Cr1—O1ii110.7 (2)Niii—C—Ciii0.000 (1)
O1i—Cr1—O1110.7 (2)Niii—C—Civ120.000 (3)
O1ii—Cr1—O1110.7 (2)Ciii—C—Civ120.000 (3)
O1i—Cr1—Cl108.2 (2)Niii—C—Niv120.000 (3)
O1ii—Cr1—Cl108.2 (2)Ciii—C—Niv120.000 (3)
O1—Cr1—Cl108.2 (2)Civ—C—Niv0.0 (8)
Symmetry codes: (i) x+y, x, z; (ii) y, xy, z; (iii) x+y, y, z; (iv) y, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C—H0A···O1v0.962.403.277 (5)153
Symmetry code: (v) x+y1/3, x2/3, z+1/3.
(exp_181) pyridinium chlorochromate top
Crystal data top
[C5H5NH]+[ClCrO3]F(000) = 216
Mr = 215.56Dx = 1.701 Mg m3
Monoclinic, CmMo Kα radiation, λ = 0.71073 Å
a = 7.7193 (7) ÅCell parameters from 993 reflections
b = 8.6842 (7) Åθ = 3.2–29.1°
c = 6.3139 (5) ŵ = 1.63 mm1
β = 96.250 (9)°T = 298 K
V = 420.74 (6) Å3Prism, orange
Z = 20.70 × 0.25 × 0.15 mm
Data collection top
Xcalibur, Atlas, Gemini ultra
diffractometer
884 independent reflections
Radiation source: Enhance (Mo) X-ray Source571 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 10.3200 pixels mm-1θmax = 29.0°, θmin = 3.3°
ω scanh = 1010
Absorption correction: multi-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.33.64 (release 22-03-2010 CrysAlis171 .NET) (compiled Mar 22 2010,13:57:49) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
k = 1110
Tmin = 0.819, Tmax = 1.000l = 88
2023 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0626P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.82(Δ/σ)max = 0.071
884 reflectionsΔρmax = 0.58 e Å3
55 parametersΔρmin = 0.23 e Å3
2 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.05 (4)
Crystal data top
[C5H5NH]+[ClCrO3]V = 420.74 (6) Å3
Mr = 215.56Z = 2
Monoclinic, CmMo Kα radiation
a = 7.7193 (7) ŵ = 1.63 mm1
b = 8.6842 (7) ÅT = 298 K
c = 6.3139 (5) Å0.70 × 0.25 × 0.15 mm
β = 96.250 (9)°
Data collection top
Xcalibur, Atlas, Gemini ultra
diffractometer
884 independent reflections
Absorption correction: multi-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.33.64 (release 22-03-2010 CrysAlis171 .NET) (compiled Mar 22 2010,13:57:49) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
571 reflections with I > 2σ(I)
Tmin = 0.819, Tmax = 1.000Rint = 0.023
2023 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.037H-atom parameters constrained
wR(F2) = 0.088Δρmax = 0.58 e Å3
S = 0.82Δρmin = 0.23 e Å3
884 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
55 parametersAbsolute structure parameter: 0.05 (4)
2 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cr0.67097 (4)0.00000.23471 (4)0.0721 (3)
Cl0.8777 (4)0.00000.4897 (4)0.1267 (8)
C11.2529 (7)0.1547 (4)0.8200 (8)0.0819 (13)
H1A1.25480.26170.82160.098*
C21.3249 (6)0.0769 (5)0.6695 (8)0.0845 (13)
H2A1.37500.13050.56410.101*
O10.5586 (5)0.1521 (4)0.2549 (7)0.1198 (13)
C31.1794 (6)0.0796 (6)0.9676 (7)0.0939 (13)0.50
N1.1794 (6)0.0796 (6)0.9676 (7)0.0939 (13)0.50
H3A1.12740.13311.07150.113*
O20.7535 (9)0.00000.0184 (8)0.1201 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr0.0762 (6)0.0721 (5)0.0701 (6)0.0000.0179 (4)0.000
Cl0.1425 (19)0.1009 (13)0.1220 (16)0.0000.0522 (14)0.000
C10.081 (3)0.059 (2)0.104 (4)0.009 (2)0.000 (3)0.005 (2)
C20.082 (3)0.087 (2)0.086 (3)0.006 (2)0.018 (3)0.016 (2)
O10.109 (3)0.115 (3)0.137 (3)0.051 (2)0.018 (2)0.003 (2)
C30.078 (3)0.116 (3)0.086 (3)0.008 (2)0.001 (2)0.033 (2)
N0.078 (3)0.116 (3)0.086 (3)0.008 (2)0.001 (2)0.033 (2)
O20.159 (5)0.126 (4)0.084 (3)0.0000.050 (4)0.000
Geometric parameters (Å, º) top
Cr—O21.568 (5)C1—C21.335 (6)
Cr—O1i1.593 (3)C2—C2i1.336 (10)
Cr—O11.593 (3)C3—Ni1.383 (11)
Cr—Cl2.140 (2)C3—C3i1.383 (11)
C1—C31.316 (6)
O2—Cr—O1i110.23 (19)C3—C1—C2119.9 (4)
O2—Cr—O1110.23 (19)C2i—C2—C1120.4 (3)
O1i—Cr—O1112.1 (3)C1—C3—Ni119.7 (3)
O2—Cr—Cl108.3 (3)C1—C3—C3i119.7 (3)
O1i—Cr—Cl107.92 (17)Ni—C3—C3i0.0 (6)
O1—Cr—Cl107.92 (17)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H3A···O1ii0.932.293.155 (6)155
C1—H1A···O2iii0.932.413.250 (4)150
C2—H2A···O1iv0.932.543.400 (6)154
Symmetry codes: (ii) x+1/2, y+1/2, z+1; (iii) x+1/2, y+1/2, z+1; (iv) x+1, y, z.
(120_enan) pyridinium chlorochromate top
Crystal data top
[C5H5NH]+[ClCrO3]F(000) = 432
Mr = 215.56Dx = 1.774 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 7.3539 (3) ÅCell parameters from 2913 reflections
b = 8.4985 (3) Åθ = 2.4–28.2°
c = 12.9706 (6) ŵ = 1.70 mm1
β = 95.481 (3)°T = 120 K
V = 806.91 (6) Å3Prism, orange
Z = 40.2 × 0.1 × 0.08 mm
Data collection top
Xcalibur, Atlas, Gemini ultra
diffractometer
1845 independent reflections
Radiation source: Enhance (Mo) X-ray Source1718 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.3200 pixels mm-1θmax = 28.2°, θmin = 3.2°
ω scanh = 99
Absorption correction: multi-scan
?
k = 1111
Tmin = 0.862, Tmax = 1.000l = 1716
5194 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026All H-atom parameters refined
wR(F2) = 0.064 w = 1/[σ2(Fo2) + (0.0356P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.025
1845 reflectionsΔρmax = 0.37 e Å3
125 parametersΔρmin = 0.23 e Å3
2 restraintsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.831 (17)
Crystal data top
[C5H5NH]+[ClCrO3]V = 806.91 (6) Å3
Mr = 215.56Z = 4
Monoclinic, CcMo Kα radiation
a = 7.3539 (3) ŵ = 1.70 mm1
b = 8.4985 (3) ÅT = 120 K
c = 12.9706 (6) Å0.2 × 0.1 × 0.08 mm
β = 95.481 (3)°
Data collection top
Xcalibur, Atlas, Gemini ultra
diffractometer
1845 independent reflections
Absorption correction: multi-scan
?
1718 reflections with I > 2σ(I)
Tmin = 0.862, Tmax = 1.000Rint = 0.027
5194 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026All H-atom parameters refined
wR(F2) = 0.064Δρmax = 0.37 e Å3
S = 1.05Δρmin = 0.23 e Å3
1845 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
125 parametersAbsolute structure parameter: 0.831 (17)
2 restraints
Special details top

Experimental. CrysAlis PRO, Agilent Technologies, Version 1.171.35.15 (release 03–08-2011 CrysAlis171. NET) (compiled Aug 3 2011,13:03:54) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cr0.90619 (3)0.01049 (3)0.03123 (3)0.02014 (10)
Cl1.09727 (11)0.00537 (5)0.10759 (6)0.0426 (2)
O10.7719 (2)0.1368 (2)0.02724 (14)0.0352 (4)
O20.7943 (2)0.1749 (2)0.03186 (13)0.0325 (4)
O31.0213 (3)0.00009 (14)0.12942 (17)0.0354 (4)
N1.4193 (2)0.0944 (2)0.33317 (16)0.0283 (4)
C11.4162 (3)0.0630 (3)0.3408 (2)0.0307 (5)
C21.4879 (3)0.1526 (3)0.2671 (2)0.0329 (6)
C31.5624 (3)0.0789 (3)0.1861 (2)0.0310 (5)
C41.5657 (3)0.0820 (3)0.1807 (2)0.0293 (5)
C51.4930 (3)0.1681 (3)0.25574 (19)0.0289 (5)
H1.372 (4)0.155 (3)0.388 (2)0.065 (10)*
H11.363 (4)0.099 (3)0.395 (2)0.036 (7)*
H21.468 (4)0.265 (3)0.278 (2)0.050 (8)*
H31.587 (5)0.135 (5)0.133 (3)0.066 (11)*
H41.591 (5)0.130 (5)0.130 (3)0.063 (11)*
H51.471 (4)0.283 (3)0.263 (2)0.052 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cr0.02070 (16)0.02180 (17)0.01824 (16)0.0001 (4)0.00359 (12)0.0007 (4)
Cl0.0538 (4)0.0269 (4)0.0415 (4)0.0014 (3)0.0246 (4)0.0015 (3)
O10.0327 (10)0.0347 (9)0.0381 (10)0.0122 (9)0.0027 (8)0.0010 (10)
O20.0329 (10)0.0342 (9)0.0314 (9)0.0120 (8)0.0080 (8)0.0044 (9)
O30.0462 (11)0.0317 (10)0.0314 (10)0.0024 (6)0.0202 (9)0.0016 (5)
N0.0218 (8)0.0361 (11)0.0268 (10)0.0003 (9)0.0020 (8)0.0041 (10)
C10.0204 (10)0.0381 (13)0.0327 (15)0.0026 (11)0.0020 (10)0.0143 (13)
C20.0265 (11)0.0228 (10)0.0478 (17)0.0007 (9)0.0039 (12)0.0049 (11)
C30.0277 (11)0.0271 (12)0.0380 (14)0.0031 (9)0.0022 (10)0.0054 (10)
C40.0286 (11)0.0278 (12)0.0327 (13)0.0018 (9)0.0087 (10)0.0020 (10)
C50.0256 (10)0.0230 (11)0.0380 (13)0.0048 (9)0.0025 (10)0.0036 (9)
Geometric parameters (Å, º) top
Cr—O31.598 (2)N—C11.342 (4)
Cr—O11.5984 (16)C1—C21.367 (4)
Cr—O21.6209 (16)C2—C31.380 (4)
Cr—Cl2.1761 (7)C3—C41.369 (4)
N—C51.341 (3)C4—C51.367 (3)
O3—Cr—O1110.96 (9)C5—N—C1122.11 (19)
O3—Cr—O2110.60 (9)N—C1—C2119.6 (2)
O1—Cr—O2111.11 (12)C1—C2—C3119.2 (2)
O3—Cr—Cl108.00 (9)C4—C3—C2120.1 (2)
O1—Cr—Cl108.04 (7)C5—C4—C3119.2 (2)
O2—Cr—Cl107.99 (7)N—C5—C4119.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H···O2i0.97 (3)1.90 (3)2.839 (3)162 (3)
C1—H1···O3ii0.90 (3)2.64 (3)3.014 (3)106 (2)
C1—H1···O1iii0.90 (3)2.57 (3)3.303 (3)139 (2)
C2—H2···O3iii0.98 (3)2.34 (3)3.242 (3)152 (2)
C3—H3···O1iv0.87 (4)2.59 (4)3.330 (3)143 (3)
C4—H4···O2iv0.81 (4)2.71 (4)3.455 (3)152 (3)
C5—H5···O3i1.00 (3)2.32 (3)3.188 (3)145 (2)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y, z.

Experimental details

(r-3m)(r3m)(exp_181)(120_enan)
Crystal data
Chemical formula[C5H5NH]+[ClCrO3][C5H5NH]+[ClCrO3][C5H5NH]+[ClCrO3][C5H5NH]+[ClCrO3]
Mr215.56215.56215.56215.56
Crystal system, space groupTrigonal, R3mTrigonal, R3mMonoclinic, CmMonoclinic, Cc
Temperature (K)355320298120
a, b, c (Å)9.021 (2), 9.021 (2), 9.369 (4)8.8349 (12), 8.8349 (12), 9.3960 (16)7.7193 (7), 8.6842 (7), 6.3139 (5)7.3539 (3), 8.4985 (3), 12.9706 (6)
α, β, γ (°)90, 90, 12090, 90, 12090, 96.250 (9), 9090, 95.481 (3), 90
V3)660.2 (4)635.15 (16)420.74 (6)806.91 (6)
Z3324
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)1.561.621.631.70
Crystal size (mm)0.5 × 0.3 × 0.30.70 × 0.25 × 0.150.70 × 0.25 × 0.150.2 × 0.1 × 0.08
Data collection
DiffractometerXcalibur, Atlas, Gemini ultra
diffractometer
Xcalibur, Atlas, Gemini ultra
diffractometer
Xcalibur, Atlas, Gemini ultra
diffractometer
Xcalibur, Atlas, Gemini ultra
diffractometer
Absorption correctionMulti-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.33.64 (release 22-03-2010 CrysAlis171 .NET) (compiled Mar 22 2010,13:57:49) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Multi-scan
CrysAlis PRO, Oxford Diffraction Ltd., Version 1.171.33.64 (release 22-03-2010 CrysAlis171 .NET) (compiled Mar 22 2010,13:57:49) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Multi-scan
Tmin, Tmax0.667, 1.0000.819, 1.0000.862, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
1606, 305, 44 1845, 401, 194 2023, 884, 571 5194, 1845, 1718
Rint0.0550.0330.0230.027
(sin θ/λ)max1)0.7630.6810.6820.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.268, 0.75 0.049, 0.115, 0.98 0.037, 0.088, 0.82 0.026, 0.064, 1.05
No. of reflections3054018841845
No. of parameters182255125
No. of restraints0122
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedAll H-atom parameters refined
(Δ/σ)max0.8970.0160.0710.025
Δρmax, Δρmin (e Å3)0.23, 0.100.91, 0.250.58, 0.230.37, 0.23
Absolute structure?Flack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881Flack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter?0.01 (7)0.05 (4)0.831 (17)

Computer programs: CrysAlis CCD (Oxford Diffraction,2009), CrysAlis PRO, Oxford Diffraction Ltd., 2010, CrysAlis RED (Oxford Diffraction,2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) for (r3m) top
D—H···AD—HH···AD···AD—H···A
C—H0A···O1i0.962.403.277 (5)152.7
Symmetry code: (i) x+y1/3, x2/3, z+1/3.
Hydrogen-bond geometry (Å, º) for (exp_181) top
D—H···AD—HH···AD···AD—H···A
N—H3A···O1i0.932.293.155 (6)155.0
C1—H1A···O2ii0.932.413.250 (4)149.5
C2—H2A···O1iii0.932.543.400 (6)153.8
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (120_enan) top
D—H···AD—HH···AD···AD—H···A
N—H···O2i0.97 (3)1.90 (3)2.839 (3)162 (3)
C1—H1···O3ii0.90 (3)2.64 (3)3.014 (3)106 (2)
C1—H1···O1iii0.90 (3)2.57 (3)3.303 (3)139 (2)
C2—H2···O3iii0.98 (3)2.34 (3)3.242 (3)152 (2)
C3—H3···O1iv0.87 (4)2.59 (4)3.330 (3)143 (3)
C4—H4···O2iv0.81 (4)2.71 (4)3.455 (3)152 (3)
C5—H5···O3i1.00 (3)2.32 (3)3.188 (3)145 (2)
Symmetry codes: (i) x+1/2, y1/2, z+1/2; (ii) x, y, z+1/2; (iii) x+1/2, y+1/2, z+1/2; (iv) x+1, y, z.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds