Download citation
Download citation
link to html
Acridines are a class of bioactive agents which exhibit high biological stability and the ability to inter­calate with DNA; they have a wide range of applications. Pyridine derivatives have a wide range of biological activities. To enhance the properties of acridine and 2-amino-3-methyl­pyridine as the active pharmaceutical ingredient (API), 4-nitro­benzoic acid was chosen as a coformer. In the present study, a mixture of acridine and 4-nitro­benzoic acid forms the salt acridinium 4-nitro­benzoate, C13H10N+·C7H4NO4 (I), whereas a mixture of 2-amino-3-methyl­pyridine and 4-nitro­benzoic acid forms the salt 2-amino-3-methyl­pyridinium 4-nitro­benzoate, C6H9N2+·C7H4NO4 (II). In both salts, protonation takes place at the ring N atom. The crystal structure of both salts is predominantly governed by hydrogen-bond inter­actions. In salt I, C—H...O and N—H...O inter­actions form an infinite chain in the crystal, whereas in salt II, inter­molecular N—H...O inter­actions form an eight-membered R22(8) ring motif. A theoretical charge–density analysis reveals the charge–density distribution of the inter- and intra­molecular inter­actions of both salts. An in-silico ADME analysis predicts the druglikeness properties of both salts and the results confirm that both salts are potential drug candidates with good bioavailability scores and there is no violation of the Lipinski rules, which supports the druglikeness properties of both salts. However, although both salts exhibit drug-like properties, salt I has higher gastrointestinal absorption than salt II and hence it may be considered a potential drug candidate.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229624002250/ef3054sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229624002250/ef3054Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229624002250/ef3054IIsup3.hkl
Contains datablock II

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229624002250/ef3054Isup4.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229624002250/ef3054IIsup5.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229624002250/ef3054sup6.pdf
Supplementary material

CCDC references: 2298314; 2240641

Computing details top

Acridin-10-ium 4-nitrobenzoate (I) top
Crystal data top
C13H10N+·C7H4NO4Z = 2
Mr = 346.33F(000) = 360
Triclinic, P1Dx = 1.395 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6186 (2) ÅCell parameters from 4100 reflections
b = 9.4985 (2) Åθ = 2.2–28.3°
c = 11.9173 (3) ŵ = 0.10 mm1
α = 105.380 (1)°T = 293 K
β = 95.005 (1)°Block, orange
γ = 93.780 (1)°0.76 × 0.48 × 0.19 mm
V = 824.77 (3) Å3
Data collection top
Bruker D8 QUEST ECO
diffractometer
3338 reflections with I > 2σ(I)
ω and φ scansRint = 0.022
Absorption correction: numerical
(SADABS; Bruker, 2006)
θmax = 28.0°, θmin = 2.2°
Tmin = 0.697, Tmax = 0.746h = 1010
22030 measured reflectionsk = 1212
3965 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: dual
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: mixed
wR(F2) = 0.166H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0912P)2 + 0.1205P]
where P = (Fo2 + 2Fc2)/3
3965 reflections(Δ/σ)max < 0.001
287 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.32 e Å3
0 constraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Crystal data, data collection and structure refinement details for salts I and II are summarized in Table 1. The single-crystal X-ray diffraction intensities of both salts were collected at 293 K using a Bruker D8 Quest Eco diffractometer (APEX2, SAINT and SADABS; Bruker, 2006) fitted with an Mo Kα (λ = 0.71073 Å) radiation source. The data processing was carried out with APEX4 software. The structure was solved and refined using the SHELX program incorporated in the WinGX package (Farrugia, 2012). The displacement ellipsoid plots at the 50% probability level were drawn using ORTEP-3 (Farrugia, 2012). The hydrogen-bonding interaction diagram are drawn with Mercury (Macrae et al., 2020). The molecular packing view along the different axes were plotted using PLATON (Spek, 2020).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O30.54165 (15)0.56623 (12)0.21295 (11)0.0668 (3)
N20.37822 (14)0.77264 (11)0.34098 (9)0.0459 (3)
H2A0.4231140.7012670.2953650.055*
O40.78800 (19)0.70691 (15)0.29466 (15)0.1020 (6)
C200.38824 (15)0.90582 (13)0.32079 (11)0.0424 (3)
N11.1229 (2)0.16723 (18)0.03261 (13)0.0718 (4)
O21.2828 (2)0.1862 (2)0.00949 (14)0.1014 (5)
C80.29822 (16)0.75062 (14)0.43226 (11)0.0455 (3)
C130.22403 (15)0.86719 (15)0.51010 (11)0.0457 (3)
C150.31603 (15)1.02724 (13)0.39465 (11)0.0432 (3)
C40.81614 (18)0.48421 (13)0.15489 (11)0.0469 (3)
C190.47551 (19)0.92710 (16)0.22490 (12)0.0521 (3)
C11.01560 (19)0.27927 (16)0.03319 (12)0.0531 (3)
C30.73362 (19)0.35560 (15)0.07913 (13)0.0526 (3)
C51.0001 (2)0.50946 (16)0.16718 (13)0.0535 (3)
C70.7123 (2)0.59752 (15)0.22730 (13)0.0582 (4)
C140.23589 (16)1.00515 (15)0.48980 (11)0.0465 (3)
C61.10170 (19)0.40661 (17)0.10640 (13)0.0553 (3)
O11.0455 (2)0.06176 (19)0.10658 (16)0.1091 (6)
C20.8346 (2)0.25109 (17)0.01754 (13)0.0577 (4)
C120.14156 (19)0.8376 (2)0.60534 (13)0.0587 (4)
C160.33119 (19)1.16520 (15)0.36816 (14)0.0555 (3)
C180.4863 (2)1.06030 (18)0.20314 (14)0.0599 (4)
C90.2888 (2)0.60884 (17)0.45210 (15)0.0594 (4)
C110.1319 (2)0.7003 (2)0.62023 (16)0.0690 (5)
C170.4128 (2)1.18062 (17)0.27497 (15)0.0616 (4)
C100.2070 (2)0.5862 (2)0.54345 (17)0.0688 (4)
H120.100 (2)0.9205 (18)0.6581 (14)0.053 (4)*
H160.285 (2)1.245 (2)0.4182 (16)0.067 (5)*
H61.226 (3)0.426 (2)0.1128 (17)0.080 (6)*
H30.607 (3)0.337 (2)0.0702 (16)0.071 (5)*
H140.192 (2)1.0847 (18)0.5403 (14)0.055 (4)*
H190.527 (2)0.8461 (19)0.1765 (15)0.062 (4)*
H20.776 (3)0.167 (2)0.0305 (18)0.075 (5)*
H170.423 (3)1.272 (2)0.2600 (18)0.088 (6)*
H51.054 (2)0.595 (2)0.2226 (17)0.070 (5)*
H180.549 (3)1.074 (2)0.1385 (18)0.078 (5)*
H90.343 (2)0.534 (2)0.3967 (15)0.063 (5)*
H110.073 (3)0.681 (2)0.683 (2)0.093 (7)*
H100.202 (3)0.488 (3)0.5555 (19)0.092 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O30.0631 (6)0.0509 (6)0.0779 (7)0.0097 (5)0.0155 (5)0.0007 (5)
N20.0461 (6)0.0383 (5)0.0486 (6)0.0067 (4)0.0062 (4)0.0027 (4)
O40.0806 (9)0.0662 (8)0.1208 (12)0.0135 (6)0.0072 (8)0.0367 (8)
C200.0361 (5)0.0422 (6)0.0449 (6)0.0045 (4)0.0014 (4)0.0057 (5)
N10.0776 (10)0.0801 (10)0.0628 (8)0.0247 (7)0.0295 (7)0.0173 (7)
O20.0743 (9)0.1417 (14)0.0901 (10)0.0447 (9)0.0312 (7)0.0194 (9)
C80.0399 (6)0.0438 (6)0.0482 (6)0.0012 (5)0.0006 (5)0.0071 (5)
C130.0330 (5)0.0552 (7)0.0459 (6)0.0044 (5)0.0010 (4)0.0096 (5)
C150.0341 (5)0.0413 (6)0.0502 (6)0.0070 (4)0.0008 (5)0.0061 (5)
C40.0544 (7)0.0405 (6)0.0453 (6)0.0056 (5)0.0033 (5)0.0110 (5)
C190.0515 (7)0.0545 (7)0.0491 (7)0.0077 (6)0.0092 (5)0.0105 (6)
C10.0586 (8)0.0563 (8)0.0484 (7)0.0128 (6)0.0159 (6)0.0161 (6)
C30.0479 (7)0.0476 (7)0.0574 (7)0.0019 (5)0.0074 (6)0.0060 (6)
C50.0571 (8)0.0474 (7)0.0524 (7)0.0018 (6)0.0051 (6)0.0122 (6)
C70.0681 (9)0.0429 (7)0.0580 (8)0.0101 (6)0.0015 (6)0.0046 (6)
C140.0367 (6)0.0488 (7)0.0490 (7)0.0117 (5)0.0046 (5)0.0029 (5)
C60.0477 (7)0.0653 (8)0.0566 (8)0.0027 (6)0.0046 (6)0.0240 (7)
O10.1137 (12)0.0870 (10)0.1081 (12)0.0211 (9)0.0423 (10)0.0182 (9)
C20.0599 (8)0.0483 (7)0.0564 (8)0.0014 (6)0.0090 (6)0.0003 (6)
C120.0442 (7)0.0802 (10)0.0519 (7)0.0088 (6)0.0071 (6)0.0169 (7)
C160.0504 (7)0.0427 (7)0.0712 (9)0.0117 (5)0.0036 (6)0.0110 (6)
C180.0578 (8)0.0665 (9)0.0587 (8)0.0030 (7)0.0077 (6)0.0232 (7)
C90.0628 (8)0.0470 (7)0.0656 (9)0.0008 (6)0.0014 (7)0.0132 (6)
C110.0548 (8)0.0949 (13)0.0659 (9)0.0008 (8)0.0068 (7)0.0387 (9)
C170.0603 (8)0.0517 (8)0.0767 (10)0.0052 (6)0.0018 (7)0.0260 (7)
C100.0680 (10)0.0659 (10)0.0759 (10)0.0070 (8)0.0005 (8)0.0310 (8)
Geometric parameters (Å, º) top
O3—C71.3002 (19)C1—C21.374 (2)
N2—C201.3475 (17)C1—C61.375 (2)
N2—C81.3484 (17)C3—C21.389 (2)
N2—H2A0.86C3—H30.96 (2)
O4—C71.2061 (18)C5—C61.379 (2)
C20—C191.4235 (19)C5—H50.943 (19)
C20—C151.4273 (17)C14—H140.934 (17)
N1—O21.216 (2)C6—H60.95 (2)
N1—O11.221 (2)C2—H20.91 (2)
N1—C11.4833 (19)C12—C111.360 (3)
C8—C91.426 (2)C12—H120.959 (17)
C8—C131.4267 (18)C16—C171.355 (2)
C13—C141.3929 (19)C16—H160.941 (19)
C13—C121.426 (2)C18—C171.415 (2)
C15—C141.3903 (19)C18—H180.98 (2)
C15—C161.4269 (19)C9—C101.358 (2)
C4—C31.3847 (18)C9—H90.973 (18)
C4—C51.3944 (19)C11—C101.410 (3)
C4—C71.5060 (19)C11—H110.96 (2)
C19—C181.356 (2)C17—H170.93 (2)
C19—H190.962 (18)C10—H100.98 (2)
C20—N2—C8120.39 (11)O4—C7—O3124.39 (14)
C20—N2—H2A119.8O4—C7—C4120.17 (15)
C8—N2—H2A119.8O3—C7—C4115.43 (12)
N2—C20—C19119.44 (11)C15—C14—C13120.40 (11)
N2—C20—C15121.55 (11)C15—C14—H14118.8 (10)
C19—C20—C15119.01 (12)C13—C14—H14120.8 (10)
O2—N1—O1124.04 (16)C1—C6—C5117.81 (13)
O2—N1—C1117.87 (16)C1—C6—H6121.7 (12)
O1—N1—C1118.09 (16)C5—C6—H6120.4 (12)
N2—C8—C9119.56 (12)C1—C2—C3118.54 (13)
N2—C8—C13121.10 (12)C1—C2—H2124.2 (13)
C9—C8—C13119.34 (13)C3—C2—H2117.3 (13)
C14—C13—C12122.91 (13)C11—C12—C13120.44 (15)
C14—C13—C8118.46 (12)C11—C12—H12123.8 (10)
C12—C13—C8118.63 (13)C13—C12—H12115.7 (10)
C14—C15—C16123.29 (12)C17—C16—C15120.66 (13)
C14—C15—C20118.08 (12)C17—C16—H16121.3 (11)
C16—C15—C20118.62 (12)C15—C16—H16118.0 (11)
C3—C4—C5119.82 (12)C19—C18—C17121.12 (14)
C3—C4—C7121.61 (12)C19—C18—H18119.4 (12)
C5—C4—C7118.55 (12)C17—C18—H18119.4 (12)
C18—C19—C20120.18 (13)C10—C9—C8119.63 (15)
C18—C19—H19120.7 (11)C10—C9—H9124.9 (11)
C20—C19—H19119.1 (11)C8—C9—H9115.5 (11)
C2—C1—C6123.12 (13)C12—C11—C10120.49 (15)
C2—C1—N1118.36 (14)C12—C11—H11119.4 (14)
C6—C1—N1118.52 (14)C10—C11—H11120.1 (14)
C4—C3—C2119.86 (13)C16—C17—C18120.40 (14)
C4—C3—H3120.5 (11)C16—C17—H17119.1 (13)
C2—C3—H3119.6 (11)C18—C17—H17120.5 (13)
C6—C5—C4120.83 (13)C9—C10—C11121.46 (16)
C6—C5—H5120.4 (12)C9—C10—H10118.3 (13)
C4—C5—H5118.6 (11)C11—C10—H10120.2 (13)
C8—N2—C20—C19179.11 (11)C3—C4—C7—O30.4 (2)
C8—N2—C20—C150.24 (18)C5—C4—C7—O3179.01 (12)
C20—N2—C8—C9179.94 (11)C16—C15—C14—C13179.41 (11)
C20—N2—C8—C130.61 (18)C20—C15—C14—C131.30 (18)
N2—C8—C13—C140.02 (18)C12—C13—C14—C15179.23 (11)
C9—C8—C13—C14179.46 (11)C8—C13—C14—C150.96 (18)
N2—C8—C13—C12179.80 (11)C2—C1—C6—C50.5 (2)
C9—C8—C13—C120.35 (19)N1—C1—C6—C5179.82 (12)
N2—C20—C15—C140.71 (18)C4—C5—C6—C10.3 (2)
C19—C20—C15—C14178.16 (11)C6—C1—C2—C30.5 (2)
N2—C20—C15—C16179.96 (11)N1—C1—C2—C3179.89 (13)
C19—C20—C15—C161.16 (18)C4—C3—C2—C10.5 (2)
N2—C20—C19—C18179.78 (12)C14—C13—C12—C11179.22 (12)
C15—C20—C19—C181.3 (2)C8—C13—C12—C111.0 (2)
O2—N1—C1—C2172.69 (15)C14—C15—C16—C17179.15 (13)
O1—N1—C1—C27.3 (2)C20—C15—C16—C170.1 (2)
O2—N1—C1—C67.7 (2)C20—C19—C18—C170.4 (2)
O1—N1—C1—C6172.34 (16)N2—C8—C9—C10179.46 (13)
C5—C4—C3—C21.3 (2)C13—C8—C9—C101.1 (2)
C7—C4—C3—C2177.31 (13)C13—C12—C11—C101.6 (2)
C3—C4—C5—C61.2 (2)C15—C16—C17—C180.8 (2)
C7—C4—C5—C6177.41 (12)C19—C18—C17—C160.6 (2)
C3—C4—C7—O4178.20 (17)C8—C9—C10—C110.5 (3)
C5—C4—C7—O40.4 (2)C12—C11—C10—C90.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O30.861.752.6055 (16)172
C14—H14···O4i0.934 (17)2.378 (17)3.245 (2)154.5 (13)
C19—H19···O2ii0.960 (17)2.529 (16)3.280 (2)135.2 (14)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+2, y+1, z.
2-Amino-3-methylpyridinium 4-nitrobenzoate (II) top
Crystal data top
C6H9N2+·C7H4NO4F(000) = 288
Mr = 275.26Dx = 1.389 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 8.2555 (6) ÅCell parameters from 9892 reflections
b = 6.7520 (5) Åθ = 2.5–41.2°
c = 11.8096 (9) ŵ = 0.11 mm1
β = 90.573 (3)°T = 296 K
V = 658.25 (8) Å3Block, green
Z = 20.61 × 0.25 × 0.09 mm
Data collection top
Bruker D8 QUEST ECO
diffractometer
3220 independent reflections
Radiation source: fine-focus sealed tube3103 reflections with I > 2σ(I)
Flat graphite monochromatorRint = 0.042
Detector resolution: 7.3910 pixels mm-1θmax = 28.3°, θmin = 2.5°
ω and φ scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2019)
k = 88
Tmin = 0.88, Tmax = 0.99l = 1515
3220 measured reflections
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.052 w = 1/[σ2(Fo2) + (0.054P)2 + 0.2428P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.132(Δ/σ)max < 0.001
S = 1.14Δρmax = 0.20 e Å3
3220 reflectionsΔρmin = 0.20 e Å3
183 parametersAbsolute structure: Flack x determined using 1304 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
1 restraintAbsolute structure parameter: 0.2 (4)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component twin.

Crystal data, data collection and structure refinement details for salts I and II are summarized in Table 1. The single-crystal X-ray diffraction intensities of both salts were collected at 293 K using a Bruker D8 Quest Eco diffractometer (APEX2, SAINT and SADABS; Bruker, 2006) fitted with an Mo Kα (λ = 0.71073 Å) radiation source. The data processing was carried out with APEX4 software. The structure was solved and refined using the SHELX program incorporated in the WinGX package (Farrugia, 2012). The displacement ellipsoid plots at the 50% probability level were drawn using ORTEP-3 (Farrugia, 2012). The hydrogen-bonding interaction diagram are drawn with Mercury (Macrae et al., 2020). The molecular packing view along the different axes were plotted using PLATON (Spek, 2020).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0396 (5)0.2408 (5)0.6185 (3)0.0832 (12)
O20.6228 (4)0.6303 (4)0.6901 (2)0.0533 (7)
O31.0303 (6)0.2949 (6)0.7960 (4)0.0892 (13)
O40.6033 (4)0.5723 (4)0.8745 (2)0.0501 (7)
N10.9984 (4)0.1964 (5)0.7132 (3)0.0541 (8)
N20.4405 (4)0.9520 (4)0.6964 (2)0.0387 (6)
H20.4970740.8452160.6991830.046000*
N30.4237 (4)0.9352 (5)0.8900 (2)0.0461 (7)
H3A0.4786510.8270910.8880730.055000*
H3B0.3917970.9817680.9538160.055000*
C10.9075 (4)0.0095 (5)0.7295 (3)0.0413 (8)
C20.8807 (5)0.1111 (5)0.6373 (3)0.0433 (8)
H2A0.9168810.0757560.5657940.052000*
C30.7984 (5)0.2861 (5)0.6544 (3)0.0427 (8)
H30.7798330.3707230.5935380.051000*
C40.7426 (4)0.3382 (5)0.7612 (3)0.0354 (6)
C50.7730 (5)0.2121 (5)0.8521 (3)0.0466 (9)
H50.7370500.2461400.9238780.056000*
C60.8566 (5)0.0362 (6)0.8365 (3)0.0499 (9)
H60.8775300.0484780.8970270.060000*
C70.6486 (4)0.5290 (5)0.7776 (3)0.0377 (7)
C80.3879 (4)1.0307 (5)0.7941 (3)0.0340 (6)
C90.4080 (5)1.0340 (6)0.5937 (3)0.0451 (8)
H90.4470810.9742970.5285090.054000*
C100.3192 (5)1.2018 (6)0.5854 (3)0.0455 (8)
H100.2944891.2571780.5152480.055000*
C110.2658 (5)1.2894 (6)0.6852 (3)0.0442 (8)
H110.2070841.4067200.6807120.053000*
C120.2967 (4)1.2091 (5)0.7894 (3)0.0374 (7)
C130.2384 (5)1.3027 (6)0.8969 (3)0.0513 (10)
H13A0.1582451.4011840.8792040.077000*
H13B0.3280651.3637090.9358070.077000*
H13C0.1917381.2029470.9444560.077000*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.115 (3)0.057 (2)0.078 (2)0.033 (2)0.031 (2)0.0108 (18)
O20.087 (2)0.0374 (13)0.0362 (12)0.0226 (13)0.0090 (13)0.0051 (10)
O30.119 (3)0.062 (2)0.087 (2)0.048 (2)0.006 (2)0.011 (2)
O40.0782 (18)0.0395 (13)0.0328 (11)0.0149 (13)0.0069 (12)0.0009 (10)
N10.060 (2)0.0342 (16)0.068 (2)0.0113 (15)0.0077 (17)0.0005 (15)
N20.0487 (15)0.0337 (13)0.0339 (13)0.0074 (12)0.0010 (12)0.0036 (11)
N30.066 (2)0.0406 (15)0.0323 (13)0.0127 (14)0.0026 (13)0.0005 (12)
C10.0420 (17)0.0295 (16)0.052 (2)0.0027 (13)0.0049 (14)0.0000 (14)
C20.052 (2)0.0429 (19)0.0348 (15)0.0040 (16)0.0056 (14)0.0040 (14)
C30.057 (2)0.0379 (17)0.0329 (16)0.0055 (16)0.0032 (14)0.0062 (14)
C40.0444 (17)0.0274 (14)0.0345 (15)0.0014 (12)0.0020 (12)0.0004 (12)
C50.067 (2)0.0387 (18)0.0348 (16)0.0104 (17)0.0105 (16)0.0063 (15)
C60.069 (2)0.0398 (19)0.0413 (18)0.0139 (18)0.0108 (16)0.0149 (16)
C70.0510 (18)0.0273 (15)0.0347 (15)0.0029 (14)0.0029 (13)0.0013 (12)
C80.0401 (15)0.0291 (14)0.0328 (14)0.0006 (13)0.0002 (12)0.0031 (12)
C90.055 (2)0.051 (2)0.0287 (14)0.0001 (18)0.0006 (13)0.0031 (14)
C100.059 (2)0.0458 (18)0.0314 (15)0.0040 (17)0.0040 (14)0.0052 (14)
C110.0475 (19)0.0390 (17)0.0460 (19)0.0127 (16)0.0056 (15)0.0006 (15)
C120.0417 (17)0.0372 (16)0.0333 (15)0.0027 (14)0.0015 (12)0.0055 (13)
C130.066 (2)0.048 (2)0.0407 (18)0.0200 (19)0.0025 (17)0.0085 (16)
Geometric parameters (Å, º) top
O1—N11.210 (5)C2—C31.378 (5)
O2—C71.255 (4)C3—C41.392 (4)
O3—N11.209 (5)C4—C51.391 (5)
O4—C71.242 (4)C4—C71.518 (4)
N1—C11.482 (4)C5—C61.387 (5)
N2—C81.346 (4)C8—C121.421 (4)
N2—C91.358 (4)C9—C101.352 (5)
N3—C81.334 (4)C10—C111.394 (5)
C1—C61.371 (5)C11—C121.366 (5)
C1—C21.375 (5)C12—C131.501 (5)
O3—N1—O1123.4 (4)C1—C6—C5118.2 (3)
O3—N1—C1118.0 (4)O4—C7—O2125.4 (3)
O1—N1—C1118.5 (3)O4—C7—C4118.5 (3)
C8—N2—C9122.8 (3)O2—C7—C4116.1 (3)
C6—C1—C2123.2 (3)N3—C8—N2117.8 (3)
C6—C1—N1118.1 (3)N3—C8—C12123.7 (3)
C2—C1—N1118.6 (3)N2—C8—C12118.5 (3)
C1—C2—C3117.8 (3)C10—C9—N2120.5 (3)
C2—C3—C4121.1 (3)C9—C10—C11118.0 (3)
C5—C4—C3119.1 (3)C12—C11—C10122.4 (3)
C5—C4—C7120.6 (3)C11—C12—C8117.7 (3)
C3—C4—C7120.3 (3)C11—C12—C13122.4 (3)
C6—C5—C4120.5 (3)C8—C12—C13119.9 (3)
O3—N1—C1—C63.6 (6)C3—C4—C7—O4178.7 (4)
O1—N1—C1—C6177.8 (4)C5—C4—C7—O2177.9 (4)
O3—N1—C1—C2175.3 (4)C3—C4—C7—O21.4 (5)
O1—N1—C1—C23.3 (6)C9—N2—C8—N3178.4 (3)
C6—C1—C2—C30.0 (6)C9—N2—C8—C121.1 (5)
N1—C1—C2—C3178.9 (3)C8—N2—C9—C100.1 (6)
C1—C2—C3—C40.7 (6)N2—C9—C10—C111.4 (6)
C2—C3—C4—C51.0 (6)C9—C10—C11—C121.7 (6)
C2—C3—C4—C7178.4 (3)C10—C11—C12—C80.5 (5)
C3—C4—C5—C60.5 (6)C10—C11—C12—C13179.6 (4)
C7—C4—C5—C6178.9 (4)N3—C8—C12—C11178.7 (3)
C2—C1—C6—C50.5 (6)N2—C8—C12—C110.8 (5)
N1—C1—C6—C5179.3 (4)N3—C8—C12—C131.5 (5)
C4—C5—C6—C10.2 (6)N2—C8—C12—C13179.0 (3)
C5—C4—C7—O41.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.861.792.6444 (4)174
N3—H3A···O40.862.012.871 (4)177
N3—H3B···O4i0.862.122.942 (3)160
C2—H2A···O1ii0.932.533.256 (5)135
C13—H13A···O3iii0.962.503.422 (6)160
Symmetry codes: (i) x+1, y+1/2, z+2; (ii) x+2, y+1/2, z+1; (iii) x1, y+2, z.
QTAIM analysis top
D—H···AH···Aρ (rcp) (e Å-3)2ρ (rcp) (e Å-5)G(r) (a.u.)V(r) (a.u.)H(r)
Salt I
N2—H2A···O31.75000.5353.9690.1773-0.3134-0.1361
C14—H14···O4i2.3710.0811.000.0133-0.0162-0.003
C19—H19···O2ii2.5260.0640.7520.010-0.0120-0.0020
Salt II
N2—H2···O21.79000.3413.1910.0927-0.15240.0597
N3—H3A···O42.01000.1812.1550.0395-0.0567-0.0172
N3—H3B···O4iii2.12000.172.4890.0393-0.0528-0.0135
C2—H2A···O1iv2.53000.0570.7820.0089-0.0097-0.0008
C13—H13A···O3v2.50000.0530.670.0077-0.0085-0.0008
Results of in silico ADME prediction top
FormulaC20H14N2O4C13H13N3O4
Mr346.34275.26
No. of heavy atoms2620
No. of aromatic heavy atoms126
Fraction C(sp3)0.050.15
No. of rotatable bonds22
No. of hydrogen-bond acceptors45
No. of hydrogen-bond donors12
TPSA74.92100.94
GI absorptionHighHigh
BBB permeantYesNo
Bioavailability score0.850.55
log Kp (cm s-1) (skin permeation)-5.25-8.52
Lipinski no. of violations00
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds