Download citation
Download citation
link to html
The crystal structures of two solid phases of the title compound, C4H5N2+·C6HCl2O4·H2O, have been determined at 225 and 120 K. In the high-temperature phase, stable above 198 K, the transition temperature of which has been determined by 35Cl nuclear quadrupole resonance and differential thermal analysis measurements, the three components are held together by O—H...O, N...H...O, C—H...O and C—H...Cl hydrogen bonds, forming a centrosymmetric 2+2+2 aggregate. In the N...H...O hydrogen bond formed between the pyrimidin-1-ium cation and the water mol­ecule, the H atom is disordered over two positions, resulting in two states, viz. pyrimidin-1-ium–water and pyrimidine–oxonium. In the low-temperature phase, the title compound crystallizes in the same monoclinic space group and has a similar mol­ecular packing, but the 2+2+2 aggregate loses the centrosymmetry, resulting in a doubling of the unit cell and two crystallographically independent mol­ecules for each component in the asymmetric unit. The H atom in one N...H...O hydrogen bond between the pyrimidin-1-ium cation and the water mol­ecule is disordered, while the H atom in the other hydrogen bond is found to be ordered at the N-atom site with a long N—H distance [1.10 (3) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827011000363X/eg3036sup1.cif
Contains datablocks global, I_225, I_120

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011000363X/eg3036I_225sup2.hkl
Contains datablock I_225

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827011000363X/eg3036I_120sup3.hkl
Contains datablock I_120

CCDC references: 774080; 774081

Comment top

The crystal structures of diazine (1,2-diazine, pyrimidine or 1,4-diazine)–chloranilic acid (2,5-dichloro-3,6-dihydroxy-1,4-benzoqinone) (2/1) systems have been determined at room temperature (Ishida & Kashino, 1999a,b) and recently re-determined at 110 K for the 1,2-diazine and 1,4-diazine compounds (Gotoh et al., 2008). In each compound, the diazine and chloranilic acid molecules are connected by strong N···H···O hydrogen bonds [N···O = 2.582 (3), 2.615 (2) and 2.590 (4) Å for the 1,2-diazine, pyrimidine and 1,4-diazine compounds, respectively, at room temperature] to afford a centrosymmetric 2:1 unit. Proton motions attributable to dynamically disordered H atoms in these hydrogen bonds have been detected by 1H NMR and 35Cl nuclear quadrupole resonance (NQR) measurements for the 1,2-diazine compound (Nihei et al., 2000a), the pyrimidine compound (Ikeda et al., 2005) and the 1,4-diazine compound (Nihei et al., 2000b). Recently, measurements of 14N NQR and multi-temperature X-ray diffraction were made for the 1,2-diazine compound and temperature dependence of the population ratio of two disordered sites of H atom in the N···H···O hydrogen bond, i.e. proton migration was determined (Seliger et al., 2009). On the other hand, in the crystal structures of 1,2-diazine–chloranilic acid (1/1) (Gotoh & Ishida, 2008) and 1,4-diazine–chloranilic acid (1/1) (Ishida & Kashino, 1999c), such short hydrogen bonds have not been observed. The hydrogen bonds between the base and the acid are fairly long [N···O = 2.6138 (13)–2.6621 (13) and 2.719 (3) Å, for the 1,2-diazine and 1,4-diazine compounds, respectively] and the H atoms are ordered.

In this communication, we report the structures of two solid phases of the title compound, which shows a solid–solid phase transition at about 198 K determined by 35Cl NQR. In the 35Cl NQR measurements in the temperature range of 77–328 K, two resonance lines were observed in the high-temperature range above 198 K; the 35Cl NQR frequencies observed at 321 K are 35.973 and 35.449 MHz. Below 198 K, the resonance lines split into four lines (36.565, 36.357, 35.974 and 36.011 MHz at 77 K). This indicates that a phase transition occurs around 198 K, accompanying a change in the number of crystallographically independent Cl atoms, i.e. a change from two independent Cl atoms in the high-temperature phase to four in the low-temperature phase (Armstrong & van Driel, 1975). The detailed NQR results are reported elsewhere (Asaji, 2009). The phase transition was also detected by differential thermal analysis (DTA) operated in the range 150–295 K, which showed a broad and weak heat anomaly with onset and peak temperatures of 200 (1) and 206 (1) K, respectively, on heating, and 201 (1) and 197 (1) on cooling.

Fig. 1 shows the asymmetric unit in the high-temperature phase determined at 225 K, where the three components are held together by O—H···O, N···H···O and C—H···O hydrogen bonds (Table 1). The dihedral angle between the pyrimidine ring (N1/C7/N2/C8–C10) and the anion ring (C1–C6) is 30.43 (6)°. An acid–base interaction involving a proton transfer occurs through the water molecule. The transferred proton is shared by the pyrimidine and water molecules, resulting in two disordered states of pyrimidin-1-ium cation···water molecule and pyrimidine molecule···oxonium cation. This disordered feature in the short N···H···O hydrogen bond [N1···O5 2.5440 (15) Å] is confirmed in a difference Fourier map (Fig. 2a), where two distinct peaks are observed between the pyrimidin-1-ium cation and the water molecule. The asymmetric units related by an inversion centre are connected by O—H···O and C—H···Cl hydrogen bonds (Table 1), forming a centrosymmetric 2+2+2 aggregate (Fig. 3). These aggregates are further connected through an O—H···O hydrogen bond between the hydrogen chloranilate anions related by a twofold screw rotation axis (Fig. 4).

The asymmetric unit of the low-temperature phase determined at 120 K is shown in Fig. 5. This unit is a 2+2+2 aggregate of the three components; there are two crystallographically independent molecules for each component and the four independent Cl atoms in the crystal, being consistent with the 35Cl NQR result. Although this phase crystallizes in the same space group and has a similar molecular packing, the centrosymmetry of the 2+2+2 aggregate (Fig. 3) and the twofold screw rotation symmetry between the anions (Fig. 4) in the high-temperature phase are lost, resulting in a doubling of the a axis as shown in Fig. 6. For the low-temperature phase, a non-standard setting of space group, P21/n, was selected in order to facilitate the comparison of the two phases. In the 2+2+2 aggregate, the pyrimidin-1-ium cation and the water molecule are connected by short hydrogen bonds [N1···O5 2.5207 (15) Å and N3···O10 2.5285 (15) Å; Table 2]. The difference Fourier map (Fig. 2b) shows two peaks between atoms N1 and O5. On the other hand, between atoms N3 and O10 only one diffused peak is observed near the centre of N···O (Fig. 2c). The maximum lies closer to atom N3 than O10, and a long N—H bond [N3—H3 1.10 (3) Å] is obtained. The dihedral angle between the pyrimidine ring (N3/C17/N4/C18–C20) and the anion ring (C11–C16) is 28.30 (5)° comparable with that of 30.43 (6)° in the high-temperature phase, while a larger dihedral angle of 54.12 (5)° is observed between the N1/C7/N2/C8–C10 and C1–C6 rings. The dihedral angles between the two base rings and between the two acid rings are 44.86 (6) and 1.49 (5)°, respectively. These angles indicate that the phase transition is accompanied by a considerable rotation of one pyrimidine molecule (N1/C7/N2/C8–C10) around the N···H···O hydrogen bond breaking the C—H···O and C—H···Cl hydrogen bonds.

Related literature top

For related literature, see: Armstrong & van Driel (1975); Asaji (2009); Asaji et al. (2007); Gotoh & Ishida (2008); Gotoh, Asaji & Ishida (2008); Ikeda et al. (2005); Ishida & Kashino (1999a, 1999b, 1999c); Nihei et al. (2000a, 2000b); Seliger et al. (2009).

Experimental top

Single crystals of the title compound were obtained by slow evaporation from a methanol solution (120 ml) of chloranilic acid (0.84 g) with pyrimidine (0.32 g) at room temperature. As crystallization was not performed under anhydrous conditions, the presence of a hydrate water molecule in crystals of the title compound is not surprising. The same single crystal was used for the X-ray diffraction experiments at 225 and 120 K. This crystal was cooled from room temperature to 225 K within several minutes and the diffraction data were taken. After collection of the data, the crystal was further cooled to 120 K, and then the diffraction data were registered again.

For the 35Cl NQR measurement a pulsed spectrometer base on a gated amplifier (Matec 525) was used. The sample temperature was controlled within ±0.5 K over the sample volume using an electronic controller (LakeShore 331) and measured with an accuracy of ±0.5 K by use of gold+0.07° ion versus chromel thermocouple (Asaji et al., 2007). DTA was performed by use of a home-made apparatus. The heating and cooling rates were circa 5 K min-1. The samples used for NQR and DTA measurements were identified by comparing the observed X-ray powder pattern with the expected one from the present single-crystal data.

Refinement top

For both phases, all H atoms were found in difference Fourier maps, and then, C-bound H atoms were positioned geometrically (C—H = 0.94 Å at 225 K and 0.95 Å at 120 K) and treated as riding, with Uiso(H) = 1.2Ueq(C). The O-bound H atom in the hydrogen chloranilate anion was refined freely. In the high-temperature phase, the H atom in the N···H···O hydrogen bond was found to be disordered over two positions in a difference Fourier map. The positional parameters of the disordered H atom were refined, with bond restraints [O—H = 0.83 (2) and N—H = 0.87 (2) Å], and with Uiso(H) = 1.5Ueq(N or O). The site occupancies were initially refined, and then fixed at 0.5:0.5 in the final refinement. Other water H atoms were refined, with bond restraints [O—H = 0.83 (2) Å]. In the low-temperature phase, one of the H atoms in the N···H···O hydrogen bonds was found to be disordered. A similar treatment was applied, with bond restraints [O—H = 0.84 (2) and N—H = 0.88 (2) Å]. Other water H atoms were refined, with bond restraints [O—H = 0.84 (2) Å], while the ordered N-bound H atom was refined freely.

Computing details top

For both compounds, data collection: PROCESS-AUTO (Rigaku/MSC, 2004); cell refinement: PROCESS-AUTO (Rigaku/MSC, 2004); data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and WinGX (Farrugia, 1999); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A molecular view in the high-temperature phase (225 K) of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The O—H···O, N···H···O and C—H···O hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. Difference Fourier maps of the high-temperature phase (a) and the low-temperature phase (b), (c) associated with the N···H···O hydrogen bond between the pyrimidine and water molecules. Maps were calculated on the mean plane of O5/N1/C7 or O10/N3/C17 from a model containing all atoms apart from the H atom in the hydrogen bond. The contours are at 0.03 (a) and 0.05 e Å-3 (b), (c) and dashed lines indicate negative contours.
[Figure 3] Fig. 3. A view of the centrosymmetric 2+2+2 aggregate in the high-temperature phase. The O—H···O, N···H···O, C—H···O and C—H···Cl hydrogen bonds are indicated by dashed lines. [Symmetry code: (ii) -x+1, -y+2, -z+1.]
[Figure 4] Fig. 4. A partial packing view of the hydrogen chloranilate anions in the high-temperature phase. The O—H···O hydrogen bonds are indicated by dashed lines. [Symmetry codes: (i) -x, y-1/2, -z+1/2; (iii) -x, y+1/2, -z+1/2.]
[Figure 5] Fig. 5. A molecular view in the low-temperature phase (120 K) of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The O—H···O, N···H···O, C—H···O and C—H···Cl hydrogen bonds are indicated by dashed lines.
[Figure 6] Fig. 6. Packing diagrams of the high- (225 K) and low- (120 K) temperature phases, viewed down the b axis. The twofold screw axes and the inversion centres are shown by black symbols. The space group in the high-temperature phase is P21/c, while the space group in the low-temperature phase is taken to be P21/n in order to show the structural relation between the two phases. All H atoms have been omitted for clarity.
(I_225) pyrimidin-1-ium hydrogen chloranilate monohydrate top
Crystal data top
C4H5N2+·C6HCl2O4·H2OF(000) = 624.00
Mr = 307.09Dx = 1.757 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ybcCell parameters from 18188 reflections
a = 12.6621 (7) Åθ = 3.1–30.1°
b = 3.75947 (18) ŵ = 0.58 mm1
c = 26.7435 (16) ÅT = 225 K
β = 114.208 (2)°Needle, dark
V = 1161.12 (11) Å30.36 × 0.13 × 0.08 mm
Z = 4
Data collection top
Rigaku RAXIS-RAPID II
diffractometer
3061 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.016
ω scansθmax = 30.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1717
Tmin = 0.890, Tmax = 0.955k = 45
21678 measured reflectionsl = 3737
3377 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.4181P]
where P = (Fo2 + 2Fc2)/3
3377 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.53 e Å3
4 restraintsΔρmin = 0.17 e Å3
Crystal data top
C4H5N2+·C6HCl2O4·H2OV = 1161.12 (11) Å3
Mr = 307.09Z = 4
Monoclinic, P21/cMo Kα radiation
a = 12.6621 (7) ŵ = 0.58 mm1
b = 3.75947 (18) ÅT = 225 K
c = 26.7435 (16) Å0.36 × 0.13 × 0.08 mm
β = 114.208 (2)°
Data collection top
Rigaku RAXIS-RAPID II
diffractometer
3377 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3061 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 0.955Rint = 0.016
21678 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0274 restraints
wR(F2) = 0.075H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.53 e Å3
3377 reflectionsΔρmin = 0.17 e Å3
190 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.41634 (2)0.13406 (8)0.271877 (10)0.02200 (8)
Cl20.14851 (2)0.73440 (8)0.408348 (11)0.02464 (8)
O10.51322 (6)0.5145 (3)0.37872 (3)0.02687 (18)
O20.16484 (7)0.0848 (3)0.24451 (3)0.02477 (18)
O30.05490 (6)0.3410 (2)0.30130 (3)0.02336 (17)
O40.40346 (7)0.7912 (3)0.43597 (3)0.02713 (18)
O50.63689 (8)0.8783 (3)0.48442 (4)0.0317 (2)
H5C0.678 (3)0.969 (11)0.4690 (15)0.048*0.50
N10.75684 (8)1.0875 (3)0.43354 (4)0.0280 (2)
H10.716 (3)1.031 (10)0.4511 (14)0.042*0.50
N20.93241 (10)1.3141 (4)0.43578 (5)0.0389 (3)
C10.40858 (8)0.4738 (3)0.36032 (4)0.01800 (18)
C20.34264 (8)0.2939 (3)0.30885 (4)0.01747 (18)
C30.22697 (8)0.2515 (3)0.29083 (4)0.01753 (19)
C40.16093 (8)0.3939 (3)0.32250 (4)0.01724 (18)
C50.22393 (8)0.5715 (3)0.37228 (4)0.01818 (19)
C60.34312 (8)0.6244 (3)0.39306 (4)0.01834 (19)
C70.86214 (12)1.2300 (5)0.45916 (5)0.0377 (3)
H70.88831.27400.49690.045*
C80.89272 (10)1.2522 (4)0.38188 (5)0.0282 (2)
H80.94071.30460.36380.034*
C90.78387 (10)1.1142 (3)0.35191 (5)0.0276 (2)
H90.75671.07830.31390.033*
C100.71659 (10)1.0312 (3)0.37961 (5)0.0269 (2)
H100.64220.93480.36060.032*
H20.1001 (18)0.078 (6)0.2396 (8)0.054 (6)*
H5A0.5684 (14)0.828 (6)0.4650 (8)0.052 (5)*
H5B0.6375 (17)0.990 (5)0.5117 (7)0.054 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01880 (12)0.02755 (14)0.02334 (12)0.00019 (9)0.01239 (9)0.00203 (9)
Cl20.02129 (13)0.03182 (15)0.02559 (13)0.00189 (10)0.01447 (10)0.00556 (10)
O10.0145 (3)0.0372 (5)0.0286 (4)0.0053 (3)0.0085 (3)0.0070 (4)
O20.0147 (3)0.0387 (5)0.0204 (3)0.0050 (3)0.0066 (3)0.0088 (3)
O30.0128 (3)0.0330 (4)0.0226 (4)0.0005 (3)0.0055 (3)0.0008 (3)
O40.0197 (4)0.0385 (5)0.0238 (4)0.0079 (3)0.0094 (3)0.0117 (3)
O50.0258 (4)0.0462 (6)0.0232 (4)0.0129 (4)0.0101 (3)0.0089 (4)
N10.0214 (4)0.0367 (6)0.0285 (5)0.0028 (4)0.0128 (4)0.0000 (4)
N20.0255 (5)0.0647 (8)0.0265 (5)0.0160 (5)0.0106 (4)0.0065 (5)
C10.0152 (4)0.0197 (4)0.0194 (4)0.0024 (3)0.0074 (3)0.0003 (4)
C20.0151 (4)0.0208 (5)0.0184 (4)0.0009 (3)0.0088 (3)0.0004 (4)
C30.0155 (4)0.0206 (5)0.0164 (4)0.0013 (4)0.0064 (3)0.0002 (4)
C40.0142 (4)0.0201 (5)0.0178 (4)0.0002 (3)0.0069 (3)0.0024 (4)
C50.0156 (4)0.0223 (5)0.0191 (4)0.0012 (4)0.0096 (3)0.0014 (4)
C60.0160 (4)0.0210 (5)0.0187 (4)0.0026 (4)0.0078 (3)0.0009 (4)
C70.0287 (6)0.0624 (9)0.0220 (5)0.0124 (6)0.0105 (5)0.0053 (6)
C80.0240 (5)0.0368 (6)0.0264 (5)0.0046 (5)0.0130 (4)0.0001 (5)
C90.0263 (5)0.0332 (6)0.0219 (5)0.0032 (5)0.0086 (4)0.0029 (4)
C100.0185 (5)0.0306 (6)0.0295 (5)0.0025 (4)0.0076 (4)0.0019 (5)
Geometric parameters (Å, º) top
Cl1—C21.7223 (10)N2—C81.3380 (16)
Cl2—C51.7243 (10)C1—C21.4516 (14)
O1—C11.2192 (12)C1—C61.5394 (14)
O2—C31.3217 (12)C2—C31.3506 (13)
O2—H20.78 (2)C3—C41.5113 (14)
O3—C41.2406 (12)C4—C51.4084 (14)
O4—C61.2548 (13)C5—C61.3922 (13)
O5—H5A0.829 (15)C7—H70.9400
O5—H5B0.840 (15)C8—C91.3803 (16)
O5—H5C0.860 (19)C8—H80.9400
N1—C71.3360 (16)C9—C101.3745 (17)
N1—C101.3350 (15)C9—H90.9400
N1—H10.851 (18)C10—H100.9400
N2—C71.3186 (17)
C3—O2—H2110.9 (15)C5—C4—C3117.94 (8)
H5A—O5—H5B107.0 (19)C6—C5—C4123.11 (9)
H5A—O5—H5C119 (3)C6—C5—Cl2118.97 (8)
H5B—O5—H5C115 (3)C4—C5—Cl2117.92 (7)
C10—N1—C7118.44 (10)O4—C6—C5126.18 (10)
C10—N1—H1120 (3)O4—C6—C1115.85 (9)
C7—N1—H1121 (3)C5—C6—C1117.96 (9)
C7—N2—C8116.15 (11)N2—C7—N1125.35 (12)
O1—C1—C2123.28 (9)N2—C7—H7117.3
O1—C1—C6118.28 (9)N1—C7—H7117.3
C2—C1—C6118.44 (8)N2—C8—C9122.38 (11)
C3—C2—C1120.75 (9)N2—C8—H8118.8
C3—C2—Cl1121.18 (8)C9—C8—H8118.8
C1—C2—Cl1118.07 (7)C10—C9—C8117.66 (11)
O2—C3—C2122.14 (9)C10—C9—H9121.2
O2—C3—C4116.09 (8)C8—C9—H9121.2
C2—C3—C4121.77 (9)N1—C10—C9119.99 (10)
O3—C4—C5126.55 (9)N1—C10—H10120.0
O3—C4—C3115.51 (9)C9—C10—H10120.0
O1—C1—C2—C3178.96 (11)C3—C4—C5—Cl2179.91 (7)
C6—C1—C2—C31.70 (15)C4—C5—C6—O4177.22 (11)
O1—C1—C2—Cl10.59 (15)Cl2—C5—C6—O41.95 (16)
C6—C1—C2—Cl1178.75 (7)C4—C5—C6—C11.30 (16)
C1—C2—C3—O2179.12 (10)Cl2—C5—C6—C1179.53 (7)
Cl1—C2—C3—O20.43 (15)O1—C1—C6—O42.44 (15)
C1—C2—C3—C41.17 (16)C2—C1—C6—O4176.93 (10)
Cl1—C2—C3—C4179.29 (8)O1—C1—C6—C5178.89 (10)
O2—C3—C4—O30.50 (14)C2—C1—C6—C51.74 (15)
C2—C3—C4—O3179.24 (10)C8—N2—C7—N10.6 (3)
O2—C3—C4—C5179.63 (9)C10—N1—C7—N21.7 (2)
C2—C3—C4—C50.64 (15)C7—N2—C8—C91.1 (2)
O3—C4—C5—C6179.12 (11)N2—C8—C9—C101.7 (2)
C3—C4—C5—C60.74 (16)C7—N1—C10—C91.0 (2)
O3—C4—C5—Cl20.06 (16)C8—C9—C10—N10.54 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.86 (4)1.69 (4)2.5440 (15)175 (4)
O2—H2···O30.78 (2)2.19 (2)2.6279 (12)116.2 (18)
O2—H2···O3i0.78 (2)2.02 (2)2.6995 (12)146 (2)
O5—H5A···O10.83 (2)2.43 (2)2.9467 (13)122 (2)
O5—H5A···O40.83 (2)1.91 (2)2.7169 (14)163 (2)
O5—H5B···O4ii0.84 (2)1.87 (2)2.6888 (14)165 (2)
O5—H5C···N10.86 (4)1.69 (4)2.5440 (15)171 (4)
C7—H7···Cl2ii0.942.763.6031 (13)150
C10—H10···O10.942.463.2179 (16)138
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+2, z+1.
(I_120) pyrimidin-1-ium hydrogen chloranilate monohydrate top
Crystal data top
C4H5N2+·C6HCl2O4·H2OF(000) = 1248.00
Mr = 307.09Dx = 1.787 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ynCell parameters from 31208 reflections
a = 25.5952 (9) Åθ = 3.0–30.1°
b = 3.71581 (13) ŵ = 0.59 mm1
c = 26.3761 (9) ÅT = 120 K
β = 114.5289 (13)°Needle, dark
V = 2282.16 (14) Å30.36 × 0.13 × 0.08 mm
Z = 8
Data collection top
Rigaku RAXIS-RAPID II
diffractometer
5959 reflections with I > 2σ(I)
Detector resolution: 10.00 pixels mm-1Rint = 0.021
ω scansθmax = 30.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 3535
Tmin = 0.867, Tmax = 0.954k = 45
36273 measured reflectionsl = 3637
6635 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0427P)2 + 1.1405P]
where P = (Fo2 + 2Fc2)/3
6635 reflections(Δ/σ)max = 0.001
377 parametersΔρmax = 0.76 e Å3
6 restraintsΔρmin = 0.25 e Å3
Crystal data top
C4H5N2+·C6HCl2O4·H2OV = 2282.16 (14) Å3
Mr = 307.09Z = 8
Monoclinic, P21/nMo Kα radiation
a = 25.5952 (9) ŵ = 0.59 mm1
b = 3.71581 (13) ÅT = 120 K
c = 26.3761 (9) Å0.36 × 0.13 × 0.08 mm
β = 114.5289 (13)°
Data collection top
Rigaku RAXIS-RAPID II
diffractometer
6635 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
5959 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.954Rint = 0.021
36273 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0296 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.76 e Å3
6635 reflectionsΔρmin = 0.25 e Å3
377 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cl10.202264 (11)0.14112 (8)0.264395 (11)0.01364 (6)
Cl20.068417 (11)0.72134 (8)0.403400 (11)0.01407 (6)
Cl30.290762 (11)1.90740 (7)0.726723 (11)0.01279 (6)
Cl40.416720 (11)1.34307 (8)0.579382 (11)0.01427 (6)
O10.24879 (3)0.5379 (3)0.37159 (4)0.01657 (17)
O20.07692 (3)0.0641 (2)0.23708 (3)0.01477 (16)
O30.02279 (3)0.3068 (2)0.29558 (3)0.01390 (16)
O40.19398 (3)0.8074 (2)0.42982 (3)0.01609 (17)
O50.30813 (4)0.8681 (3)0.48060 (4)0.01854 (18)
H5C0.3310 (13)0.903 (10)0.4651 (14)0.028*0.50
O60.23983 (3)1.5234 (2)0.61791 (3)0.01567 (16)
O70.41457 (3)1.9635 (3)0.75124 (3)0.01553 (17)
O80.46673 (3)1.7159 (2)0.69041 (3)0.01522 (16)
O90.29174 (3)1.2481 (2)0.55753 (3)0.01599 (17)
O100.17606 (4)1.1463 (3)0.51139 (4)0.01762 (17)
N10.37554 (4)0.9295 (3)0.43348 (4)0.0172 (2)
H10.3545 (13)0.922 (10)0.4518 (13)0.026*0.50
N20.46853 (4)0.8389 (3)0.43714 (4)0.0186 (2)
N30.12019 (4)0.9335 (3)0.56542 (4)0.01585 (19)
N40.03442 (4)0.6949 (3)0.56536 (4)0.0193 (2)
C10.19707 (4)0.4853 (3)0.35336 (4)0.01146 (19)
C20.16481 (4)0.2947 (3)0.30146 (4)0.01114 (19)
C30.10771 (4)0.2400 (3)0.28370 (4)0.01126 (19)
C40.07508 (4)0.3757 (3)0.31628 (4)0.01077 (19)
C50.10571 (4)0.5650 (3)0.36630 (4)0.01125 (19)
C60.16453 (4)0.6315 (3)0.38667 (4)0.01159 (19)
C70.43019 (5)0.8191 (3)0.45889 (5)0.0174 (2)
H70.44240.71930.49520.021*
C80.45016 (5)0.9835 (4)0.38589 (5)0.0178 (2)
H80.47661.00600.36920.021*
C90.39425 (5)1.1007 (3)0.35647 (5)0.0172 (2)
H90.38201.20010.32020.021*
C100.35698 (5)1.0676 (3)0.38184 (5)0.0178 (2)
H100.31821.14250.36280.021*
C110.29168 (4)1.5692 (3)0.63524 (4)0.01137 (19)
C120.32554 (4)1.7519 (3)0.68722 (4)0.01103 (19)
C130.38277 (5)1.7978 (3)0.70412 (4)0.01166 (19)
C140.41399 (4)1.6631 (3)0.66998 (4)0.01129 (19)
C150.38126 (4)1.4899 (3)0.61885 (4)0.01149 (19)
C160.32257 (4)1.4235 (3)0.60029 (4)0.01160 (19)
C170.06823 (5)0.7809 (4)0.54027 (5)0.0190 (2)
H170.05460.73040.50160.023*
C180.05503 (5)0.7673 (3)0.62017 (5)0.0156 (2)
H180.03190.71200.63950.019*
C190.10863 (5)0.9194 (3)0.64959 (5)0.0157 (2)
H190.12260.96510.68840.019*
C200.14100 (5)1.0021 (3)0.62028 (5)0.0157 (2)
H200.17791.10740.63890.019*
H2A0.0446 (9)0.052 (6)0.2323 (8)0.040 (6)*
H30.1442 (12)1.008 (9)0.5409 (12)0.092 (9)*
H5A0.2735 (7)0.830 (6)0.4595 (8)0.049 (6)*
H5B0.3097 (8)1.002 (5)0.5067 (7)0.038 (5)*
H7A0.4477 (9)1.970 (6)0.7566 (9)0.044 (6)*
H10A0.2098 (6)1.195 (5)0.5307 (7)0.031 (5)*
H10B0.1760 (8)1.030 (5)0.4840 (7)0.035 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.01185 (11)0.01646 (13)0.01531 (12)0.00063 (9)0.00832 (9)0.00258 (10)
Cl20.01209 (11)0.01782 (13)0.01509 (12)0.00040 (9)0.00842 (9)0.00245 (10)
Cl30.01117 (11)0.01577 (12)0.01345 (11)0.00012 (9)0.00711 (9)0.00116 (9)
Cl40.01298 (12)0.01737 (13)0.01519 (12)0.00112 (9)0.00857 (9)0.00108 (10)
O10.0097 (3)0.0221 (4)0.0182 (4)0.0020 (3)0.0060 (3)0.0043 (3)
O20.0094 (3)0.0212 (4)0.0135 (4)0.0026 (3)0.0044 (3)0.0044 (3)
O30.0082 (3)0.0179 (4)0.0148 (4)0.0001 (3)0.0039 (3)0.0002 (3)
O40.0119 (3)0.0216 (4)0.0150 (4)0.0033 (3)0.0058 (3)0.0062 (3)
O50.0134 (4)0.0274 (5)0.0150 (4)0.0041 (3)0.0061 (3)0.0064 (4)
O60.0094 (3)0.0205 (4)0.0170 (4)0.0024 (3)0.0053 (3)0.0028 (3)
O70.0087 (3)0.0237 (4)0.0137 (4)0.0034 (3)0.0042 (3)0.0054 (3)
O80.0082 (3)0.0205 (4)0.0162 (4)0.0001 (3)0.0044 (3)0.0003 (3)
O90.0124 (4)0.0209 (4)0.0149 (4)0.0030 (3)0.0058 (3)0.0057 (3)
O100.0147 (4)0.0250 (5)0.0136 (4)0.0062 (3)0.0063 (3)0.0051 (3)
N10.0142 (4)0.0210 (5)0.0186 (5)0.0022 (4)0.0089 (4)0.0042 (4)
N20.0130 (4)0.0259 (5)0.0164 (4)0.0012 (4)0.0055 (4)0.0004 (4)
N30.0131 (4)0.0188 (5)0.0170 (4)0.0003 (4)0.0076 (4)0.0006 (4)
N40.0139 (4)0.0275 (6)0.0161 (4)0.0054 (4)0.0058 (4)0.0021 (4)
C10.0103 (4)0.0121 (5)0.0127 (4)0.0003 (4)0.0056 (4)0.0002 (4)
C20.0099 (4)0.0133 (5)0.0120 (4)0.0002 (4)0.0063 (4)0.0004 (4)
C30.0105 (4)0.0121 (5)0.0112 (4)0.0003 (4)0.0045 (4)0.0001 (4)
C40.0096 (4)0.0110 (5)0.0120 (4)0.0012 (4)0.0048 (4)0.0025 (4)
C50.0098 (4)0.0128 (5)0.0129 (4)0.0003 (4)0.0066 (4)0.0011 (4)
C60.0104 (4)0.0126 (5)0.0124 (4)0.0000 (4)0.0054 (4)0.0000 (4)
C70.0162 (5)0.0208 (6)0.0143 (5)0.0021 (4)0.0054 (4)0.0010 (4)
C80.0150 (5)0.0231 (6)0.0169 (5)0.0004 (4)0.0081 (4)0.0002 (5)
C90.0168 (5)0.0175 (5)0.0166 (5)0.0007 (4)0.0063 (4)0.0017 (4)
C100.0129 (5)0.0187 (5)0.0208 (5)0.0019 (4)0.0060 (4)0.0011 (5)
C110.0104 (4)0.0113 (5)0.0124 (4)0.0003 (4)0.0048 (4)0.0007 (4)
C120.0103 (4)0.0127 (5)0.0116 (4)0.0001 (4)0.0060 (4)0.0005 (4)
C130.0108 (4)0.0130 (5)0.0113 (4)0.0003 (4)0.0047 (4)0.0006 (4)
C140.0100 (4)0.0119 (5)0.0126 (4)0.0007 (4)0.0054 (4)0.0019 (4)
C150.0101 (4)0.0133 (5)0.0132 (4)0.0004 (4)0.0070 (4)0.0005 (4)
C160.0112 (4)0.0118 (5)0.0123 (4)0.0003 (4)0.0054 (4)0.0004 (4)
C170.0159 (5)0.0268 (6)0.0137 (5)0.0032 (5)0.0054 (4)0.0018 (5)
C180.0141 (5)0.0180 (5)0.0161 (5)0.0016 (4)0.0078 (4)0.0004 (4)
C190.0152 (5)0.0171 (5)0.0138 (5)0.0009 (4)0.0049 (4)0.0017 (4)
C200.0119 (5)0.0164 (5)0.0177 (5)0.0007 (4)0.0050 (4)0.0013 (4)
Geometric parameters (Å, º) top
Cl1—C21.7259 (11)N4—C171.3282 (16)
Cl2—C51.7266 (11)N4—C181.3445 (15)
Cl3—C121.7268 (11)C1—C21.4558 (15)
Cl4—C151.7291 (11)C1—C61.5390 (15)
O1—C11.2218 (13)C2—C31.3522 (14)
O2—C31.3250 (13)C3—C41.5118 (15)
O2—H2A0.79 (2)C4—C51.4112 (15)
O3—C41.2444 (13)C5—C61.3946 (14)
O4—C61.2563 (13)C7—H70.9500
O5—H5A0.841 (15)C8—C91.3849 (16)
O5—H5B0.837 (15)C8—H80.9500
O5—H5C0.851 (18)C9—C101.3795 (17)
O6—C111.2228 (13)C9—H90.9500
O7—C131.3216 (13)C10—H100.9500
O7—H7A0.80 (2)C11—C121.4511 (15)
O8—C141.2437 (13)C11—C161.5405 (15)
O9—C161.2572 (13)C12—C131.3533 (14)
O10—H10A0.821 (14)C13—C141.5154 (15)
O10—H10B0.842 (14)C14—C151.4131 (15)
N1—C71.3402 (15)C15—C161.3951 (14)
N1—C101.3442 (16)C17—H170.9500
N1—H10.860 (18)C18—C191.3856 (16)
N2—C71.3285 (15)C18—H180.9500
N2—C81.3450 (16)C19—C201.3821 (16)
N3—C171.3410 (15)C19—H190.9500
N3—C201.3427 (15)C20—H200.9500
N3—H31.10 (3)
C3—O2—H2A111.0 (15)N2—C8—H8118.7
H5C—O5—H5A117 (3)C9—C8—H8118.7
H5C—O5—H5B120 (3)C10—C9—C8117.52 (11)
H5A—O5—H5B108.6 (19)C10—C9—H9121.2
C13—O7—H7A112.0 (15)C8—C9—H9121.2
H3—O10—H10A115.6 (17)N1—C10—C9120.06 (11)
H3—O10—H10B118.9 (18)N1—C10—H10120.0
H10A—O10—H10B105.8 (17)C9—C10—H10120.0
C7—N1—C10118.69 (10)O6—C11—C12123.24 (10)
C7—N1—H1118 (2)O6—C11—C16118.33 (10)
C10—N1—H1123 (2)C12—C11—C16118.44 (9)
C7—N2—C8116.33 (10)C13—C12—C11120.69 (10)
C17—N3—C20118.79 (10)C13—C12—Cl3121.19 (8)
C17—N3—H3119.9 (15)C11—C12—Cl3118.12 (8)
C20—N3—H3121.3 (16)O7—C13—C12121.87 (10)
C17—N4—C18116.22 (10)O7—C13—C14116.23 (9)
O1—C1—C2123.16 (10)C12—C13—C14121.90 (10)
O1—C1—C6118.26 (10)O8—C14—C15126.30 (10)
C2—C1—C6118.58 (9)O8—C14—C13115.82 (10)
C3—C2—C1120.57 (10)C15—C14—C13117.87 (9)
C3—C2—Cl1121.92 (9)C16—C15—C14122.73 (10)
C1—C2—Cl1117.51 (8)C16—C15—Cl4119.39 (8)
O2—C3—C2122.44 (10)C14—C15—Cl4117.84 (8)
O2—C3—C4115.85 (9)O9—C16—C15126.15 (10)
C2—C3—C4121.70 (10)O9—C16—C11115.59 (9)
O3—C4—C5126.26 (10)C15—C16—C11118.25 (9)
O3—C4—C3115.42 (9)N4—C17—N3124.95 (11)
C5—C4—C3118.31 (9)N4—C17—H17117.5
C6—C5—C4122.70 (10)N3—C17—H17117.5
C6—C5—Cl2118.97 (8)N4—C18—C19122.61 (11)
C4—C5—Cl2118.33 (8)N4—C18—H18118.7
O4—C6—C5125.94 (10)C19—C18—H18118.7
O4—C6—C1115.94 (9)C20—C19—C18117.50 (11)
C5—C6—C1118.11 (9)C20—C19—H19121.3
N2—C7—N1124.87 (11)C18—C19—H19121.3
N2—C7—H7117.6N3—C20—C19119.93 (10)
N1—C7—H7117.6N3—C20—H20120.0
N2—C8—C9122.51 (11)C19—C20—H20120.0
O1—C1—C2—C3179.07 (11)O6—C11—C12—C13179.42 (11)
C6—C1—C2—C31.58 (16)C16—C11—C12—C130.98 (16)
O1—C1—C2—Cl10.51 (16)O6—C11—C12—Cl30.72 (16)
C6—C1—C2—Cl1178.83 (8)C16—C11—C12—Cl3178.88 (8)
C1—C2—C3—O2179.19 (10)C11—C12—C13—O7179.93 (10)
Cl1—C2—C3—O20.38 (16)Cl3—C12—C13—O70.22 (16)
C1—C2—C3—C40.56 (17)C11—C12—C13—C140.14 (17)
Cl1—C2—C3—C4179.87 (8)Cl3—C12—C13—C14180.00 (8)
O2—C3—C4—O30.00 (15)O7—C13—C14—O81.43 (15)
C2—C3—C4—O3179.76 (11)C12—C13—C14—O8178.78 (11)
O2—C3—C4—C5179.99 (10)O7—C13—C14—C15178.93 (10)
C2—C3—C4—C50.24 (16)C12—C13—C14—C150.86 (16)
O3—C4—C5—C6179.91 (11)O8—C14—C15—C16176.34 (11)
C3—C4—C5—C60.08 (16)C13—C14—C15—C163.26 (16)
O3—C4—C5—Cl20.21 (16)O8—C14—C15—Cl41.46 (16)
C3—C4—C5—Cl2179.79 (8)C13—C14—C15—Cl4178.94 (8)
C4—C5—C6—O4177.61 (11)C14—C15—C16—O9174.36 (11)
Cl2—C5—C6—O42.09 (17)Cl4—C15—C16—O93.41 (17)
C4—C5—C6—C11.10 (16)C14—C15—C16—C114.37 (16)
Cl2—C5—C6—C1179.19 (8)Cl4—C15—C16—C11177.86 (8)
O1—C1—C6—O42.38 (16)O6—C11—C16—O93.94 (16)
C2—C1—C6—O4177.00 (10)C12—C11—C16—O9175.69 (10)
O1—C1—C6—C5178.77 (11)O6—C11—C16—C15177.20 (11)
C2—C1—C6—C51.85 (15)C12—C11—C16—C153.18 (15)
C8—N2—C7—N10.42 (19)C18—N4—C17—N30.4 (2)
C10—N1—C7—N20.8 (2)C20—N3—C17—N41.1 (2)
C7—N2—C8—C91.10 (19)C17—N4—C18—C190.65 (19)
N2—C8—C9—C100.6 (2)N4—C18—C19—C200.94 (19)
C7—N1—C10—C91.37 (19)C17—N3—C20—C190.78 (18)
C8—C9—C10—N10.72 (19)C18—C19—C20—N30.19 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.86 (3)1.67 (4)2.5207 (15)172 (4)
O2—H2A···O30.79 (2)2.18 (2)2.6246 (11)116.1 (18)
O2—H2A···O8i0.79 (2)2.09 (2)2.7694 (11)146 (2)
N3—H3···O101.10 (3)1.44 (3)2.5285 (15)173 (3)
O5—H5A···O10.84 (2)2.40 (2)2.9075 (14)120 (2)
O5—H5A···O40.84 (2)1.86 (2)2.6706 (14)163 (2)
O5—H5B···O90.84 (2)1.83 (2)2.6446 (13)163 (2)
O5—H5C···N10.85 (4)1.67 (4)2.5207 (15)175 (4)
O7—H7A···O80.80 (3)2.21 (2)2.6423 (12)114.4 (19)
O7—H7A···O3ii0.80 (3)1.95 (2)2.6606 (12)148 (2)
O10—H10A···O60.82 (2)2.43 (2)2.9519 (12)122 (1)
O10—H10A···O90.82 (2)1.93 (2)2.7201 (14)163 (2)
O10—H10B···O40.84 (2)1.87 (2)2.6916 (13)166 (2)
C9—H9···O2iii0.952.563.3331 (15)139
C10—H10···O1iv0.952.393.1896 (16)142
C17—H17···Cl20.952.763.6189 (13)151
C20—H20···O60.952.443.2072 (15)138
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1/2, y+5/2, z+1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x, y+1, z.

Experimental details

(I_225)(I_120)
Crystal data
Chemical formulaC4H5N2+·C6HCl2O4·H2OC4H5N2+·C6HCl2O4·H2O
Mr307.09307.09
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/n
Temperature (K)225120
a, b, c (Å)12.6621 (7), 3.75947 (18), 26.7435 (16)25.5952 (9), 3.71581 (13), 26.3761 (9)
β (°) 114.208 (2) 114.5289 (13)
V3)1161.12 (11)2282.16 (14)
Z48
Radiation typeMo KαMo Kα
µ (mm1)0.580.59
Crystal size (mm)0.36 × 0.13 × 0.080.36 × 0.13 × 0.08
Data collection
DiffractometerRigaku RAXIS-RAPID II
diffractometer
Rigaku RAXIS-RAPID II
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Multi-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.890, 0.9550.867, 0.954
No. of measured, independent and
observed [I > 2σ(I)] reflections
21678, 3377, 3061 36273, 6635, 5959
Rint0.0160.021
(sin θ/λ)max1)0.7030.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.075, 1.04 0.029, 0.078, 1.07
No. of reflections33776635
No. of parameters190377
No. of restraints46
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.170.76, 0.25

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and WinGX (Farrugia, 1999), CrystalStructure (Rigaku/MSC, 2004) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) for (I_225) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.86 (4)1.69 (4)2.5440 (15)175 (4)
O2—H2···O30.78 (2)2.19 (2)2.6279 (12)116.2 (18)
O2—H2···O3i0.78 (2)2.02 (2)2.6995 (12)146 (2)
O5—H5A···O10.83 (2)2.43 (2)2.9467 (13)121.7 (17)
O5—H5A···O40.83 (2)1.91 (2)2.7169 (14)163.4 (19)
O5—H5B···O4ii0.839 (18)1.87 (2)2.6888 (14)165 (2)
O5—H5C···N10.86 (4)1.69 (4)2.5440 (15)171 (4)
C7—H7···Cl2ii0.942.763.6031 (13)150
C10—H10···O10.942.463.2179 (16)138
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) for (I_120) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.86 (3)1.67 (4)2.5207 (15)172 (4)
O2—H2A···O30.79 (2)2.18 (2)2.6246 (11)116.1 (18)
O2—H2A···O8i0.79 (2)2.09 (2)2.7694 (11)146 (2)
N3—H3···O101.10 (3)1.44 (3)2.5285 (15)173 (3)
O5—H5A···O10.84 (2)2.40 (2)2.9075 (14)120.0 (17)
O5—H5A···O40.84 (2)1.86 (2)2.6706 (14)163.4 (19)
O5—H5B···O90.837 (18)1.832 (19)2.6446 (13)163 (2)
O5—H5C···N10.85 (4)1.67 (4)2.5207 (15)175 (4)
O7—H7A···O80.80 (3)2.21 (2)2.6423 (12)114.4 (19)
O7—H7A···O3ii0.80 (3)1.95 (2)2.6606 (12)148 (2)
O10—H10A···O60.820 (17)2.430 (17)2.9519 (12)122.4 (14)
O10—H10A···O90.820 (17)1.925 (17)2.7201 (14)163.0 (17)
O10—H10B···O40.841 (18)1.867 (19)2.6916 (13)166 (2)
C9—H9···O2iii0.952.563.3331 (15)139
C10—H10···O1iv0.952.393.1896 (16)142
C17—H17···Cl20.952.763.6189 (13)151
C20—H20···O60.952.443.2072 (15)138
Symmetry codes: (i) x1/2, y+3/2, z1/2; (ii) x+1/2, y+5/2, z+1/2; (iii) x+1/2, y+3/2, z+1/2; (iv) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds