Download citation
Download citation
link to html
Five-coordinate Cr(N)(salen) {salen is 2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolate} reacts with [RhCl(COD)]2 (COD is 1,5-cyclo­octa­diene) to yield the heterobimetallic nitride-bridged title compound, namely chlorido-2κCl-[2(η4)-1,5-cyclo­octa­diene]{2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolato-1κ4O,N,N′,O′}-μ-nitrido-1:2κ2N:N-chromium(V)­rhodium(I), [CrRh(C16H14N2O2)ClN(C8H12)]. The Cr—N bond of 1.5936 (14) Å is elongated by only 0.035 Å compared to the terminal Cr—N bond in the precursor. The nitride bridge is close to being linear [173.03 (9)°] and the Rh—N bond of 1.9594 (14) Å is very short for a monodentate nitro­gen-donor ligand, indicating significant π-acceptor character of the Cr[triple bond]N group.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110018238/eg3042sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110018238/eg3042Isup2.hkl
Contains datablock I

CCDC reference: 786798

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: COLLECT (Nonius, 1999); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

chlorido-2κCl-[2(η4)-1,5-cyclooctadiene]{2,2'-[ethane-1,2- diylbis(nitrilomethylidyne)]diphenolato- 1κ4O,N,N',O'}-µ-nitrido- 1:2κ2N:N-chromium(V)rhodium(I) top
Crystal data top
[CrRh(C16H14N2O2)ClN(C8H12)]F(000) = 1172
Mr = 578.84Dx = 1.667 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 34038 reflections
a = 12.6140 (13) Åθ = 1.7–34.0°
b = 15.1085 (14) ŵ = 1.33 mm1
c = 12.6704 (17) ÅT = 122 K
β = 107.259 (10)°Prism, red
V = 2306.0 (4) Å30.32 × 0.09 × 0.09 mm
Z = 4
Data collection top
Nonius KappaCCD area-detector
diffractometer
9382 independent reflections
Radiation source: fine-focus sealed tube7611 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.051
ω and φ scansθmax = 34.0°, θmin = 1.7°
Absorption correction: integration
(Gaussian integration; Coppens, 1970)
h = 1919
Tmin = 0.718, Tmax = 0.929k = 2323
77914 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0224P)2 + 2.474P]
where P = (Fo2 + 2Fc2)/3
9382 reflections(Δ/σ)max = 0.001
289 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = 0.98 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

- 6.1810 (0.0056) x + 13.0814 (0.0045) y + 0.6216 (0.0059) z = 1.8390 (0.0032)

* -0.0620 (0.0006) O1 * 0.0621 (0.0006) O2 * 0.0628 (0.0006) N2 * -0.0628 (0.0006) N3 0.4827 (0.0007) Cr1

Rms deviation of fitted atoms = 0.0624

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Rh10.210064 (10)0.544803 (8)0.061385 (10)0.01420 (3)
Cr10.35702 (2)0.341441 (16)0.099525 (19)0.01091 (5)
Cl10.14529 (4)0.51896 (4)0.13119 (4)0.03189 (11)
N10.29689 (11)0.43536 (9)0.07862 (11)0.0156 (2)
N20.32628 (11)0.30229 (9)0.05763 (10)0.0140 (2)
N30.50408 (11)0.37031 (9)0.07654 (11)0.0150 (2)
O10.25988 (10)0.25289 (8)0.12085 (9)0.0161 (2)
O20.42958 (9)0.33620 (8)0.25453 (9)0.0151 (2)
C10.07706 (15)0.63726 (12)0.06440 (18)0.0269 (4)
H10.00620.62860.00370.032*
C20.06342 (17)0.64628 (13)0.1791 (2)0.0305 (4)
H2A0.01650.64370.17340.037*
H2B0.09200.70470.21020.037*
C30.12487 (16)0.57354 (13)0.25749 (17)0.0254 (4)
H3A0.14600.59640.33420.031*
H3B0.07390.52290.25320.031*
C40.22799 (14)0.54118 (11)0.23201 (13)0.0173 (3)
H40.25700.48360.26810.021*
C50.31043 (14)0.59651 (11)0.21307 (14)0.0185 (3)
H50.38680.57070.23810.022*
C60.30788 (17)0.69704 (13)0.22029 (19)0.0303 (4)
H6A0.38510.71950.24380.036*
H6B0.27280.71400.27760.036*
C70.24431 (17)0.74162 (13)0.1105 (2)0.0335 (5)
H7A0.20640.79500.12680.040*
H7B0.29830.76120.07240.040*
C80.15901 (16)0.68242 (13)0.03333 (19)0.0287 (4)
H80.13700.70110.04590.034*
C110.18026 (13)0.20873 (10)0.04698 (12)0.0134 (3)
C120.10077 (14)0.16293 (12)0.08405 (14)0.0190 (3)
H120.10450.16490.16000.023*
C130.01718 (15)0.11494 (12)0.01064 (15)0.0216 (3)
H130.03650.08530.03680.026*
C140.01060 (14)0.10941 (12)0.10137 (15)0.0209 (3)
H140.04700.07620.15100.025*
C150.08845 (14)0.15257 (11)0.13867 (13)0.0173 (3)
H150.08480.14840.21450.021*
C160.17386 (13)0.20299 (10)0.06624 (12)0.0130 (3)
C170.25104 (13)0.24775 (10)0.11208 (12)0.0143 (3)
H170.24620.23640.18710.017*
C180.39613 (15)0.34919 (11)0.11428 (13)0.0198 (3)
H18A0.36890.41040.13280.024*
H18B0.39490.31820.18340.024*
C190.51269 (15)0.35004 (12)0.03480 (14)0.0212 (3)
H19A0.54840.29170.03460.025*
H19B0.55820.39550.05740.025*
C200.58805 (13)0.40544 (10)0.14935 (14)0.0164 (3)
H200.65090.42110.12660.020*
C210.59273 (13)0.42237 (10)0.26236 (13)0.0153 (3)
C220.68418 (14)0.47114 (11)0.32913 (15)0.0200 (3)
H220.73700.49510.29690.024*
C230.69778 (15)0.48432 (12)0.43966 (15)0.0226 (3)
H230.75880.51770.48350.027*
C240.62023 (15)0.44770 (12)0.48682 (14)0.0224 (3)
H240.62940.45640.56330.027*
C250.53063 (14)0.39920 (11)0.42404 (13)0.0185 (3)
H250.47950.37480.45800.022*
C260.51429 (13)0.38559 (10)0.31042 (12)0.0142 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Rh10.01302 (5)0.01412 (5)0.01470 (5)0.00064 (4)0.00295 (4)0.00308 (4)
Cr10.01411 (10)0.01046 (10)0.00892 (9)0.00153 (8)0.00456 (8)0.00158 (8)
Cl10.0227 (2)0.0547 (3)0.01440 (17)0.0086 (2)0.00046 (15)0.00491 (19)
N10.0178 (6)0.0172 (6)0.0121 (5)0.0007 (5)0.0049 (5)0.0030 (5)
N20.0203 (6)0.0117 (5)0.0114 (5)0.0018 (5)0.0072 (5)0.0008 (4)
N30.0187 (6)0.0135 (6)0.0150 (6)0.0017 (5)0.0083 (5)0.0007 (5)
O10.0199 (5)0.0184 (5)0.0101 (4)0.0079 (4)0.0045 (4)0.0017 (4)
O20.0165 (5)0.0171 (5)0.0109 (5)0.0041 (4)0.0026 (4)0.0005 (4)
C10.0186 (8)0.0199 (8)0.0427 (11)0.0068 (6)0.0099 (7)0.0117 (8)
C20.0250 (9)0.0207 (9)0.0525 (13)0.0043 (7)0.0218 (9)0.0030 (8)
C30.0242 (8)0.0258 (9)0.0321 (9)0.0011 (7)0.0172 (7)0.0019 (7)
C40.0197 (7)0.0172 (7)0.0160 (6)0.0003 (6)0.0067 (5)0.0022 (6)
C50.0177 (7)0.0174 (7)0.0205 (7)0.0015 (6)0.0058 (6)0.0052 (6)
C60.0281 (9)0.0194 (8)0.0479 (12)0.0073 (7)0.0184 (9)0.0125 (8)
C70.0270 (9)0.0140 (8)0.0661 (15)0.0005 (7)0.0236 (10)0.0038 (9)
C80.0238 (9)0.0194 (8)0.0444 (11)0.0071 (7)0.0125 (8)0.0152 (8)
C110.0154 (6)0.0122 (6)0.0122 (6)0.0014 (5)0.0036 (5)0.0019 (5)
C120.0202 (7)0.0206 (8)0.0178 (7)0.0054 (6)0.0080 (6)0.0032 (6)
C130.0191 (7)0.0218 (8)0.0251 (8)0.0060 (6)0.0084 (6)0.0050 (7)
C140.0175 (7)0.0202 (8)0.0221 (8)0.0039 (6)0.0014 (6)0.0070 (6)
C150.0183 (7)0.0169 (7)0.0140 (6)0.0006 (6)0.0005 (5)0.0028 (5)
C160.0157 (6)0.0114 (6)0.0108 (6)0.0009 (5)0.0022 (5)0.0013 (5)
C170.0203 (7)0.0118 (6)0.0104 (6)0.0019 (5)0.0039 (5)0.0001 (5)
C180.0315 (9)0.0177 (7)0.0139 (6)0.0071 (6)0.0127 (6)0.0023 (6)
C190.0263 (8)0.0232 (8)0.0194 (7)0.0077 (7)0.0149 (6)0.0064 (6)
C200.0168 (7)0.0131 (6)0.0204 (7)0.0013 (5)0.0071 (6)0.0009 (5)
C210.0157 (6)0.0117 (6)0.0170 (7)0.0009 (5)0.0025 (5)0.0006 (5)
C220.0184 (7)0.0151 (7)0.0236 (8)0.0025 (6)0.0017 (6)0.0005 (6)
C230.0218 (8)0.0173 (7)0.0229 (8)0.0027 (6)0.0022 (6)0.0046 (6)
C240.0243 (8)0.0223 (8)0.0161 (7)0.0013 (7)0.0010 (6)0.0046 (6)
C250.0203 (7)0.0193 (7)0.0143 (7)0.0012 (6)0.0028 (6)0.0023 (6)
C260.0156 (6)0.0118 (6)0.0134 (6)0.0014 (5)0.0015 (5)0.0007 (5)
Geometric parameters (Å, º) top
Rh1—N11.9594 (14)C7—C81.513 (3)
Rh1—Cl12.3644 (6)C7—H7A0.9900
Rh1—C12.1921 (18)C7—H7B0.9900
Rh1—C82.1744 (18)C8—H81.0000
Rh1—C42.1065 (16)C11—C121.409 (2)
Rh1—C52.1126 (17)C11—C161.415 (2)
Cr1—N11.5936 (14)C12—C131.386 (2)
Cr1—O11.8870 (11)C12—H120.9500
Cr1—O21.9063 (11)C13—C141.399 (3)
Cr1—N22.0017 (13)C13—H130.9500
Cr1—N32.0091 (14)C14—C151.374 (2)
N2—C171.291 (2)C14—H140.9500
N2—C181.473 (2)C15—C161.413 (2)
N3—C201.294 (2)C15—H150.9500
N3—C191.479 (2)C16—C171.441 (2)
O1—C111.3312 (18)C17—H170.9500
O2—C261.3232 (18)C18—C191.516 (3)
C1—C81.389 (3)C18—H18A0.9900
C1—C21.520 (3)C18—H18B0.9900
C1—H11.0000C19—H19A0.9900
C2—C31.529 (3)C19—H19B0.9900
C2—H2A0.9900C20—C211.438 (2)
C2—H2B0.9900C20—H200.9500
C3—C41.511 (2)C21—C221.418 (2)
C3—H3A0.9900C21—C261.420 (2)
C3—H3B0.9900C22—C231.374 (3)
C4—C51.409 (2)C22—H220.9500
C4—H41.0000C23—C241.402 (3)
C5—C61.522 (3)C23—H230.9500
C5—H51.0000C24—C251.383 (2)
C6—C71.540 (3)C24—H240.9500
C6—H6A0.9900C25—C261.407 (2)
C6—H6B0.9900C25—H250.9500
N1—Rh1—C488.71 (6)C7—C6—H6B108.9
N1—Rh1—C592.66 (6)H6A—C6—H6B107.7
C4—Rh1—C539.02 (6)C8—C7—C6113.90 (16)
N1—Rh1—C8162.51 (7)C8—C7—H7A108.8
C4—Rh1—C897.41 (8)C6—C7—H7A108.8
C5—Rh1—C882.16 (8)C8—C7—H7B108.8
N1—Rh1—C1160.25 (6)C6—C7—H7B108.8
C4—Rh1—C181.28 (7)H7A—C7—H7B107.7
C5—Rh1—C190.21 (7)C1—C8—C7123.6 (2)
C8—Rh1—C137.10 (7)C1—C8—Rh172.14 (11)
N1—Rh1—Cl189.21 (4)C7—C8—Rh1109.89 (13)
C4—Rh1—Cl1162.51 (5)C1—C8—H8114.5
C5—Rh1—Cl1158.47 (5)C7—C8—H8114.5
C8—Rh1—Cl189.67 (6)Rh1—C8—H8114.5
C1—Rh1—Cl195.24 (6)O1—C11—C12118.36 (14)
N1—Cr1—O1110.97 (6)O1—C11—C16123.20 (14)
N1—Cr1—O2105.52 (6)C12—C11—C16118.41 (14)
O1—Cr1—O287.52 (5)C13—C12—C11120.55 (15)
N1—Cr1—N298.95 (6)C13—C12—H12119.7
O1—Cr1—N289.46 (5)C11—C12—H12119.7
O2—Cr1—N2154.77 (6)C12—C13—C14121.08 (16)
N1—Cr1—N3101.36 (6)C12—C13—H13119.5
O1—Cr1—N3147.29 (6)C14—C13—H13119.5
O2—Cr1—N388.66 (5)C15—C14—C13119.15 (15)
N2—Cr1—N380.48 (6)C15—C14—H14120.4
Cr1—N1—Rh1173.03 (9)C13—C14—H14120.4
C17—N2—C18119.86 (13)C14—C15—C16121.16 (15)
C17—N2—Cr1127.94 (11)C14—C15—H15119.4
C18—N2—Cr1112.04 (10)C16—C15—H15119.4
C20—N3—C19119.25 (14)C15—C16—C11119.64 (14)
C20—N3—Cr1125.54 (11)C15—C16—C17117.85 (14)
C19—N3—Cr1115.19 (10)C11—C16—C17122.51 (14)
C11—O1—Cr1129.88 (10)N2—C17—C16124.15 (14)
C26—O2—Cr1126.34 (10)N2—C17—H17117.9
C8—C1—C2122.1 (2)C16—C17—H17117.9
C8—C1—Rh170.75 (11)N2—C18—C19106.43 (13)
C2—C1—Rh1112.22 (12)N2—C18—H18A110.4
C8—C1—H1114.7C19—C18—H18A110.4
C2—C1—H1114.7N2—C18—H18B110.4
Rh1—C1—H1114.7C19—C18—H18B110.4
C1—C2—C3112.16 (15)H18A—C18—H18B108.6
C1—C2—H2A109.2N3—C19—C18107.71 (13)
C3—C2—H2A109.2N3—C19—H19A110.2
C1—C2—H2B109.2C18—C19—H19A110.2
C3—C2—H2B109.2N3—C19—H19B110.2
H2A—C2—H2B107.9C18—C19—H19B110.2
C4—C3—C2113.36 (15)H19A—C19—H19B108.5
C4—C3—H3A108.9N3—C20—C21124.45 (15)
C2—C3—H3A108.9N3—C20—H20117.8
C4—C3—H3B108.9C21—C20—H20117.8
C2—C3—H3B108.9C22—C21—C26119.65 (15)
H3A—C3—H3B107.7C22—C21—C20118.17 (15)
C5—C4—C3124.74 (16)C26—C21—C20121.96 (14)
C5—C4—Rh170.72 (9)C23—C22—C21121.12 (17)
C3—C4—Rh1111.94 (12)C23—C22—H22119.4
C5—C4—H4113.9C21—C22—H22119.4
C3—C4—H4113.9C22—C23—C24119.03 (16)
Rh1—C4—H4113.9C22—C23—H23120.5
C4—C5—C6123.49 (16)C24—C23—H23120.5
C4—C5—Rh170.26 (9)C25—C24—C23121.20 (16)
C6—C5—Rh1113.95 (13)C25—C24—H24119.4
C4—C5—H5113.9C23—C24—H24119.4
C6—C5—H5113.9C24—C25—C26120.82 (16)
Rh1—C5—H5113.9C24—C25—H25119.6
C5—C6—C7113.38 (17)C26—C25—H25119.6
C5—C6—H6A108.9O2—C26—C25118.67 (15)
C7—C6—H6A108.9O2—C26—C21123.10 (14)
C5—C6—H6B108.9C25—C26—C21118.17 (14)
Comparative geometric parameters (Å) for a nitride-bridged versus terminal nitride–chromium–salen complex. top
(salen)Cr(µ-N)RhCl(COD)aCr(N)(salen)b
CrN1.5936 (14)1.559 (2)
Cr—O1.8869 (11)–1.9063 (11)1.910 (2)–1.913 (2)
Cr—N2.0016 (13)–2.0091 (14)2.017 (2)–2.019 (2)
Cr-oop c0.4827 (7)0.501 (1)
Notes: (a) present work; (b) Bendix et al. (1998); (c) oop = out-of-plane.
Comparative geometric parameters (Å, °) for nitride-bridged complexes of (Rh/Ir)Cl(COD). top
Rh/Ir—NRh/Ir—ClRh/Ir—CMN—Rh/Ir
(salen)Cr(µ-N)RhCl(COD)a1.9594 (14)2.3644 (6)2.1065 (16)–2.1921 (18)173.03 (9)
(Me2PhP)3Cl2Re(µ-N)RhCl(COD)b1.956 (6)2.373 (3)2.10 (1)–2.17 (1)174.8 (4)
(Ph3Sb)2Cl3Os(µ-N)RhCl(COD)c1.846 (6)2.337 (3)2.138 (10)–2.274 (11)175.3 (5)
(Me2PhP)3Cl2Re(µ-N)IrCl(COD)d1.962 (8)2.342 (3)2.10 (1)–2.18 (1)173.8 (4)
[O3Os(µ-N)IrCl(COD)]-d1.978 (7)2.353 (3)2.09 (1)–2.142 (9)161.8 (4)
[Rh(COD)Cl]2e-2.402 (1)–2.421 (1)2.097 (6)–2.126 (6)-
Notes: (a) present work; (b) Schwarz & Strähle (2003); (c) Schwarz et al. (2004); (d) Schwarz et al. (2003); (e) De Ridder & Imhoff (1994).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds