

Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113022087/eg3131sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S0108270113022087/eg3131Isup2.hkl |
![]() | Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270113022087/eg3131Isup3.cml |
CCDC reference: 964773
Chiral phosphorus-containing compounds such as α-amino phosphonic acids and their derivatives have attracted considerable attention due to their promising biological properties (Romanenko & Kukhar, 2006; Haynes et al., 1989, 1991; Shi et al., 2000; Kafarski & Lejczak, 2001). They have found application as antibacterials (Pratt, 1989), antiviral agents (Huang & Chen, 2000) and enzyme inhibitors (Smith et al., 1989; Kafarski & Lejczak, 1991). The absolute configuration of phosphonyl compounds strongly influences their biological properties (Patel et al., 1995). Various synthetic methods for α-aminophosphonic acids and α-aminophosphonates have therefore been reported (Moore et al., 2002; Demmer et al., 2011; Bálint et al., 2013; Wu et al., 2013). However, other α-amino phosphorus derivatives such as α-aminophosphine oxides have received much less attention for their biological properties due to the lack of direct synthetic access. We report herein a convenient one-pot three-component method through a Kabachnik–Fields reaction for the synthesis of 2-[anilino(diphenylphosphoryl)methyl]phenol, (I), using diphenylphosphine oxide, salicylaldehyde and aniline as starting materials (see scheme). The notable advantages of this methodology are operational simplicity, mild reaction conditions, higher yields, a reasonable reaction time and ease of isolation of the pure products. In order to further confirm the stereostructure and structure–activity relationship of α-aminophosphine oxides potentially helpful for practical applications, we established the crystal structure of (I).
A solution of diphenylphosphine oxide (1.01 g, 5 mmol, 1 equivalent) in dry toluene (10 ml) was added to a 50 ml dry flask equipped with a CaCl2 tube and which contained a solution of aniline (1.8 ml, 20 mmol, 4 equivalents) and salicylaldehyde (0.61 g, 5 mmol, 1 equivalent) in dry toluene (20 ml). After stirring for 4 h at room temperature, the reaction was complete; the precipitate was filtered off, washed with cold toluene (10 ml) and then dried under vacuum to afford the pure title product, (I) (yield 1.8 g, 90%), as a colourless solid. Single crystals of (I) suitable for X-ray diffraction were obtained by recrystallization from diethyl ether. Spectroscopic analysis: 1H NMR (400 MHz, CDCl3, 298 K, δ, p.p.m.): 9.82 (s, 1H, OH), 7.81–6.62 (m, 19H, Ar-H), 5.46 (d, 2JP—H = 8.5 Hz, 1H, C—H), 3.73 (br s, 1H, NH); 13C NMR (100 MHz, CDCl3, 298 K, δ, p.p.m.): 155.9, 145.8, 132.7, 129.3, 129.7, 129.2, 128.8, 128.6, 128.4, 128.3, 122.4, 120.4, 119.2, 114.4, 56.9 (d, 1JP—C = 39.9 Hz); 31P NMR (162 MHz, CDCl3, 298 K, δ, p.p.m.): 38.4; IR (KBr, ν, cm-1): 3430 (NH), 3228 (OH), 3303 (NH), 3138, 3062, 2969, 2916, 2884, 2827, 1591, 1553, 1485, 1438, 1171 (P═O), 1122, 1096 (P—O), 1070, 1037, 855, 743, 726, 693, 561, 542, 525, 439. Analysis, found for C25H22NO2P: C 75.19, H 5.43, N 3.55%; calculated: C 75.18, H 5.55, N 3.51%.
Crystal data, data collection and structure refinement details are summarized in Table 1. H atoms bound to C or N atoms were positioned geometrically and refined using a riding model, with aryl C—H = 0.93 Å, methine C—H = 0.98 Å and N—H = 0.86 Å, with Uiso(H) = 1.2Ueq(C,N). The hydroxy H atom was located from a difference Fourier map and the O—H distance was constrained to 0.82 Å, with Uiso(H) = 1.5Ueq(O).
In compound (I), the formation of P—C bonds between the P atom of diphenylphosphine oxide and the carbonyl C atom of salicylaldehyde results in the formation of a stereocentre at atom C7 (Fig. 1). The space group Pbca was identified with the help of the program PLATON (Spek, 2009). Not surprisingly, (I) forms racemic crystals with one molecule in the asymmetric unit. A displacement ellipsoid plot of the S enantiomer is shown in Fig. 1. The O—P—C bond angles are significantly larger than the C—P—C angles (Table 2), indicating that the P atom adopts a distorted tetrahedral configuration with sp3-hybridization.
An intermolecular O1—H1···O2i hydrogen bond (details in Table 3, including symmetry code) between the O1—H1 hydroxy group and the P-bonded atom O2 links neighbouring molecules into heterochiral chains along the crystallographic a axis. The hydrogen bonds are shown in a packing diagram (Fig. 2).
Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).
Fig. 1. The molecular structure of (I), showing the atom-labelling scheme.
Displacement ellipsoids are drawn at the 50% probability level. Fig. 2. A packing diagram for (I), showing the intermolecular hydrogen-bonding interactions (dashed lines) between atoms H1B and O2i of neighbouring S and R enantiomers. [Symmetry code: (i) x - 1/2, y, -z + 3/2.] |
C25H22NO2P | Dx = 1.226 Mg m−3 |
Mr = 399.41 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 3813 reflections |
a = 12.5489 (4) Å | θ = 2.3–29.7° |
b = 16.4560 (5) Å | µ = 0.15 mm−1 |
c = 20.9643 (6) Å | T = 293 K |
V = 4329.2 (2) Å3 | Prism, colourless |
Z = 8 | 0.1 × 0.1 × 0.1 mm |
F(000) = 1680 |
Agilent Xcalibur (Atlas, Gemini ultra) diffractometer | 4429 independent reflections |
Radiation source: fine-focus sealed tube | 2951 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.039 |
ω scans | θmax = 26.4°, θmin = 2.3° |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | h = −14→15 |
Tmin = 0.774, Tmax = 1.000 | k = −20→16 |
14390 measured reflections | l = −26→25 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 1.02 | w = 1/[σ2(Fo2) + (0.0503P)2 + 0.6207P] where P = (Fo2 + 2Fc2)/3 |
4429 reflections | (Δ/σ)max < 0.001 |
263 parameters | Δρmax = 0.29 e Å−3 |
0 restraints | Δρmin = −0.27 e Å−3 |
C25H22NO2P | V = 4329.2 (2) Å3 |
Mr = 399.41 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 12.5489 (4) Å | µ = 0.15 mm−1 |
b = 16.4560 (5) Å | T = 293 K |
c = 20.9643 (6) Å | 0.1 × 0.1 × 0.1 mm |
Agilent Xcalibur (Atlas, Gemini ultra) diffractometer | 4429 independent reflections |
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) | 2951 reflections with I > 2σ(I) |
Tmin = 0.774, Tmax = 1.000 | Rint = 0.039 |
14390 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 1.02 | Δρmax = 0.29 e Å−3 |
4429 reflections | Δρmin = −0.27 e Å−3 |
263 parameters |
Experimental. CrysAlisPro, Agilent Technologies, Version 1.171.36.21 (release 14-08-2012 CrysAlis171 .NET) (compiled Sep 14 2012,17:21:16) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
P1 | 0.68854 (4) | 0.10727 (3) | 0.67088 (2) | 0.03680 (16) | |
O1 | 0.43871 (13) | 0.17634 (11) | 0.75461 (7) | 0.0704 (5) | |
H1B | 0.3989 | 0.1774 | 0.7856 | 0.106* | |
O2 | 0.79368 (10) | 0.14729 (9) | 0.66206 (6) | 0.0484 (4) | |
N1 | 0.59018 (14) | 0.21014 (10) | 0.59205 (7) | 0.0476 (4) | |
H1 | 0.6477 | 0.2017 | 0.5708 | 0.057* | |
C1 | 0.65930 (19) | 0.30369 (13) | 0.71138 (11) | 0.0559 (6) | |
H1A | 0.7084 | 0.3083 | 0.6784 | 0.067* | |
C2 | 0.6630 (2) | 0.35799 (15) | 0.76194 (13) | 0.0732 (7) | |
H2 | 0.7144 | 0.3987 | 0.7629 | 0.088* | |
C3 | 0.5904 (2) | 0.35127 (16) | 0.81021 (12) | 0.0693 (7) | |
H3 | 0.5931 | 0.3876 | 0.8442 | 0.083* | |
C4 | 0.5139 (2) | 0.29207 (15) | 0.80944 (10) | 0.0603 (6) | |
H4 | 0.4646 | 0.2885 | 0.8424 | 0.072* | |
C5 | 0.51038 (17) | 0.23744 (13) | 0.75920 (9) | 0.0466 (5) | |
C6 | 0.58356 (16) | 0.24296 (11) | 0.70957 (9) | 0.0392 (5) | |
C7 | 0.58122 (15) | 0.17948 (12) | 0.65686 (8) | 0.0384 (5) | |
H7 | 0.5136 | 0.1500 | 0.6602 | 0.046* | |
C8 | 0.41040 (18) | 0.26471 (13) | 0.59454 (10) | 0.0514 (6) | |
H8 | 0.3999 | 0.2444 | 0.6355 | 0.062* | |
C9 | 0.3292 (2) | 0.30678 (15) | 0.56417 (12) | 0.0668 (7) | |
H9 | 0.2646 | 0.3146 | 0.5850 | 0.080* | |
C10 | 0.3430 (3) | 0.33700 (16) | 0.50364 (14) | 0.0758 (8) | |
H10 | 0.2881 | 0.3651 | 0.4836 | 0.091* | |
C11 | 0.4382 (3) | 0.32536 (16) | 0.47317 (12) | 0.0740 (8) | |
H11 | 0.4478 | 0.3458 | 0.4322 | 0.089* | |
C12 | 0.5201 (2) | 0.28378 (13) | 0.50237 (10) | 0.0561 (6) | |
H12 | 0.5843 | 0.2763 | 0.4810 | 0.067* | |
C13 | 0.50706 (18) | 0.25279 (11) | 0.56411 (9) | 0.0433 (5) | |
C14 | 0.5774 (2) | −0.00203 (15) | 0.59125 (10) | 0.0621 (6) | |
H14 | 0.5149 | 0.0253 | 0.6019 | 0.075* | |
C15 | 0.5736 (3) | −0.06854 (17) | 0.55043 (12) | 0.0788 (8) | |
H15 | 0.5086 | −0.0861 | 0.5342 | 0.095* | |
C16 | 0.6647 (3) | −0.10775 (17) | 0.53429 (13) | 0.0860 (10) | |
H16 | 0.6619 | −0.1523 | 0.5071 | 0.103* | |
C17 | 0.7601 (3) | −0.08252 (17) | 0.55751 (14) | 0.0857 (9) | |
H17 | 0.8221 | −0.1096 | 0.5458 | 0.103* | |
C18 | 0.7655 (2) | −0.01646 (14) | 0.59873 (11) | 0.0640 (7) | |
H18 | 0.8310 | 0.0006 | 0.6145 | 0.077* | |
C19 | 0.67364 (17) | 0.02364 (12) | 0.61607 (9) | 0.0428 (5) | |
C20 | 0.7151 (2) | 0.10357 (17) | 0.80119 (10) | 0.0719 (8) | |
H20 | 0.7624 | 0.1463 | 0.7948 | 0.086* | |
C21 | 0.6948 (3) | 0.0757 (2) | 0.86265 (12) | 0.0975 (11) | |
H21 | 0.7280 | 0.1003 | 0.8973 | 0.117* | |
C22 | 0.6265 (3) | 0.0125 (2) | 0.87217 (12) | 0.0874 (9) | |
H22 | 0.6143 | −0.0067 | 0.9133 | 0.105* | |
C23 | 0.5764 (2) | −0.02250 (17) | 0.82197 (13) | 0.0783 (8) | |
H23 | 0.5290 | −0.0651 | 0.8287 | 0.094* | |
C24 | 0.5956 (2) | 0.00505 (14) | 0.76081 (10) | 0.0609 (6) | |
H24 | 0.5609 | −0.0193 | 0.7266 | 0.073* | |
C25 | 0.66542 (16) | 0.06800 (12) | 0.74989 (9) | 0.0426 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
P1 | 0.0374 (3) | 0.0433 (3) | 0.0297 (3) | −0.0013 (2) | −0.0015 (2) | 0.0009 (2) |
O1 | 0.0646 (11) | 0.0858 (12) | 0.0609 (10) | −0.0245 (10) | 0.0271 (8) | −0.0124 (9) |
O2 | 0.0378 (8) | 0.0683 (9) | 0.0391 (7) | −0.0077 (7) | −0.0011 (6) | −0.0007 (7) |
N1 | 0.0492 (11) | 0.0603 (11) | 0.0333 (8) | 0.0079 (9) | 0.0064 (8) | 0.0097 (8) |
C1 | 0.0629 (15) | 0.0474 (13) | 0.0574 (14) | −0.0102 (12) | 0.0067 (12) | 0.0012 (11) |
C2 | 0.0790 (19) | 0.0521 (15) | 0.089 (2) | −0.0140 (14) | −0.0039 (16) | −0.0097 (14) |
C3 | 0.084 (2) | 0.0586 (16) | 0.0657 (16) | 0.0075 (15) | −0.0063 (15) | −0.0203 (13) |
C4 | 0.0673 (16) | 0.0659 (16) | 0.0479 (12) | 0.0117 (14) | 0.0073 (12) | −0.0074 (11) |
C5 | 0.0465 (12) | 0.0501 (12) | 0.0430 (11) | 0.0012 (11) | 0.0035 (10) | 0.0010 (10) |
C6 | 0.0421 (12) | 0.0384 (11) | 0.0370 (10) | 0.0008 (9) | 0.0000 (9) | 0.0045 (9) |
C7 | 0.0390 (11) | 0.0429 (11) | 0.0332 (10) | −0.0034 (9) | 0.0006 (8) | 0.0051 (8) |
C8 | 0.0570 (14) | 0.0535 (13) | 0.0436 (12) | 0.0074 (11) | −0.0110 (11) | −0.0036 (10) |
C9 | 0.0662 (17) | 0.0640 (16) | 0.0702 (16) | 0.0141 (13) | −0.0229 (13) | −0.0157 (13) |
C10 | 0.093 (2) | 0.0604 (17) | 0.0743 (18) | 0.0103 (15) | −0.0419 (17) | −0.0013 (14) |
C11 | 0.108 (2) | 0.0609 (16) | 0.0527 (14) | −0.0108 (16) | −0.0350 (16) | 0.0141 (12) |
C12 | 0.0759 (16) | 0.0524 (13) | 0.0400 (11) | −0.0113 (12) | −0.0120 (11) | 0.0062 (10) |
C13 | 0.0567 (14) | 0.0371 (11) | 0.0362 (10) | −0.0034 (10) | −0.0102 (10) | −0.0019 (9) |
C14 | 0.0703 (17) | 0.0622 (15) | 0.0539 (13) | −0.0032 (13) | −0.0079 (13) | −0.0116 (12) |
C15 | 0.109 (2) | 0.0678 (17) | 0.0595 (16) | −0.0205 (18) | −0.0115 (16) | −0.0111 (14) |
C16 | 0.148 (3) | 0.0524 (16) | 0.0574 (16) | −0.006 (2) | 0.0084 (19) | −0.0091 (13) |
C17 | 0.116 (3) | 0.0599 (17) | 0.081 (2) | 0.0229 (18) | 0.0206 (19) | −0.0111 (15) |
C18 | 0.0740 (18) | 0.0570 (15) | 0.0609 (14) | 0.0125 (14) | 0.0016 (13) | −0.0042 (12) |
C19 | 0.0567 (14) | 0.0400 (11) | 0.0318 (10) | 0.0011 (10) | −0.0007 (10) | 0.0016 (9) |
C20 | 0.0852 (19) | 0.0932 (19) | 0.0372 (12) | −0.0216 (16) | −0.0057 (12) | 0.0073 (13) |
C21 | 0.129 (3) | 0.128 (3) | 0.0357 (14) | −0.021 (2) | −0.0097 (15) | 0.0118 (16) |
C22 | 0.125 (3) | 0.092 (2) | 0.0450 (15) | 0.011 (2) | 0.0147 (17) | 0.0264 (15) |
C23 | 0.100 (2) | 0.0636 (17) | 0.0714 (18) | −0.0068 (16) | 0.0200 (17) | 0.0246 (14) |
C24 | 0.0745 (17) | 0.0593 (15) | 0.0491 (13) | −0.0074 (13) | 0.0037 (12) | 0.0112 (11) |
C25 | 0.0475 (12) | 0.0456 (11) | 0.0347 (10) | 0.0048 (10) | −0.0008 (9) | 0.0043 (9) |
P1—O2 | 1.4862 (14) | C11—H11 | 0.9300 |
P1—C7 | 1.820 (2) | C12—C11 | 1.378 (3) |
P1—C19 | 1.803 (2) | C12—H12 | 0.9300 |
P1—C25 | 1.8015 (19) | C13—C8 | 1.384 (3) |
O1—H1B | 0.8200 | C13—C12 | 1.401 (3) |
N1—H1 | 0.8600 | C14—H14 | 0.9300 |
N1—C13 | 1.387 (3) | C14—C15 | 1.390 (3) |
C1—H1A | 0.9300 | C15—H15 | 0.9300 |
C1—C2 | 1.387 (3) | C16—C15 | 1.356 (4) |
C2—H2 | 0.9300 | C16—H16 | 0.9300 |
C2—C3 | 1.366 (4) | C16—C17 | 1.357 (4) |
C3—H3 | 0.9300 | C17—H17 | 0.9300 |
C4—C3 | 1.368 (3) | C18—C17 | 1.390 (3) |
C4—H4 | 0.9300 | C18—H18 | 0.9300 |
C5—O1 | 1.352 (2) | C19—C14 | 1.382 (3) |
C5—C4 | 1.385 (3) | C19—C18 | 1.377 (3) |
C6—C1 | 1.380 (3) | C20—H20 | 0.9300 |
C6—C5 | 1.391 (3) | C20—C21 | 1.391 (3) |
C7—N1 | 1.454 (2) | C21—H21 | 0.9300 |
C7—C6 | 1.521 (3) | C22—C21 | 1.363 (4) |
C7—H7 | 0.9800 | C22—H22 | 0.9300 |
C8—H8 | 0.9300 | C23—C22 | 1.355 (4) |
C8—C9 | 1.387 (3) | C23—H23 | 0.9300 |
C9—H9 | 0.9300 | C24—C23 | 1.381 (3) |
C9—C10 | 1.374 (4) | C24—H24 | 0.9300 |
C10—H10 | 0.9300 | C25—C20 | 1.374 (3) |
C11—C10 | 1.368 (4) | C25—C24 | 1.376 (3) |
O2—P1—C7 | 110.33 (9) | C10—C11—C12 | 120.9 (2) |
O2—P1—C19 | 110.55 (9) | C12—C11—H11 | 119.6 |
O2—P1—C25 | 114.61 (9) | C11—C12—H12 | 119.9 |
C19—P1—C7 | 108.59 (9) | C11—C12—C13 | 120.3 (2) |
C25—P1—C7 | 105.28 (9) | C13—C12—H12 | 119.9 |
C25—P1—C19 | 107.19 (9) | N1—C13—C12 | 119.1 (2) |
C5—O1—H1B | 109.5 | C8—C13—N1 | 122.41 (17) |
C7—N1—H1 | 119.6 | C8—C13—C12 | 118.4 (2) |
C13—N1—H1 | 119.6 | C15—C14—H14 | 119.9 |
C13—N1—C7 | 120.81 (16) | C19—C14—H14 | 119.9 |
C2—C1—H1A | 119.6 | C19—C14—C15 | 120.2 (3) |
C6—C1—H1A | 119.6 | C14—C15—H15 | 120.0 |
C6—C1—C2 | 120.7 (2) | C16—C15—C14 | 120.0 (3) |
C1—C2—H2 | 120.3 | C16—C15—H15 | 120.0 |
C3—C2—C1 | 119.5 (2) | C15—C16—H16 | 119.7 |
C3—C2—H2 | 120.3 | C15—C16—C17 | 120.6 (3) |
C2—C3—H3 | 119.4 | C17—C16—H16 | 119.7 |
C2—C3—C4 | 121.1 (2) | C16—C17—H17 | 119.8 |
C4—C3—H3 | 119.4 | C16—C17—C18 | 120.3 (3) |
C3—C4—H4 | 120.2 | C18—C17—H17 | 119.8 |
C3—C4—C5 | 119.6 (2) | C17—C18—H18 | 120.1 |
C5—C4—H4 | 120.2 | C19—C18—C17 | 119.9 (3) |
O1—C5—C4 | 123.9 (2) | C19—C18—H18 | 120.1 |
O1—C5—C6 | 115.74 (18) | C14—C19—P1 | 124.35 (17) |
C4—C5—C6 | 120.4 (2) | C18—C19—P1 | 116.58 (17) |
C1—C6—C5 | 118.79 (19) | C18—C19—C14 | 119.1 (2) |
C1—C6—C7 | 122.05 (18) | C21—C20—H20 | 119.9 |
C5—C6—C7 | 119.09 (18) | C25—C20—H20 | 119.9 |
P1—C7—H7 | 107.8 | C25—C20—C21 | 120.1 (3) |
N1—C7—P1 | 108.69 (13) | C20—C21—H21 | 119.9 |
N1—C7—C6 | 116.05 (16) | C22—C21—C20 | 120.2 (3) |
N1—C7—H7 | 107.8 | C22—C21—H21 | 119.9 |
C6—C7—P1 | 108.47 (13) | C21—C22—H22 | 119.9 |
C6—C7—H7 | 107.8 | C23—C22—C21 | 120.2 (2) |
C9—C8—H8 | 119.9 | C23—C22—H22 | 119.9 |
C13—C8—H8 | 119.9 | C22—C23—H23 | 120.0 |
C13—C8—C9 | 120.2 (2) | C22—C23—C24 | 120.0 (3) |
C8—C9—H9 | 119.6 | C24—C23—H23 | 120.0 |
C10—C9—C8 | 120.8 (3) | C23—C24—H24 | 119.6 |
C10—C9—H9 | 119.6 | C25—C24—C23 | 120.8 (2) |
C9—C10—H10 | 120.3 | C25—C24—H24 | 119.6 |
C11—C10—C9 | 119.4 (2) | C20—C25—P1 | 119.59 (17) |
C11—C10—H10 | 120.3 | C20—C25—C24 | 118.65 (19) |
C10—C11—H11 | 119.6 | C24—C25—P1 | 121.71 (16) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1B···O2i | 0.82 | 1.79 | 2.5677 (19) | 159 |
Symmetry code: (i) x−1/2, y, −z+3/2. |
Experimental details
Crystal data | |
Chemical formula | C25H22NO2P |
Mr | 399.41 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 293 |
a, b, c (Å) | 12.5489 (4), 16.4560 (5), 20.9643 (6) |
V (Å3) | 4329.2 (2) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.15 |
Crystal size (mm) | 0.1 × 0.1 × 0.1 |
Data collection | |
Diffractometer | Agilent Xcalibur (Atlas, Gemini ultra) diffractometer |
Absorption correction | Multi-scan (CrysAlis PRO; Agilent, 2012) |
Tmin, Tmax | 0.774, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14390, 4429, 2951 |
Rint | 0.039 |
(sin θ/λ)max (Å−1) | 0.625 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.122, 1.02 |
No. of reflections | 4429 |
No. of parameters | 263 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.27 |
Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).
O2—P1—C7 | 110.33 (9) | C19—P1—C7 | 108.59 (9) |
O2—P1—C19 | 110.55 (9) | C25—P1—C7 | 105.28 (9) |
O2—P1—C25 | 114.61 (9) | C25—P1—C19 | 107.19 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1B···O2i | 0.82 | 1.79 | 2.5677 (19) | 158.6 |
Symmetry code: (i) x−1/2, y, −z+3/2. |