
Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113029776/eg3138sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S0108270113029776/eg3138Isup2.hkl |
![]() | MDL mol file https://doi.org/10.1107/S0108270113029776/eg3138Isup3.mol |
CCDC reference: 969480
The chemistry of precursors for inorganic materials has raised considerable interest during the past years, especially with respect to application in electrodes, optical coatings, and nanomaterials. The need for soluble or vaporizable compounds has made molecular metal complexes one of the preferred target–substance classes. Exact knowledge of precursor structure is vital to a deeper understanding of deposition, decomposition and optimization potential. Vanadium oxide fluorides – and corresponding lithium compounds – are promising candidates for application as electrode materials in lithium-ion batteries (Mäntymäki et al., 2012). This is based on the fact that theoretical calculations have predicted an increased redox potential through substitution of oxygen with fluorine (Koyama et al., 2000).
We herein describe [VVF2O(Oi-Pr)(i-PrOH)2], (I) (see Scheme; the mirror plane in case of a time-averaged solution structure with ligands freely rotating around the V–O axes is identical with the paper plane), that we serendipitously discovered when synthesizing vanadium–oxide-fluoride precursors from oxidotris(propan-2-olato)vanadium(V), [VO(OiPr)3]. Complex (I) is a propan-2-ol adduct of [VVF2O(OiPr)], a compound already described in the literature (Priebsch & Rehder, 1985). Although the latter is easily prepared, no crystal structure of [VF2O(OiPr)] or a compound containing this structure motf has been described so far. Roughly similar coordination environments around vanadium are, however, found in some polynuclear µ-pivalate or µ-methanolate complexes like (Et2H2N)[CrIII6(VIVO)2F8(OOCCMe3)15] (Larsen et al., 2003) and (nBu4N)2[VIV8O8(OMe)16(VIVOF4)] (Spandl et al., 2003).
All chemicals, except for [VO(OiPr)3] supplied by Strem Chemicals, were bought from Sigma–Aldrich and used without further purification.
[VO(OiPr)3] (1.70 g, 0.694 mol) was dissolved in propan-2-ol (20 ml). To the colorless solution, aqueous hydrofluoric acid (40%, 0.3 ml, 0.7 mol) was added. The resulting yellow solution was stirred for 90 min at room temperature, the color turning to orange. The solvent was evaporated in a medium vacuum, leaving an orange liquid (ca 5 ml).
A sample for NMR spectroscopy was prepared from the product (I) (0.01 ml) and chloroform-d (0.05 ml). After measurement, the sample was stored at 238 K in the dark and produced clear yellow needles after a few weeks.
NMR spectra were recorded on a Bruker ARV 400 at room temperature. Chemical shifts refer to SiMe4, CCl3F, and VOCl3 for 1H, 19F, and 51V, respectively. They were calibrated with respect to the residual proton signal for 1H (δ = 7.26) or an electronically stored frequency for the other nuclei. The 1H NMR signal for the hydroxyl protons was very broad; its integral suffers from problems of limit choice and thus seems too small.
1H NMR (400 MHz, CDCl3): δ 5.08 (s, 3H, CH), 3.06 (s, 1H, OH), 1.39–1.37 (m, 18H, CH3); 19F{1H} NMR (188 MHz, CDCl3): δ 43.6 (br m); 51V{1H} NMR (105 MHz, CDCl3): δ -640 (br m).
Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms were located on difference Fourier maps. C-bound H atoms were constrained using a riding model [C—H = 0.98 Å and Uiso(H) = 1.5Ueq(C) for methyl groups, and C—H = 1.00 Å and Uiso(H) = 1.2Ueq(C) for methine groups]. Methyl groups were considered rigid but freely rotating. O-bound H atoms were refined with restrained 1,2- (O—H = 0.84 Å, final range: 0.778–0.805 Å) and 1,3-distances (C—H = 1.86 Å, final range: 1.848–1.897 Å), as well as constrained displacement parameters [Uiso(H) = 1.2Ueq(O)].
Experiments to synthesize precursors for the preparation of vanadium oxide fluorides were performed with [VO(OiPr)3]. It was reacted with different amounts of hydrofluoric acid in organic solvents, giving air- and light-sensitive products. Single crystals of the title compound, (I), were obtained via reaction of [VO(OiPr)3] with aqueous hydrofluoric acid in propan-2-ol (V–HF–H2O = 3:3:5). They formed by recrystallization from chloroform-d in the refrigerator during a few weeks.
The electroneutral complex (I) crystallized in the triclinic space group P1 with two molecules in the asymmetric unit (Fig. 1). Coordinative V—O bond lengths (Table 2) fall in the common range for vanadium alcoholates, the bonds to the propan-2-olate ligands being by 0.4–0.5 Å shorter than those to the propan-2-ol ligands (Spandl et al., 2000). Furthermore, the trans effect caused by the strong oxide donor results in an elongation of the opposing bond to a propan-2-ol ligand compared to the other (0.07 Å for V1—O43 and 0.11 Å for V2–O73). The coordination angles (Table 3) differ notably from the ideal values of 90 (cis) and 180° (trans) for an undistorted octahedron. The continuous symmetry measure (CSM), which `quantifies the minimal distance movement that the points of an object have to undergo in order to be transformed into a shape of the desired symmetry' (Zabrodsky et al., 1992), corroborates this view: With S(Oh) = 0.84 and S(Oh) = 0.97 (moieties containing V1 and V2, respectively), the deviation is considerable for a complex of only monodentate ligands.
In the distorted octahedron, the propan-2-ol ligands adopt a cis configuration in plane with the oxide and propan-2-olate ligand. The fluoride ligands are trans-coordinated in apical positions with respect to this plane. In solution, this configuration would lead to an achiral molecule in the time average (see Scheme) because of the ligands freely rotating around the V—O axes. As this is not the case in the crystal, a considerable degree of chirality is found in the complex moieties as defined by continuous chirality measures (CCM): S(Cs) = 2.93 and S(Cs) = 3.99 for the moiety containing V1 and V2, respectively (Zabrodsky & Avnir, 1995). The two molecules in the asymmetric unit are of opposite chirality sense; an element of pseudosymmetry was not found. In addition, all organic ligands are twisted around the O—C axis with respect to the other moiety (Fig. 3), making the molecules pseudo-enantiomorphic.
Each molecule takes part in four intermolecular O—H···F hydrogen bonds: Two neighboring moieties – crystallographically identical to the central one – are each connected by donating and accepting one bond (Table 3). In this manner, infinite chains of (I) propagate along [100] (Fig. 3). These interact via van der Waals forces by means of the alkyl residues.
Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012), Mercury (Macrae et al., 2008), PLATON/MOLFIT (Spek, 2009), PLATON/PLUTON (Spek, 2009) and CSM website (Zayit et al., 2011).
[V(C3H7O)F2O(C3H8O)2] | Z = 4 |
Mr = 284.21 | F(000) = 600 |
Triclinic, P1 | Dx = 1.299 Mg m−3 |
a = 9.0943 (9) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 9.9151 (8) Å | Cell parameters from 2615 reflections |
c = 16.4279 (13) Å | θ = 3.5–32.6° |
α = 97.315 (7)° | µ = 0.70 mm−1 |
β = 97.690 (7)° | T = 150 K |
γ = 92.324 (7)° | Coloumn, clear yellow |
V = 1453.5 (2) Å3 | 0.89 × 0.20 × 0.14 mm |
Agilent Xcalibur diffractometer | 5702 independent reflections |
Radiation source: fine-focus sealed tube, Agilent Enhance | 4505 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.045 |
Detector resolution: 16.3031 pixels mm-1 | θmax = 26.0°, θmin = 3.5° |
ω scans | h = −11→11 |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)] | k = −12→11 |
Tmin = 0.727, Tmax = 0.920 | l = −17→20 |
10818 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.052 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.107 | Heteroxyz |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0393P)2] where P = (Fo2 + 2Fc2)/3 |
5702 reflections | (Δ/σ)max < 0.001 |
313 parameters | Δρmax = 0.44 e Å−3 |
8 restraints | Δρmin = −0.53 e Å−3 |
[V(C3H7O)F2O(C3H8O)2] | γ = 92.324 (7)° |
Mr = 284.21 | V = 1453.5 (2) Å3 |
Triclinic, P1 | Z = 4 |
a = 9.0943 (9) Å | Mo Kα radiation |
b = 9.9151 (8) Å | µ = 0.70 mm−1 |
c = 16.4279 (13) Å | T = 150 K |
α = 97.315 (7)° | 0.89 × 0.20 × 0.14 mm |
β = 97.690 (7)° |
Agilent Xcalibur diffractometer | 5702 independent reflections |
Absorption correction: analytical [CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)] | 4505 reflections with I > 2σ(I) |
Tmin = 0.727, Tmax = 0.920 | Rint = 0.045 |
10818 measured reflections |
R[F2 > 2σ(F2)] = 0.052 | 8 restraints |
wR(F2) = 0.107 | Heteroxyz |
S = 1.05 | Δρmax = 0.44 e Å−3 |
5702 reflections | Δρmin = −0.53 e Å−3 |
313 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Oxygen-borne hydrogen atoms were refined with restrained 1,2- and 1,3- distances as given by the _restr_distance_[] items. Their Uiso were constrained to be 1.2 × Ueq of the bearing atoms. |
x | y | z | Uiso*/Ueq | ||
C30 | 0.8503 (4) | 0.3139 (4) | −0.0785 (2) | 0.0415 (9) | |
H30A | 0.9509 | 0.3527 | −0.0568 | 0.062* | |
H30B | 0.7922 | 0.3827 | −0.1038 | 0.062* | |
H30C | 0.8560 | 0.2352 | −0.1204 | 0.062* | |
C31 | 0.7763 (3) | 0.2691 (3) | −0.00849 (18) | 0.0251 (7) | |
H31 | 0.6740 | 0.2291 | −0.0309 | 0.030* | |
C32 | 0.7665 (4) | 0.3851 (4) | 0.0593 (2) | 0.0416 (9) | |
H32A | 0.7269 | 0.3497 | 0.1056 | 0.062* | |
H32B | 0.7004 | 0.4519 | 0.0377 | 0.062* | |
H32C | 0.8657 | 0.4288 | 0.0787 | 0.062* | |
C40 | 0.6679 (4) | −0.3120 (4) | −0.0916 (2) | 0.0432 (9) | |
H40A | 0.6861 | −0.3383 | −0.0358 | 0.065* | |
H40B | 0.7073 | −0.3796 | −0.1307 | 0.065* | |
H40C | 0.5608 | −0.3077 | −0.1082 | 0.065* | |
C41 | 0.7441 (3) | −0.1747 (3) | −0.09197 (17) | 0.0257 (7) | |
H41 | 0.8530 | −0.1814 | −0.0748 | 0.031* | |
C42 | 0.7232 (4) | −0.1247 (4) | −0.17588 (18) | 0.0363 (8) | |
H42A | 0.6171 | −0.1158 | −0.1935 | 0.054* | |
H42B | 0.7620 | −0.1901 | −0.2165 | 0.054* | |
H42C | 0.7769 | −0.0359 | −0.1720 | 0.054* | |
C50 | 0.5413 (4) | −0.2150 (5) | 0.2175 (2) | 0.0653 (15) | |
H50A | 0.4750 | −0.1436 | 0.2029 | 0.098* | |
H50B | 0.5331 | −0.2327 | 0.2741 | 0.098* | |
H50C | 0.5131 | −0.2985 | 0.1788 | 0.098* | |
C51 | 0.6989 (3) | −0.1691 (3) | 0.21226 (17) | 0.0265 (7) | |
H51 | 0.7284 | −0.0867 | 0.2540 | 0.032* | |
C52 | 0.8081 (4) | −0.2747 (4) | 0.2266 (2) | 0.0449 (10) | |
H52A | 0.7798 | −0.3562 | 0.1861 | 0.067* | |
H52B | 0.8089 | −0.2984 | 0.2827 | 0.067* | |
H52C | 0.9075 | −0.2390 | 0.2202 | 0.067* | |
O12 | 0.8434 (2) | 0.0957 (2) | 0.18653 (11) | 0.0262 (5) | |
O33 | 0.8619 (2) | 0.1671 (2) | 0.02944 (12) | 0.0215 (5) | |
H33 | 0.910 (3) | 0.128 (3) | −0.0003 (15) | 0.026* | |
O43 | 0.6905 (2) | −0.0755 (2) | −0.03202 (11) | 0.0239 (5) | |
H43 | 0.6025 (19) | −0.070 (3) | −0.0444 (16) | 0.029* | |
O53 | 0.7037 (2) | −0.1323 (2) | 0.13039 (11) | 0.0236 (5) | |
F10 | 0.95277 (16) | −0.05790 (17) | 0.07061 (9) | 0.0238 (4) | |
F11 | 0.60516 (15) | 0.09967 (18) | 0.07997 (10) | 0.0251 (4) | |
V1 | 0.78003 (5) | 0.01389 (5) | 0.09899 (3) | 0.01807 (13) | |
C60 | 0.7591 (4) | 0.2460 (5) | 0.4056 (2) | 0.0567 (12) | |
H60A | 0.8345 | 0.2659 | 0.4548 | 0.085* | |
H60B | 0.7966 | 0.1817 | 0.3640 | 0.085* | |
H60C | 0.6683 | 0.2060 | 0.4212 | 0.085* | |
C61 | 0.7257 (3) | 0.3742 (4) | 0.37068 (19) | 0.0321 (8) | |
H61 | 0.8204 | 0.4141 | 0.3566 | 0.039* | |
C62 | 0.6148 (4) | 0.3516 (4) | 0.2929 (2) | 0.0488 (11) | |
H62A | 0.5205 | 0.3132 | 0.3053 | 0.073* | |
H62B | 0.6530 | 0.2883 | 0.2510 | 0.073* | |
H62C | 0.5985 | 0.4387 | 0.2718 | 0.073* | |
C70 | 0.9422 (3) | 0.5670 (4) | 0.73560 (19) | 0.0399 (9) | |
H70A | 1.0157 | 0.4988 | 0.7273 | 0.060* | |
H70B | 0.9076 | 0.5630 | 0.7893 | 0.060* | |
H70C | 0.9878 | 0.6579 | 0.7346 | 0.060* | |
C71 | 0.8115 (3) | 0.5382 (3) | 0.66699 (17) | 0.0241 (7) | |
H71 | 0.7383 | 0.6088 | 0.6773 | 0.029* | |
C72 | 0.7339 (4) | 0.4012 (4) | 0.6657 (2) | 0.0515 (10) | |
H72A | 0.6529 | 0.3859 | 0.6192 | 0.077* | |
H72B | 0.6934 | 0.3981 | 0.7178 | 0.077* | |
H72C | 0.8049 | 0.3302 | 0.6593 | 0.077* | |
C80 | 0.9360 (4) | 1.0323 (4) | 0.6110 (3) | 0.0494 (10) | |
H80A | 0.9445 | 1.0163 | 0.6690 | 0.074* | |
H80B | 0.9271 | 1.1297 | 0.6078 | 0.074* | |
H80C | 1.0246 | 1.0021 | 0.5876 | 0.074* | |
C81 | 0.7993 (3) | 0.9530 (3) | 0.5622 (2) | 0.0296 (7) | |
H81 | 0.7887 | 0.9726 | 0.5036 | 0.036* | |
C82 | 0.6575 (3) | 0.9858 (4) | 0.5978 (2) | 0.0423 (9) | |
H82A | 0.5740 | 0.9288 | 0.5653 | 0.063* | |
H82B | 0.6391 | 1.0820 | 0.5956 | 0.063* | |
H82C | 0.6678 | 0.9678 | 0.6555 | 0.063* | |
O22 | 0.6793 (2) | 0.7502 (2) | 0.41889 (12) | 0.0336 (6) | |
O63 | 0.6726 (2) | 0.4712 (3) | 0.43103 (14) | 0.0372 (6) | |
H63 | 0.593 (2) | 0.442 (3) | 0.4392 (19) | 0.045* | |
O73 | 0.8580 (2) | 0.5506 (2) | 0.58798 (12) | 0.0260 (5) | |
H73 | 0.918 (3) | 0.496 (3) | 0.5773 (17) | 0.031* | |
O83 | 0.8222 (2) | 0.8103 (2) | 0.56364 (11) | 0.0240 (5) | |
F20 | 0.92143 (16) | 0.62287 (18) | 0.44693 (9) | 0.0250 (4) | |
F21 | 0.58303 (16) | 0.63762 (18) | 0.53906 (10) | 0.0277 (4) | |
V2 | 0.75177 (5) | 0.67038 (5) | 0.49047 (3) | 0.02055 (14) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C30 | 0.050 (2) | 0.034 (2) | 0.050 (2) | 0.0146 (17) | 0.0211 (17) | 0.0222 (18) |
C31 | 0.0236 (15) | 0.0228 (19) | 0.0315 (17) | 0.0078 (13) | 0.0063 (13) | 0.0088 (14) |
C32 | 0.055 (2) | 0.023 (2) | 0.049 (2) | 0.0054 (17) | 0.0167 (18) | 0.0049 (17) |
C40 | 0.055 (2) | 0.024 (2) | 0.054 (2) | 0.0129 (17) | 0.0149 (18) | 0.0065 (18) |
C41 | 0.0205 (15) | 0.029 (2) | 0.0268 (16) | 0.0079 (13) | 0.0045 (12) | −0.0036 (14) |
C42 | 0.0443 (19) | 0.035 (2) | 0.0290 (18) | −0.0025 (16) | 0.0118 (15) | −0.0013 (16) |
C50 | 0.035 (2) | 0.116 (5) | 0.057 (3) | −0.001 (2) | 0.0141 (18) | 0.051 (3) |
C51 | 0.0301 (16) | 0.030 (2) | 0.0209 (15) | 0.0016 (14) | 0.0077 (13) | 0.0069 (14) |
C52 | 0.058 (2) | 0.045 (3) | 0.0355 (19) | 0.0183 (19) | 0.0110 (17) | 0.0109 (18) |
O12 | 0.0270 (11) | 0.0274 (14) | 0.0234 (11) | −0.0014 (9) | 0.0009 (8) | 0.0033 (9) |
O33 | 0.0172 (10) | 0.0195 (12) | 0.0314 (11) | 0.0052 (8) | 0.0092 (8) | 0.0093 (9) |
O43 | 0.0151 (10) | 0.0339 (14) | 0.0212 (10) | 0.0052 (9) | 0.0018 (8) | −0.0024 (9) |
O53 | 0.0284 (11) | 0.0240 (13) | 0.0199 (10) | −0.0013 (9) | 0.0071 (8) | 0.0057 (9) |
F10 | 0.0195 (8) | 0.0253 (11) | 0.0294 (9) | 0.0065 (7) | 0.0067 (7) | 0.0095 (8) |
F11 | 0.0165 (8) | 0.0263 (11) | 0.0337 (9) | 0.0043 (7) | 0.0069 (7) | 0.0036 (8) |
V1 | 0.0152 (2) | 0.0193 (3) | 0.0207 (3) | 0.00082 (19) | 0.00436 (19) | 0.0043 (2) |
C60 | 0.052 (2) | 0.059 (3) | 0.056 (2) | 0.019 (2) | 0.004 (2) | −0.002 (2) |
C61 | 0.0216 (15) | 0.033 (2) | 0.0394 (19) | −0.0045 (14) | 0.0168 (14) | −0.0148 (16) |
C62 | 0.051 (2) | 0.060 (3) | 0.0324 (19) | 0.012 (2) | 0.0068 (17) | −0.0066 (19) |
C70 | 0.0351 (18) | 0.055 (3) | 0.0322 (18) | 0.0092 (17) | 0.0117 (15) | 0.0058 (17) |
C71 | 0.0263 (15) | 0.0231 (18) | 0.0259 (16) | 0.0037 (13) | 0.0123 (13) | 0.0050 (13) |
C72 | 0.054 (2) | 0.040 (3) | 0.064 (3) | −0.0123 (19) | 0.025 (2) | 0.013 (2) |
C80 | 0.042 (2) | 0.024 (2) | 0.078 (3) | −0.0068 (16) | 0.0098 (19) | −0.006 (2) |
C81 | 0.0373 (18) | 0.0179 (19) | 0.0348 (18) | 0.0023 (14) | 0.0090 (14) | 0.0038 (14) |
C82 | 0.040 (2) | 0.028 (2) | 0.060 (2) | 0.0085 (16) | 0.0119 (17) | 0.0023 (18) |
O22 | 0.0333 (12) | 0.0422 (16) | 0.0239 (11) | 0.0092 (11) | 0.0013 (9) | −0.0001 (10) |
O63 | 0.0235 (11) | 0.0395 (16) | 0.0441 (13) | −0.0110 (10) | 0.0187 (10) | −0.0225 (11) |
O73 | 0.0278 (11) | 0.0255 (14) | 0.0296 (11) | 0.0101 (9) | 0.0160 (9) | 0.0071 (10) |
O83 | 0.0247 (10) | 0.0200 (13) | 0.0275 (11) | 0.0000 (9) | 0.0064 (8) | 0.0011 (9) |
F20 | 0.0202 (8) | 0.0280 (11) | 0.0276 (9) | −0.0011 (7) | 0.0092 (7) | 0.0012 (8) |
F21 | 0.0203 (8) | 0.0297 (11) | 0.0320 (9) | −0.0023 (7) | 0.0116 (7) | −0.0073 (8) |
V2 | 0.0173 (2) | 0.0216 (3) | 0.0223 (3) | 0.0003 (2) | 0.0054 (2) | −0.0014 (2) |
C30—C31 | 1.512 (4) | C60—C61 | 1.486 (5) |
C30—H30A | 0.9800 | C60—H60A | 0.9800 |
C30—H30B | 0.9800 | C60—H60B | 0.9800 |
C30—H30C | 0.9800 | C60—H60C | 0.9800 |
C31—O33 | 1.453 (3) | C61—O63 | 1.437 (3) |
C31—C32 | 1.510 (4) | C61—C62 | 1.505 (4) |
C31—H31 | 1.0000 | C61—H61 | 1.0000 |
C32—H32A | 0.9800 | C62—H62A | 0.9800 |
C32—H32B | 0.9800 | C62—H62B | 0.9800 |
C32—H32C | 0.9800 | C62—H62C | 0.9800 |
C40—C41 | 1.503 (5) | C70—C71 | 1.515 (4) |
C40—H40A | 0.9800 | C70—H70A | 0.9800 |
C40—H40B | 0.9800 | C70—H70B | 0.9800 |
C40—H40C | 0.9800 | C70—H70C | 0.9800 |
C41—O43 | 1.448 (3) | C71—O73 | 1.436 (3) |
C41—C42 | 1.514 (4) | C71—C72 | 1.502 (5) |
C41—H41 | 1.0000 | C71—H71 | 1.0000 |
C42—H42A | 0.9800 | C72—H72A | 0.9800 |
C42—H42B | 0.9800 | C72—H72B | 0.9800 |
C42—H42C | 0.9800 | C72—H72C | 0.9800 |
C50—C51 | 1.503 (4) | C80—C81 | 1.516 (4) |
C50—H50A | 0.9800 | C80—H80A | 0.9800 |
C50—H50B | 0.9800 | C80—H80B | 0.9800 |
C50—H50C | 0.9800 | C80—H80C | 0.9800 |
C51—O53 | 1.443 (3) | C81—O83 | 1.441 (4) |
C51—C52 | 1.492 (4) | C81—C82 | 1.515 (4) |
C51—H51 | 1.0000 | C81—H81 | 1.0000 |
C52—H52A | 0.9800 | C82—H82A | 0.9800 |
C52—H52B | 0.9800 | C82—H82B | 0.9800 |
C52—H52C | 0.9800 | C82—H82C | 0.9800 |
O12—V1 | 1.581 (2) | O22—V2 | 1.586 (2) |
O33—V1 | 2.178 (2) | O63—V2 | 2.139 (2) |
O33—H33 | 0.778 (16) | O63—H63 | 0.805 (17) |
O43—V1 | 2.2513 (19) | O73—V2 | 2.253 (2) |
O43—H43 | 0.804 (16) | O73—H73 | 0.800 (17) |
O53—V1 | 1.747 (2) | O83—V2 | 1.754 (2) |
F10—V1 | 1.8423 (14) | F20—V2 | 1.8391 (14) |
F11—V1 | 1.8424 (15) | F21—V2 | 1.8578 (15) |
C31—C30—H30A | 109.5 | C61—C60—H60A | 109.5 |
C31—C30—H30B | 109.5 | C61—C60—H60B | 109.5 |
H30A—C30—H30B | 109.5 | H60A—C60—H60B | 109.5 |
C31—C30—H30C | 109.5 | C61—C60—H60C | 109.5 |
H30A—C30—H30C | 109.5 | H60A—C60—H60C | 109.5 |
H30B—C30—H30C | 109.5 | H60B—C60—H60C | 109.5 |
O33—C31—C32 | 106.8 (2) | O63—C61—C60 | 110.6 (3) |
O33—C31—C30 | 109.9 (2) | O63—C61—C62 | 109.6 (3) |
C32—C31—C30 | 112.4 (3) | C60—C61—C62 | 112.8 (3) |
O33—C31—H31 | 109.2 | O63—C61—H61 | 107.9 |
C32—C31—H31 | 109.2 | C60—C61—H61 | 107.9 |
C30—C31—H31 | 109.2 | C62—C61—H61 | 107.9 |
C31—C32—H32A | 109.5 | C61—C62—H62A | 109.5 |
C31—C32—H32B | 109.5 | C61—C62—H62B | 109.5 |
H32A—C32—H32B | 109.5 | H62A—C62—H62B | 109.5 |
C31—C32—H32C | 109.5 | C61—C62—H62C | 109.5 |
H32A—C32—H32C | 109.5 | H62A—C62—H62C | 109.5 |
H32B—C32—H32C | 109.5 | H62B—C62—H62C | 109.5 |
C41—C40—H40A | 109.5 | C71—C70—H70A | 109.5 |
C41—C40—H40B | 109.5 | C71—C70—H70B | 109.5 |
H40A—C40—H40B | 109.5 | H70A—C70—H70B | 109.5 |
C41—C40—H40C | 109.5 | C71—C70—H70C | 109.5 |
H40A—C40—H40C | 109.5 | H70A—C70—H70C | 109.5 |
H40B—C40—H40C | 109.5 | H70B—C70—H70C | 109.5 |
O43—C41—C40 | 109.7 (2) | O73—C71—C72 | 110.5 (3) |
O43—C41—C42 | 109.0 (3) | O73—C71—C70 | 110.6 (2) |
C40—C41—C42 | 113.7 (3) | C72—C71—C70 | 112.5 (3) |
O43—C41—H41 | 108.1 | O73—C71—H71 | 107.7 |
C40—C41—H41 | 108.1 | C72—C71—H71 | 107.7 |
C42—C41—H41 | 108.1 | C70—C71—H71 | 107.7 |
C41—C42—H42A | 109.5 | C71—C72—H72A | 109.5 |
C41—C42—H42B | 109.5 | C71—C72—H72B | 109.5 |
H42A—C42—H42B | 109.5 | H72A—C72—H72B | 109.5 |
C41—C42—H42C | 109.5 | C71—C72—H72C | 109.5 |
H42A—C42—H42C | 109.5 | H72A—C72—H72C | 109.5 |
H42B—C42—H42C | 109.5 | H72B—C72—H72C | 109.5 |
C51—C50—H50A | 109.5 | C81—C80—H80A | 109.5 |
C51—C50—H50B | 109.5 | C81—C80—H80B | 109.5 |
H50A—C50—H50B | 109.5 | H80A—C80—H80B | 109.5 |
C51—C50—H50C | 109.5 | C81—C80—H80C | 109.5 |
H50A—C50—H50C | 109.5 | H80A—C80—H80C | 109.5 |
H50B—C50—H50C | 109.5 | H80B—C80—H80C | 109.5 |
O53—C51—C52 | 108.4 (2) | O83—C81—C80 | 107.4 (3) |
O53—C51—C50 | 107.8 (2) | O83—C81—C82 | 108.7 (3) |
C52—C51—C50 | 114.0 (3) | C80—C81—C82 | 113.2 (3) |
O53—C51—H51 | 108.9 | O83—C81—H81 | 109.2 |
C52—C51—H51 | 108.9 | C80—C81—H81 | 109.2 |
C50—C51—H51 | 108.9 | C82—C81—H81 | 109.2 |
C51—C52—H52A | 109.5 | C81—C82—H82A | 109.5 |
C51—C52—H52B | 109.5 | C81—C82—H82B | 109.5 |
H52A—C52—H52B | 109.5 | H82A—C82—H82B | 109.5 |
C51—C52—H52C | 109.5 | C81—C82—H82C | 109.5 |
H52A—C52—H52C | 109.5 | H82A—C82—H82C | 109.5 |
H52B—C52—H52C | 109.5 | H82B—C82—H82C | 109.5 |
C31—O33—V1 | 126.82 (15) | C61—O63—V2 | 133.84 (18) |
C31—O33—H33 | 113 (2) | C61—O63—H63 | 108 (2) |
V1—O33—H33 | 105 (2) | V2—O63—H63 | 118 (2) |
C41—O43—V1 | 133.21 (16) | C71—O73—V2 | 126.96 (15) |
C41—O43—H43 | 109 (2) | C71—O73—H73 | 111 (2) |
V1—O43—H43 | 114.6 (19) | V2—O73—H73 | 121 (2) |
C51—O53—V1 | 130.57 (19) | C81—O83—V2 | 129.26 (19) |
O12—V1—O53 | 99.80 (10) | O22—V2—O83 | 98.83 (11) |
O12—V1—F10 | 99.20 (9) | O22—V2—F20 | 98.47 (9) |
O53—V1—F10 | 97.45 (8) | O83—V2—F20 | 100.51 (8) |
O12—V1—F11 | 98.62 (9) | O22—V2—F21 | 98.67 (9) |
O53—V1—F11 | 97.01 (8) | O83—V2—F21 | 95.14 (8) |
F10—V1—F11 | 154.73 (7) | F20—V2—F21 | 154.66 (8) |
O12—V1—O33 | 94.30 (10) | O22—V2—O63 | 96.21 (11) |
O53—V1—O33 | 165.77 (9) | O83—V2—O63 | 164.06 (10) |
F10—V1—O33 | 78.23 (7) | F20—V2—O63 | 82.38 (7) |
F11—V1—O33 | 82.71 (7) | F21—V2—O63 | 77.34 (7) |
O12—V1—O43 | 172.37 (10) | O22—V2—O73 | 177.56 (9) |
O53—V1—O43 | 87.31 (9) | O83—V2—O73 | 83.05 (9) |
F10—V1—O43 | 82.49 (7) | F20—V2—O73 | 79.61 (7) |
F11—V1—O43 | 77.61 (7) | F21—V2—O73 | 82.67 (7) |
O33—V1—O43 | 78.72 (8) | O63—V2—O73 | 82.07 (9) |
C32—C31—O33—V1 | 81.7 (3) | C60—C61—O63—V2 | 118.6 (3) |
C30—C31—O33—V1 | −156.1 (2) | C62—C61—O63—V2 | −116.6 (3) |
C40—C41—O43—V1 | 98.4 (3) | C72—C71—O73—V2 | 104.5 (3) |
C42—C41—O43—V1 | −136.6 (2) | C70—C71—O73—V2 | −130.3 (2) |
C52—C51—O53—V1 | −105.7 (3) | C80—C81—O83—V2 | −151.4 (2) |
C50—C51—O53—V1 | 130.4 (3) | C82—C81—O83—V2 | 85.8 (3) |
C51—O53—V1—O12 | 0.1 (2) | C81—O83—V2—O22 | 8.3 (2) |
C51—O53—V1—F10 | 100.8 (2) | C81—O83—V2—F20 | 108.7 (2) |
C51—O53—V1—F11 | −100.0 (2) | C81—O83—V2—F21 | −91.4 (2) |
C51—O53—V1—O33 | 172.1 (3) | C81—O83—V2—O63 | −152.2 (3) |
C51—O53—V1—O43 | −177.1 (2) | C81—O83—V2—O73 | −173.3 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
O33—H33···F10i | 0.78 (2) | 1.90 (2) | 2.674 (2) | 171 (3) |
O43—H43···F11ii | 0.80 (2) | 1.90 (2) | 2.690 (2) | 168 (3) |
O63—H63···F21iii | 0.81 (2) | 1.85 (2) | 2.655 (3) | 175 (4) |
O73—H73···F20iv | 0.80 (2) | 1.97 (2) | 2.765 (2) | 175 (3) |
Symmetry codes: (i) −x+2, −y, −z; (ii) −x+1, −y, −z; (iii) −x+1, −y+1, −z+1; (iv) −x+2, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [V(C3H7O)F2O(C3H8O)2] |
Mr | 284.21 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 150 |
a, b, c (Å) | 9.0943 (9), 9.9151 (8), 16.4279 (13) |
α, β, γ (°) | 97.315 (7), 97.690 (7), 92.324 (7) |
V (Å3) | 1453.5 (2) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.70 |
Crystal size (mm) | 0.89 × 0.20 × 0.14 |
Data collection | |
Diffractometer | Agilent Xcalibur diffractometer |
Absorption correction | Analytical [CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)] |
Tmin, Tmax | 0.727, 0.920 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10818, 5702, 4505 |
Rint | 0.045 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.052, 0.107, 1.05 |
No. of reflections | 5702 |
No. of parameters | 313 |
No. of restraints | 8 |
H-atom treatment | Heteroxyz |
Δρmax, Δρmin (e Å−3) | 0.44, −0.53 |
Computer programs: CrysAlis PRO (Agilent, 2012), SHELXS2013 (Sheldrick, 2008), SHELXL2013 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012), Mercury (Macrae et al., 2008), PLATON/MOLFIT (Spek, 2009), PLATON/PLUTON (Spek, 2009) and CSM website (Zayit et al., 2011).
O12—V1 | 1.581 (2) | O22—V2 | 1.586 (2) |
O33—V1 | 2.178 (2) | O63—V2 | 2.139 (2) |
O43—V1 | 2.2513 (19) | O73—V2 | 2.253 (2) |
O53—V1 | 1.747 (2) | O83—V2 | 1.754 (2) |
F10—V1 | 1.8423 (14) | F20—V2 | 1.8391 (14) |
F11—V1 | 1.8424 (15) | F21—V2 | 1.8578 (15) |
O12—V1—O53 | 99.80 (10) | O22—V2—O83 | 98.83 (11) |
O12—V1—F10 | 99.20 (9) | O22—V2—F20 | 98.47 (9) |
O53—V1—F10 | 97.45 (8) | O83—V2—F20 | 100.51 (8) |
O12—V1—F11 | 98.62 (9) | O22—V2—F21 | 98.67 (9) |
O53—V1—F11 | 97.01 (8) | O83—V2—F21 | 95.14 (8) |
F10—V1—F11 | 154.73 (7) | F20—V2—F21 | 154.66 (8) |
O12—V1—O33 | 94.30 (10) | O22—V2—O63 | 96.21 (11) |
O53—V1—O33 | 165.77 (9) | O83—V2—O63 | 164.06 (10) |
F10—V1—O33 | 78.23 (7) | F20—V2—O63 | 82.38 (7) |
F11—V1—O33 | 82.71 (7) | F21—V2—O63 | 77.34 (7) |
O12—V1—O43 | 172.37 (10) | O22—V2—O73 | 177.56 (9) |
O53—V1—O43 | 87.31 (9) | O83—V2—O73 | 83.05 (9) |
F10—V1—O43 | 82.49 (7) | F20—V2—O73 | 79.61 (7) |
F11—V1—O43 | 77.61 (7) | F21—V2—O73 | 82.67 (7) |
O33—V1—O43 | 78.72 (8) | O63—V2—O73 | 82.07 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
O33—H33···F10i | 0.778 (16) | 1.903 (17) | 2.674 (2) | 171 (3) |
O43—H43···F11ii | 0.804 (16) | 1.900 (18) | 2.690 (2) | 168 (3) |
O63—H63···F21iii | 0.805 (17) | 1.852 (18) | 2.655 (3) | 175 (4) |
O73—H73···F20iv | 0.800 (17) | 1.967 (17) | 2.765 (2) | 175 (3) |
Symmetry codes: (i) −x+2, −y, −z; (ii) −x+1, −y, −z; (iii) −x+1, −y+1, −z+1; (iv) −x+2, −y+1, −z+1. |